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Abstract. We consider a phase field model based on a generalization of the Maxwell
Cattaneo heat conduction law, with a logarithmic nonlinearity, associated with Neu-
mann boundary conditions. The originality here, compared with previous works, is
that we obtain global in time and dissipative estimates, so that, in particular, we prove,
in one and two space dimensions, the existence of a unique solution which is strictly
separated from the singularities of the nonlinear term, as well as the existence of the
finite-dimensional global attractor and of exponential attractors. In three space dimen-
sions, we prove the existence of a solution.
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1 Introduction

The Caginalp phase-field model

∂u

∂t
−∆u+g(u)= θ, (1.1)

∂θ

∂t
−∆θ=−∂u

∂t
, (1.2)

has been proposed to model phase transition phenomena, for example melting-solidi-
fication phenomena, in certain classes of materials. Caginalp considered the Ginzburg-
Landau free energy and the classical Fourier law to derive his system, see, e.g., [1,2].
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Here, u denotes the order parameter and θ the (relative) temperature. Furthermore, all
physical constants have been set equal to one. For more details and references we re-
fer the reader to [2–4]. This model has been extensively studied (see, e.g., [5] and the
references therein). Now, a drawback of the Fourier law is the so-called ”paradox of
heat conduction”, namely, it predicts that thermal signals propagate with infinite speed,
which, in particular, violates causality (see, e.g., [5]). One possible modification, in order
to correct this unrealistic feature, is the Maxwell-Cattaneo law. We refer the reader to
[3,5,6] for more discussions on the subject.

In this paper, we consider the following model

∂u

∂t
−∆u+g(u)=

∂α

∂t
, (1.3)

∂2α

∂t2
+

∂α

∂t
−∆α=−∂u

∂t
−u, (1.4)

which is a generalization of the original Caginalp system (see [2]). In this context α is the
thermal displacement variable, defined by

α=
∫ t

0
θdτ+α0. (1.5)

As mentioned above the Caginalp system can be obtained by considering the Ginzburg-
Landau free energy

Ψ(u,θ)=
∫

Ω

(

1

2
|∇u|2+G(u)−θu

)

dx, (1.6)

the enthalpy H=u+θ and by writing

1

d

∂u

∂t
=−∂uΨ, (1.7)

∂H

∂t
=−divq, (1.8)

where d > 0 is a relaxation parameter, ∂u denotes a variational derivative and q is the
thermal flux vector. Setting d=1 and taking the usual Fourier law

q=−∇θ, (1.9)

we find (1.1)-(1.2).
The Maxwell-Cattaneo law reads

(1+η
∂

∂t
)q=−∇θ, (1.10)

where η is a relaxation parameter; when η = 0, one recovers the Fourier law. Taking for
simplicity η=1, it follows from (1.8) that

(

1+
∂

∂t

)

∂H

∂t
−∆θ=0,


