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Abstract. In this article, we study the reduced-order modelling for Allen-Cahn equa-
tion. First, a collection of phase field data, i.e., an ensemble of snapshots of at some
time instances is obtained from numerical simulation using a time-space discretization.
The full discretization makes use of a temporal scheme based on the scalar auxiliary
variable approach and a spatial spectral Galerkin method. It is shown that the time
stepping scheme is unconditionally stable. Then a reduced order method is developed
using by proper orthogonal decomposition (POD) and discrete empirical interpola-
tion method (DEIM). It is well-known that the Allen-Cahn equations have a nonlinear
stability property, i.e., the free-energy functional decreases with respect to time. Our
numerical experiments show that the discretized Allen-Cahn system resulting from
the POD-DEIM method inherits this favorable property by using the scalar auxiliary
variable approach. A few numerical results are presented to illustrate the performance
of the proposed reduced order method. In particular, the numerical results show that
the computational efficiency is significantly enhanced as compared to directly solving
the full order system.

AMS subject classifications: 76T10, 78M34, 74S25
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1 Introduction and motivations

Reduced-Order Model (ROM) applied to numerical design in modern engineering is
a tool that is wide-spreading in the scientific community. It is particularly useful in solv-
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ing complex realistic multi-parameters, multi-physics and multi-scale problems, where
classical methods such as Finite Difference, Finite Element, and Finite Volume methods
would require up to billions of unknowns. On the contrary, ROM is based on a sharp of-
fline/online strategy, which can be realized with a reduced number of unknowns. Such a
strategy can be used to handle control, optimization, prediction, and data analysis prob-
lems in almost real-time, that is, ultimately, a major goal for industrials. The reduced
order modeling offline strategy relies on proper choices for data sampling and construc-
tion of the reduced basis, which will be used then in the online phase, where a proper
choice of the reduced model describing the dynamic of the system is needed. The key
feature of ROM is its capability to drastically reduce the computational cost of numerical
simulations, and thus highly speedup computations without compromising too much the
physical accuracy of the solution from the engineering point of view. Among the most
popular ROM approaches, Proper Orthogonal Decomposition (POD) strategy provides
optimal (from the energetic point of view) basis or modes to represent the dynamics from
a given database (snapshots) obtained by a full-order system. Onto these reduced basis,
a Galerkin projection of the governing equations can be employed to obtain a low-order
dynamical system for the basis coefficients. The resulting low-order model is named
standard POD-ROM, which thus consists in the projection of high-fidelity (full-order)
representations of physical problems onto low-dimensional spaces of solutions, with a
dramatically reduced dimension. The main advantage of POD-ROM is that these low-
dimensional spaces are capable of capturing the dominant characteristics of the solution,
and the computations in the low-dimensional space can be done at a reduced cost. This
advantage has led researchers to apply POD to a variety of physical and engineering
problems, including the Navier Stokes equations in computational fluid dynamics; See
e.g. [2–4] and [8].

We aim in this paper at applying this reduced-order model strategy to solve the Allen-
Cahn equation and investigating its efficiency in terms of stability, convergence, and data
reduction.

The Allen-Cahn equation was originally introduced to describe the motion of anti-
phase boundaries in crystalline solids [1], and has now been used to model many moving
interface problems from fluid dynamics to materials science via a phase-field approach.
It consists in finding φ : Ω×(0,T]→R solution of


∂φ
∂t +γ

(
−∆φ+ f (φ)

)
=0, ∀(x,t)∈Ω×(0,T],

∇φ·n
∣∣
∂Ω =0, ∀t∈ (0,T],

φ(t=0)=φ0(x), ∀x∈Ω.

(1.1)

In the above, γ is a positive kinetic coefficient, Ω⊂Rd is a bounded domain, n is the out-
ward normal, f (φ)=F′(φ) with the given function F(φ)= 1

4ε2 (φ
2−1)2 being the Ginzburg-
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Landau double-well potential. The phase field φ is such that

φ=

{
1, phase 1,
−1, phase 2,

and ε represents the thickness of the smooth transition layer connecting the two phases,
which is small compared to the characteristic length of the system scale. The homoge-
neous Neumann boundary condition implies that no mass loss occurs across the bound-
ary walls.

In the literature, there are only three papers dealing with the reduced order model-
ing for the Allen-Cahn equation [8, 12, 15]. In the literature, they used convex splitting
methods and implicit energy stable methods for time discretization, which require solv-
ing nonlinear system or linear system with variable coefficients. While we use scalar
auxiliary variable (SAV) scheme [11,14] to construct full order system, which is uncondi-
tionally energy stable and extremely efficient in the sense that only decoupled equations
with constant coefficients need to be solved at each time step. And we construct the ROM
based on SAV, which inherits all the advantages of SAV.

