Vol. **50**, No. 2, pp. 165-173 June 2017

Overdetermined Boundary Value Problems in Sⁿ

Guohuan Qiu¹ and Chao Xia^{2,*}

¹ Department of Mathematics and Statistics, McGill University, Montreal, H3A 0B9, Canada

² School of Mathematical Sciences, Xiamen University, Xiamen 361005, P.R. China.

Received 1 July, 2016; Accepted 7 March, 2017

Abstract. In this paper we use the maximum principle and the Hopf lemma to prove symmetry results to some overdetermined boundary value problems for domains in the hemisphere or star-shaped domains in S^n . Our method is based on finding suitable *P*-functions as Weinberger ([26]).

AMS subject classifications: 35J15, 35R01

Key words: Overdetermined problems, Schiffer's problem, P-function.

1 Introduction

In a seminal paper [21], Serrin proved that for a bounded open connected domain $\Omega \subset \mathbb{R}^n$ with sufficient regular boundary $\partial \Omega$, if there exists a solution of the following overdetermined boundary value problem

$$\begin{cases} \Delta u = n & \text{in } \Omega, \\ u = 0 & \text{on } \partial\Omega, \\ \frac{\partial u}{\partial v} = c & \text{on } \partial\Omega, \end{cases}$$
(1.1)

where *c* is a constant, then Ω must be a ball and *u* is radially symmetric. Here ν denotes the outward unit normal of $\partial \Omega$.

The main tool of Serrin's proof is well-known as the method of moving planes, which is due to Alexandrov. Immediately after Serrin's paper, Weinberger [26] give an alternative proof of the same result, based on a Rellich-Pohozaev type identity and an interior maximum principle for a subharmonic function (In literatures, it is often referred to as P-function). Each of their proofs has its own merits. Serrin's argument applies to very

http://www.global-sci.org/jms

^{*}Corresponding author. *Email addresses:* guohuan.qiu@mail.mcgill.ca (G. Qiu), chaoxia@xmu.edu.cn (C. Xia)

general partial differential equations if an additional assumption u > 0 is added, while Weinberger's argument is more elementary.

Since the works of Serrin and Weinberger, there have been numerous generalizations to overdetermined problems for general elliptic operators in \mathbb{R}^n , the interested readers may refer to [4–6,8,11–14,17,25] and references therein.

On the other hand, Serrin's result has been extended to the hemisphere \mathbb{S}_{+}^{n} and the hyperbolic space \mathbb{H}^{n} . Precisely, Molzon [16] considered equation $\Delta u = f(x)$ where $f(x) = \cos r$ (cosh r resp.) in the case \mathbb{S}_{+}^{n} (\mathbb{H}^{n} resp.) and r is the distance function from a fixed point or f(x) = n. Kumaresan and Prajapat [15] considered equation $\Delta u + f(u) = 0$ in $\Omega \subset \mathbb{S}_{+}^{n}$ or \mathbb{H}^{n} , where f is a C^{1} function. They proved that if $\Delta u + f(u) = 0$ with the boundary condition u = 0 and $\frac{\partial u}{\partial v} = constant$ admits a *positive* solution, then Ω is a geodesic ball and u is radially symmetric. They used Serrin's method of moving planes to achieve this, where the positivity of u is an unremovable assumption.

In this paper, we will study an overdetermined problem corresponding to a particular equation on S^n :

$$\begin{cases} \Delta u + nu = n & \text{in } \Omega, \\ u = 0 & \text{on } \partial\Omega, \\ \frac{\partial u}{\partial v} = c & \text{on } \partial\Omega. \end{cases}$$
(1.2)

Equation (1.2) is related to Schiffer's problem (See [28] problem 80) on \mathbb{S}^n . See for instance [1–3,7,9,10,23,24,27] for recent developments of Schiffer's problem. Previously, Souam [24] showed that for n = 2 and $\Omega \subset \mathbb{S}^n$ simply connected, if (1.2) admits a solution, then Ω must be a geodesic ball.

Our first result is the following.

Theorem 1.1. Let $\Omega \subset \mathbb{S}^n$ be a bounded open connected domain such that $\overline{\Omega}$ is contained in a hemisphere \mathbb{S}^n_+ . If the overdetermined problem (1.2) admits a solution u, then Ω must be a geodesic ball and u is radially symmetric.

We remark that since the first Dirichlet eigenvalue for a domain $\overline{\Omega} \subset \mathbb{S}^n_+$ is strictly larger than *n*, there exists a unique solution for the Dirichlet problem $\Delta u + nu = n$ in Ω and u = 0 on $\partial \Omega$. However, it is not a priori known whether the solution has a definite sign. Therefore, Theorem 1.1 does not follow from the result of Kumaresan and Prajapat [15].

Our approach to Theorem 1.1 is parellel to Weinberger's, namely, we use a maximum principle for a subharmonic function P and a Rellich-Pohozaev type identity. We remark that our method also applies to equation $\Delta u - nu = n$ in $\Omega \subset \mathbb{H}^n$. In this case, u is negative in Ω by the maximum principle. Hence the conclusion also follows from the result of Kumaresan and Prajapat.

Our next result concerns the same overdetermined problem (1.2) in $\Omega \subset S^n$ without the assumption that $\overline{\Omega}$ is contained in a hemisphere S^n_+ . Instead, we shall add a star-shapedness assumption on Ω . A domain $\Omega \subset S^n$ is called star-shaped with respect to $p \in S^n$ if Ω can be written as a graph over a geodesic sphere centered at p. It is clear that a