The small positive parameter ε and the nonlinear term make the Allen-Cahn equa-
tion very stiff, and it is computationally expensive to solving the Allen-Cahn equation.
To overcome the difficulty and significantly improve the computational efficiency, we
develop in this paper a reduced-order modelling for this equation. In our method, the
phase field data sampling is first obtained from a numerical method constructed based
on the scalar auxiliary variable (SAV) approach for the time discretization and spectral
method for the space discretization. The SAV, recently introduced and analyzed by a
number of researchers; see, e.g., [14] and the references therein, is an efficient and robust
framework to design stable schemes for a large class of gradient flows. The advantage
of this approach is that it is not restricted to specific forms of the nonlinear part of the
free energy and only requires solving simple decoupled linear equations with constan-
t coefficients. In this work, we apply the SAV approach to construct unconditionally
second-order stable scheme for time discretization, and the spectral Galerkin method for
space discretization. Once the snapshot sampling is computed from solving the full or-
der system, a set of reduced basis are then obtained by applying POD to the snapshots.
In order to reduce the computational complexity in the evaluation of the nonlinear term,
we will use the Discrete Empirical Interpolation Method (DEIM) approach [5] to approx-
imate the nonlinear function. Finally, a reduced order system is derived based on the
POD basis and DEIM for the nonlinear term. The final reduced order system to be solved
has a size much smaller than the full order system.

The rest of the paper is organized as follows. In Section 2, We briefly describe the
Proper Orthogonal Decomposition method and Discrete Empirical Interpolation Method.
Section 3 is first devoted to present the full discretization method for the Allen-Cahn
equation. The SAV-based unconditionally stable scheme for the time discretization and
the spectral method for the space discretization are proposed. Then the reduced order
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system is derived using POD and DEIM to the snapshot sampling computed from the
full order system. In Section 4, several numerical examples are provided to confirm some
theoretical results and demonstrate the performance of the proposed algorithm. Finally,
some comments and concluding remarks are given in Section 5.

2 Phase-field POD-ROM description

We briefly describe the POD method. For a detailed presentation, the reader is re-
ferred to, e.g., [9, 13, 16].

Let us consider an ensemble of snapshots χ = span{φ(·,t0),. . .,φ(·,tNτ )}, which is a
collection of phase field data from numerical simulation results of (1.1) at time tn =n∆t,
n=0,1,.. .,Nτ and ∆t=T/Nτ. In practical applications, these snapshots can be computed
with very large time step size ∆t, thus the pre-computation cost is very limited. The POD
method seeks a low-dimensional basis {ψ1,. . .,ψr} in an Hilbert space H that optimally
approximates the snapshots in the following sense:

min
ψ1,...,ψr∈H

1
Nτ+1

Nτ

∑
n=0

∥∥∥∥∥φ(·,tn)−
r

∑
i=1

(φ(·,tn),ψi)Hψi

∥∥∥∥∥
2

H
, (2.1)

subject to the condition
(
ψj,ψi

)
H=δij, 1≤ i, j≤r, where δij is the Kronecker delta. To solve

the optimization problem (2.1), one can consider the eigenvalue problem:

Kzi =λizi, for 1,.. .,r, (2.2)

where K∈R(Nτ+1)×(Nτ+1) is the snapshots correlation matrix with entries:

Kmn =
1

Nτ+1
(φ(·,tn),φ(·,tm))H , for m,n=0,.. .,Nτ,

zi is the i-th eigenvector, and λi is the associated eigenvalue. The eigenvalues are positive
and sorted in descending order λ1≥ . . .≥λr>0. It can be shown that the solution of (2.1),
i.e. the POD basis functions, is given by:

ψi(·)=
1√
λi

Nτ

∑
n=0

(zi)nφ(·,tn), 1≤ i≤ r, (2.3)

where (zi)n is the n-th component of the eigenvector zi. It can also be shown that the
following POD error formula holds [9]:

1
Nτ+1

Nτ

∑
n=0

∥∥∥∥∥φ(·,tn)−
r

∑
i=1

(φ(·,tn),ψi)Hψi

∥∥∥∥∥
2

H
=

rK

∑
i=r+1

λi, (2.4)

where rK is the rank of K.
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We consider the following space for the POD setting:

Xr =span{ψ1,. . .,ψr}. (2.5)

It is notable that since, as shown in (2.3), the POD basis functions are linear com-
binations of the snapshots, the POD basis functions satisfy the boundary conditions in
(1.1).

The Galerkin projection-based POD-ROM makes use of both Galerkin truncation and
Galerkin projection. The former yields an approximation of the phase field by a linear
combination of the truncated POD basis:

φ(x,t)≈φr(x,t)=
r

∑
i=1

ai(t)ψi(x), (2.6)

where {ai(t)}r
i=1 are the sought time-varying coefficients representing the POD-Galerkin

trajectories. Note that r�N , where N denotes the number of degrees of freedom in a
full order simulation. Replacing the phase field function φ with φr in the equation (1.1),
using the Galerkin method, and projecting the resulted equations onto the space Xr, one
obtains the standard POD-ROM for the Allen-Cahn equation:

Find φr∈Xr such that

(∂tφr,ψ)+γ((∇φr,∇ψ)+( f (φr),ψ))=0 ∀ψ∈Xr, (2.7)

and φr(·,0)=φ0
r which is the projection of φ0 into Xr.

2.1 A problem with complexity of the POD-Galerkin approach

This subsection illustrates the computational inefficiency that may occur in solving
the reduced order system (2.7) from the standard POD-Galerkin approach. We denote
a(t) = [a1(t),. . .,ar(t)]T is the coefficient vector of the reduced solution. The coefficient
vectors of the reduced basis function expanded by basis functions of XN defined in (3.10)
are collected in the columns of the matrix Ψr =[Ψ·,1,. . .,Ψ·,r]∈RN×r, i.e.,

ψk(x,y)=
N

∑
i,j=0

ψk(ξi,ξ j)hi(x)hj(y),

and Ψ·,k, k=1,.. .,r are vectors of length N :=(N+1)2 formed by the ψk(ξi,ξ j). Equation
(2.7) in vector version conclude the following nonlinear term:

ΨT
r W︸ ︷︷ ︸

r×N

f (Ψra(t))︸ ︷︷ ︸
N×1

, (2.8)

where weighted matrix W ∈RN×N is a symmetric, positive-definite matrix. This nonlin-
ear term has a computational complexity that depends on N , where N is the dimension
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of the original full-order system (2.1). It requires the order of 2rN flops for matrix-vector
multiplications, and a full evaluation of the nonlinear function f at the N -dimensional
vector Ψra(t). In particular, supposing that the complexity for evaluating the nonlinear
function f with q components is O(c(q)), where c is some function of q, then the com-
plexity for computing (2.8) is roughly O(c(N )+4rN ). Here, the 4rN flops are a result of
the two matrix-vector products required to form the argument of f and then to form the
projection. That means that the reduced-order model is not independent of the full di-
mensionN . As a result, solving this reduced-order model might still be computationally
expensive (probably as expensive as solving the original system).

2.2 Discrete Empirical Interpolation Method (DEIM) for nonlinear terms

In order to reduce the computational complexity of POD-ROM for time dependent
and/or parameterized nonlinear partial differential equations, a discrete empirical inter-
polation method (DEIM) was proposed in Chaturantabut and Sorensen [5]. The main
idea of DEIM is to provide an approximation to the nonlinear terms of ODE systems in
a form that enables precomputation of certain matrices so that the computational cost
of evaluating the nonlinear terms is greatly decreased and becomes independent of the
original dimension N . This approximation is realized by computing the basis using a
POD approach combined with a greedy algorithm.

To apply this idea, we approximate the nonlinear function f
(
Ψra(t)

)
by projecting it

into the subspace spanned by a basis {u1,...,up}⊂RN of dimension p�N so that the
approximation takes the form

f
(
Ψra(t)

)
≈U fp(t), (2.9)

where U =[u1,...,up]∈RN×p and fp(t) is the corresponding coefficient vector, which can
be regarded as an approximation to the nonlinear term f

(
Ψra(t)

)
. To determine fp(t),

we select p distinguished rows from f
(
Ψra(t)

)
. To this end, we construct the matrix

P=[ei1 ,...,eip ]∈RN×p, (2.10)

where ei =[0,...,0,1,0,...,0]T∈RN is the i-th column of the identity matrix IN ∈RN×N for
i= i1,...,ip. Then we solve fp(t) from the following equation

(PTU) fp(t)=PT f
(
Ψra(t)

)
. (2.11)

This gives

fp(t)=(PTU)−1PT f
(
Ψra(t)

)
. (2.12)

Notice that for the nonlinear term in the Allen-Cahn equation, the matrix PT can be
moved inside the function, thus we obtain

fp(t)≈U fp(t)=U(PTU)−1PT f
(
Ψra(t)

)
=Q f

(
PTΨra(t)

)
, (2.13)
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where we define Q :=U(PTU)−1. To summarize, to obtain an approximation to fp(t), we
must construct

• the projection basis {u1,...,up};

• the interpolation indices {i1,...,ip} used in (2.10).

The DEIM algorithm generates the basis using the POD approach. Here the previous-
ly introduced POD approach is applied to the snapshots of the nonlinearity f

(
Ψra(t)

)
to compute U. The selection for the interpolation points in the algorithms is based on a
greedy algorithm. The idea is to successively select spatial points to limit the growth of
an error bound. The indices are constructed inductively from the input data as follows.
For more details we refer the reader to [5].

Algorithm 2.1. DEIM (POD-greedy algorithm)

Reuire: Snapshots F=[ f (φ(t1)),··· , f (φ(tNτ ))]∈RN×Nτ and rank p;

1: Compute POD basis [u1,··· ,up]∈RN×p for F;

2: i1← argmaxj=1,···,N |(u1)j|;
3: U =[u1], P=[ei1 ], ;

4: for k= 2 to p do;

5: u← uk;

6: solve (PTU) fp =u for fp;

7: r=u−U fp;

8: ik← argmaxj=1,···,N |(r)j|;
9: U← [U,u], P← [P,eik ];

10: end for;

11: return U and (i1,. . .,ip).

3 Numerical methods

In this section, we propose a brief description of the spatial and temporal approxi-
mation methods. These schemes will be used to solve the full problem and produce the
snapshots but also the reduced model one.

3.1 Some notations for the spatial discretization

Let Σ = {(ξi,ρi);0≤ i ≤ N} denote the sets of Gauss-Lobatto-Legendre quadrature
nodes and weights associated to polynomials of degree N (see, [7, 10]). These quantities
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are such that on Λ :=]−1,+1[

∀φ∈ IP2N−1(Λ),
∫ +1

−1
φ(ξ)dξ=

N

∑
j=0

φ(ξ j)ρj, (3.1)

where IPN(Λ) denotes the space of polynomials of degree ≤N. We recall that the nodes
ξi (0≤i≤N) are solution to (1−x2)L′N(x)=0, where LN denotes the Legendre polynomial
of degree N.

The canonical polynomial interpolation basis hi(x)∈ IPN(Λ) built on Σ is given by the
relationships:

hi(x)=− 1
N(N+1)

1
LN(ξi)

(1−x2)L′N(x)
(x−ξi)

, −1≤ x≤+1, 0≤ i≤N, (3.2)

with the elementary cardinality property

hi(ξ j)=δij, 0≤ i, j≤N. (3.3)

In the sequel the phase field φ in domain Ω=Λ2 will be approximated in space vari-
able by suitable polynomial functions φN as follows

φN(x,t)=
N

∑
i=0

N

∑
j=0

φi,j(t)hi(x)hj(y). (3.4)

The L2-inner products involved in the calculation will be evaluated using Gauss-Lobatto-
Legendre quadrature, which reads: for all continuous functions ϕ and ψ in Ω̄,

(ϕ,ψ)≈ (ϕ,ψ)N :=
N

∑
i=0

N

∑
j=0

ϕ(ξi)ψ(ξ j)ρiρj. (3.5)

3.2 Scalar auxiliary variable (SAV) approach for Allen-Cahn equation

SAV approach was introduced in [14] to solve gradient flows. The main purpose of
this section is to construct efficient unconditionally stable scheme based on this approach
for (1.1).

Throughout the paper, we assume that the energy part
∫

Ω F(φ)dx is bounded from
below, that is, there exists a constant C0 such that

∫
Ω F(φ)dx+C0>0. We first introduce a

scalar auxiliary variable

s(t) :=
√∫

Ω
F(φ)dx+C0.
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Then, we rewrite the phase–field equation (1.1) under an equivalent form as follows: find
φ : Ω×(0,T]→R and s : (0,T]→R, such that

∂φ
∂t =−γµ, ∇φ·n

∣∣
∂Ω = 0,

µ=−∆φ+
s(t)√∫

Ω F(φ)dx+C0

f (φ),

ds(t)
dt

=
1

2
√∫

Ω F(φ)dx+C0

∫
Ω

f (φ)
∂φ

∂t
dx.

(3.6)

Taking the inner product of the first two equations with µ, ∂φ
∂t respectively, and mul-

tiplying the third equation with 2s, then adding them together, we obtain the energy
dissipation law for (3.6):

d
dt

(
s(t)2+

1
2
‖∇φ‖2

0

)
=−γ

∫
Ω
‖µ‖2

0 dx. (3.7)

The energy law (3.7) means that the SAV approach (3.6) makes the modified energy

H(φ)= s2+
1
2
‖∇φ‖2

0

decays in time.

3.3 Full discretization: full order system

Now we construct the full discretization problem, also termed as full order system
(FOS) hereafter, for the Allen-Cahn equation. First, for the temporal discretization, we
use the second-order backward difference scheme (BDF2) to the system (3.6).

Let s0 =
√∫

Ω F(φ0)dx+C0. Given initial conditions φ0 = φ0, find φn+1 and sn+1 ∈R,
n=1,2,.. ., such that

3φn+1−4φn+φn−1

2∆t =−γµn+1,

µn+1=−∆φn+1+
sn+1
√
F̄ n+1

f (φ̄n+1),

3sn+1−4sn+sn−1

2∆t
=

1

2
√
F̄ n+1

∫
Ω

f (φ̄n+1)
3φn+1−4φn+φn−1

2∆t
dx,

(3.8)

where F̄ n+1=
∫

Ω F(φ̄n+1)dx+C0, φ̄n+1 can be any explicit approximation of φ(tn+1) with
an error of O(∆t2). For instance, we may choose the following extrapolation:

φ̄n+1=2φn−φn−1.
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In [11] it has been proved that the scheme (3.8) is second-order accurate, uncondition-
ally stable in the sense that

1
∆t

(
H̃[(φn+1,sn+1),(φn,sn)]− H̃[(φn,sn),(φn−1,sn−1)]

)
≤−γ‖µn+1‖2

0, (3.9)

where H̃ is the modified energy, defined by:

H̃[(φn+1,sn+1),(φn,sn)]

:=
1
4

(
‖∇φn+1‖2

0+‖2∇φn+1−∇φn‖2
)
+

1
2

(
(sn+1)2+(2sn+1−sn)2

)
.

The spatial discretization to the semi-discrete problem (3.8) makes use of a spectral-
Galerkin method. Let

XN :=span
{

hi(x)hj(y); i, j=0,.. .,N
}

. (3.10)

IN is the interpolation operator based on the Legendre Gauss-Lobatto points {ξi;0≤ i≤
N}. Given initial conditions

φ0
N = INφ0, s0

N :=
√∫

Ω
F(φ0

N)dx+C0.

Then the spatial discretization consists in seeking the numerical solution φn+1
N in the poly-

nomial space XN and sn+1
N ∈R,n=0,1,.. ., such that, for ∀ψ∈XN ,



(
3φn+1

N −4φn
N+φn−1

N
2∆t , ψ

)
N
=−γ

(
µn+1, ψ

)
N ,

(
µn+1, ψ

)
N =

(
∇φn+1

N , ∇ψ
)

N+
sn+1

N√
F̄ n+1

N

(
f (φ̄n+1

N ), ψ
)

N ,

3sn+1
N −4sn

N+sn−1
N

2∆t
=

1

2
√
F̄ n+1

N

(
f (φ̄n+1

N ),
3φn+1

N −4φn
N+φn−1

N
2∆t

)
N

,

(3.11)

where

F̄ n+1
N =

∫
Ω

F(φ̄n+1
N )dx+C0.

This full order system can be efficiently solved by the following algorithm; see [14] for
more details.
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Algorithm 3.1. Implementation of FOS

Require: Given the initial condition φ0
N and s0

N . First use a first order method to
compute φ1

N and s1
N . Then for n=1,2,.. ., we do the following:

1: Set φ̄n+1
N =2φn

N−φn−1
N , F̄ n+1

N =
∫

Ω
F(φ̄n+1

N )dx+C0, gn=
4φn

N−φn−1
N

2γ∆t
−α1 f (φ̄n+1

N ),

where α1=
4sn

N−sn−1
N

3
√
F̄n+1

N

− α0
2F̄n+1

N
, α0=

(
f (φ̄n+1

N ),4φn
N−φn−1

N
)

N/3.

2: Solve: Find un+1
N ∈XN such that, for ∀ψN∈XN ,

3
2γ∆t

(
un+1

N ,ψN
)

N+
(
∇un+1

N ,∇ψN)N =
(

f (φ̄n+1
N ),ψN

)
N .

3: Solve: Find wn+1
N ∈XN such that, for ∀ψN∈XN ,

3
2γ∆t

(
wn+1

N ,ψN
)

N+
(
∇wn+1

N ,∇ψN)N=
1

2γ∆t
(
4φn

N−φn−1
N ,ψN

)
N−α1

(
f (φ̄n+1

N ),ψN
)

N .

4: Compute φn+1
N =wn+1

N −α4un+1
N , sn+1

N =
4sn

N−sn−1
N

3
+

(
f (φ̄n+1

N ),φn+1
N
)

N−α0

2
√
F̄

n+1
N

,

where α4=α3/(2F̄ n+1
N +α2), α3=

(
f (φ̄n+1

N ),wn+1
N
)

N , α2=
(

f (φ̄n+1
N ),un+1

N
)

N .

Note that in step 2 & step 3 in the above algorithm, only a linear constant coefficient
Poisson equation needs to be solved.

3.4 Reduced-order system

We describe below the construction of the reduced order system through the POD-
Galerkin method for the full discrete problem (3.11) and DEIM approach for treating the
nonlinear term.

Let us consider an ensemble of snapshots χ=
{

φ0
N ,. . .,φNτ

N

}
, which is a collection of

phase field data from the numerical solution of (3.11) at time tn=n∆t, n=0,1,.. .,Nτ, ∆t=
T/Nτ. As it is already emphasized in Section 2, these snapshots can be computed with a
large time-step size ∆t (so with limited pre-computation cost). We use this snapshot set
χ to construct the POD basis {ψ1,. . .,ψr}, r�N , described in Section 2, which is a set of
L2-orthogonal basis functions, such that (ψi,ψj)N = δij. We also need to precompute the
matrix G, defined as

G=(gij)∈Rr×r, with gij :=(∇ψi,∇ψj)N . (3.12)

The reduced-order system is obtained by the following spectral Galerkin method us-
ing the approximation space spanned by the POD basis. That is, we seek to project the
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solution of the original system onto the space Xr:= span{ψ1,. . .,ψr}, so that the projected
solution φn+1

r ∈Xr and sn+1
r ∈R,n=1,2,.. ., satisfy, for ∀ψ∈Xr,

(
3φn+1

r −4φn
r +φn−1

r
2∆t , ψ

)
N
=−γ

(
µn+1, ψ

)
N ,

(
µn+1, ψ

)
N =

(
∇φn+1

r , ∇ψ
)

N+
sn+1

r√
F̄ n+1

N

(
f (φ̄n+1

r ), ψ
)

N ,

3sn+1
r −4sn

r +sn−1
r

2∆t
=

1

2
√
F̄ n+1

r

(
f (φ̄n+1

r ),
3φn+1

r −4φn
r +φn−1

r
2∆t

)
N

,

(3.13)

where F̄ n+1
r =

∫
Ω F(φ̄n+1

r )dx+C0.
The solutions to FOS and ROM are related through the relationship:

φn
N≈φn

r =Ψran, (3.14)

where φn
N and φn

r are the coefficients vectors of φn
N(x) and φn

r (x) expanded by the basis
functions of XN , respectively, an is the coefficients vector of φn

r (x) expanded by the basis
functions of Xr. Matrix Ψr is defined in Subsection 2.1. It is seen that the columns of Ψr
are the coefficient vectors of the reduced basis functions expanded by the basis functions
of XN .

Substituting (3.12) and (3.14) into the system (3.13), we obtain, for the unknown co-
efficient vectors, the reduced-order system: find an+1∈Rr and sn+1

r ∈R,n= 1,2,.. ., such
that,

3an+1−4an+an−1

2∆t =Gan+1+
sn+1

r√
F̄ n+1

r
ΨT

r W f (Ψr ān+1),

3sn+1
r −4sn

r +sn−1
r =

1

2
√
F̄ n+1

r

(
ΨT

r W f (Ψr ān+1), 3an+1−4an+an−1). (3.15)

The difficulty here is that the computation of the non-linear term ΨT
r W f (Ψr ān+1) de-

pends on the original dimension. Approaching this term by using the DEIM algorithm
described in Subsection 2.2, we obtain the final reduced-order problem:

3an+1−4an+an−1

2∆t =Gan+1+
sn+1

r√
F̄ n+1

r
H f (PTΨr ān+1)

3sn+1
r −4sn

r +sn−1
r =

1

2
√
F̄ n+1

r

(
H f (PTΨr ān+1), 3an+1−4an+an−1), (3.16)

where H :=ΨT
r WQ∈Rr×p is pre-computed, ān+1 :=2an−an−1, F̄ n+1

r :=
∫

Ω
F(Ψr ān+1)dx+

C0. Notice that the inter products in the right hand side of (3.16) can be evaluated through
the relationship:(

H f (PTΨr ān+1), an)
Rr =

(
WQ f (PTΨr ān+1),Ψran)

RN
=
(
Q f (PTΨr ān+1),Ψran)

W ,
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where (·,·)W denotes the Euclidean W-weighted inner product in RN .
The reduced order system (3.16) can be efficiently solved by the following algorithm.

Algorithm 3.2. Algorithm of SAV/BDF2-PODG-DEIM reduced system

Require: Coefficient vectors set of POD basis Ψr =[ψ1,. . .,ψr], and DEIM basis
U =[u1,. . .,up].
Precompute H=ΨT

r WU(PTU)−1.
1: Given the initial condition a0 and s0 and the first step solutions a1 and s1

computed by a first order method.
Then for n=1,2,.. ., do:

2: Set ān+1=2an−an−1 F̄ n+1
r =

∫
Ω

F(Ψr ān+1)dx+C0.

3: if use PODG ROM then
4: compute coefficient f̄ r

n+1 by: f (Ψr ān+1)=Ψr f̄ r
n+1.

5: else
6: if use PODG-DEIM ROM then
7: compute coefficient f̄ r

n+1 :=H f (PTΨr ān+1).
8: end if
9: end if

10: Set α0=( f̄ r
n+1,4an−an−1)/3, α1=

4sn−sn−1

3
√
F̄ n+1

s
− α0

2F̄ n+1
s

.

11: Solve
(

3
2γ∆t

I+G
)

un+1
s = f̄ r

n+1.

12: Solve
(

3
2γ∆t

I+G
)

wn+1
s =

4an−an−1

2γ∆t
−α1 f̄ n+1

s .

13: Compute α2=( f̄ r
n+1,un+1

s ), α3=( f̄ r
n+1,wn+1

s ), α4=α3/(2F̄ n+1
s +α2).

14: Compute an+1=wn+1
s −α4un+1

s , sn+1=
4sn−sn−1

3
+
( f̄ r

n+1,an+1)−α0

2
√
F̄ n+1

s
.

4 Numerical results

In this section, we first present a numerical example to show the computed results
of the original discretization method (i.e., the full order system) and the reduced order
method in terms of stability and accuracy. We then use the proposed POD to simulate
a 2D benchmark problem for the Allen-Cahn equation to demonstrate the advantage of
the reduced order method. In all examples, the snapshots are calculated by the full order
system (3.11).

Example 4.1. Consider the problem (1.1) in the domain Ω =]−1,1[2 with ε = 1 and a
given source term g(x,y,t), so that the problem admits the exact solution φ=(1−x2)2(1−
y2)2

√
x2+y2+t+1.
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We first verify the convergence rate of the time stepping scheme. To this end we use
polynomial degree 32×32 for the spatial discretization, which is large enough so that
the spatial discretization error is negligible compared to the temporal error. Figure 1
shows the L2(Ω)-errors of the numerical solution computed at T=2.0 as a function of the
time step size in log-log scale. It is clearly shown that the time stepping scheme used to
produce the FOS is exactly of second order as expected.

Figure 1: L2-errors at T=2.0 with respect to the time step size ∆t in log-log scale.

Then we investigate the POD error behavior. We collect 200 snapshots, which is a set
of the numerical solutions of the FOS, i.e., (3.11) with ∆t=0.01. The POD basis functions
are constructed from these 200 snapshots by solving the minimization problem (2.1). In
Figure 2a we present the POD error versus the POD mode number, where the POD error
is defined in the left hand side of (2.4). Also shown is the singular values of the snapshot
matrix, which are equal to the square root of the eigenvalues of the matrix K. By virtue
of the error formula given in (2.4), the POD error is closely related to the singular values
of the snapshot matrix. This is confirmed in Figure 2a, indicating that the singular values
decay rapidly and the POD errors decay in a similar rate as the POD mode number, i.e.,
r increases. The accuracy of the POD process applied to the nonlinear term is shown in
Figure 2b. In this figure we compare the POD errors with and without DEIM algorithm.
It is observed that the DEIM algorithm used to reduce the computational complexity has
not a significant effect on the accuracy, and both POD errors with and without DEIM
have a similar decay rate as the singular values. Another remarkable point observed in
Figure 2 is that the POD with 8 modes (r=8) gives already a very good approximation.
This last observation suggests use of 8 POD modes and 8 DEIM modes in the tests that
follow.

In Figure 3 we compare the L2-error at T = 2.0 as a function of the time step size,
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(a) (b)

Figure 2: (a) Singular values and POD L2-errors with respect to the number of POD modes; (b) Same as (a)
but for POD and DEIM algorithm applied to the nonlinear term.

obtained respectively by the ROM without and with DEIM algorithm using 8 PODG and
8 DEIM modes. The ROM is built by POD using 200 snapshots computed by FOS with
∆t=0.01. It is seen from this figure that the effect DEIM algorithm on the accuracy of the
POD solution is negligible.

Example 4.2. We consider a benchmark problem for the Allen-Cahn equation (1.1) that
we describe below; see also [6]. Assume at the initial state, there is a circular phase
interface of the radius R0 = 100 in the rectangular domain ]−128,128[2. Precisely, we
consider the following initial condition:

φ(x,0)=

{
1, |x|2<1002,
−1, |x|2≥1002.

It has been known that such a circular interface is unstable and the driving force will
make it shrink and disappear. In the limit that the radius of the circle is much larger than
the interfacial thickness, the interface will move at the velocity (see [1])

V=
dR
dt

=− 1
R

.

The radius of the moving interface evolves as R(t)=
√

R2
0−2t. In the implementation we

map the computational domain ]−128,128[2 to ]−1,1[2. Doing so we are led to solve the
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Figure 3: The comparison of the errors at T=2.0 between FOS and the POD with 8 POD modes and 8 DEIM
modes using the snapshots with ∆t=0.01.

Allen-Cahn equation (1.1) with the coefficients γ=1/1282 and ε=0.0078, where ε appears
in front of the nonlinear term. The FOS becomes stiff for the small ε because the interface
becomes thin for small parameters and fine resolution is needed around the interface. In
the simulation, the space grid is taken as 512×512, and the time-step size is ∆t=0.1. The
computed radius R(t) using the SAV/BDF2 scheme is plotted in Figure 4. We observe

Figure 4: The evolution of radius R(t) for Benchmark problem: comparison of the exact solution and numerical
result computed by FOS with Nx =Ny =512.
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(a) (b)

Figure 5: Benchmark problem: (a) singular values and POD L2-errors with respect to the number of POD
modes; (b) Same as (a) but for POD and DEIM algorithm applied to the nonlinear term.

that R(t) keeps monotonously decreasing at a rate very close to the sharp interface limit
value. This demonstrates the accuracy of the FOS.

The singular values and POD errors are also computed for this example, and the
results are shown in Figure 5. Here the POD basis and DEIM basis are constructed by 200
snapshots, which are solutions of FOS with ∆t=0.1 at 200 different instants. The singular
values and relative L2(0,T;L2(Ω)) errors versus different numbers of POD modes are
given in Figure 5a. It is observed that the singular values and POD errors decay at a
similar rate as POD mode number increases. Figure 5b shows the result of POD-DEIM
method for the nonlinear term, leading to a similar observation.

An accuracy comparison of the POD without DEIM and POD with DEIM is shown in
Figure 6, where the L2-errors at T=20.0 as functions of the time step size are plotted. The
POD (and DEIM) make use of 16 POD modes and 21 DEIM modes, and the errors are
measured by using the “reference solution” provided by the FOS. We see that both POD
and POD-DEIM produce accurate enough solutions.

Finally, in Table 1, we present the average CPU times at each time step for the FOS,
POD method with 16 modes without DEIM, and POD-DEIM with 21 modes. The speed-
up factors compared to FOS are also listed for POD and POD-DEIM. It is clearly observed
that the POD method efficiently speed up the calculation, and the DEIM for the nonlinear
term further improves the computational efficiency.
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Figure 6: Comparison of L2(Ω)-errors at T=20.0 between the ROM without DEIM and ROM with DEIM using
16 POD modes and 21 DEIM modes.

Table 1: Average CPU time for each time step.

FOS ROM with 16POD ROM with 16POD-21DEIM
tcpu(sec) 2.36 0.45 0.12
Speed-up Factor 5.24 19.67

5 Conclusions and perspectives

We have developed a reduced-order model for the Allen-Cahn equation. At first, we
constructed a numerical method based on SAV approach for the time stepping scheme
and a spectral-Galerkin method for the space discretization. Then the constructed nu-
merical method was used to product preliminary phase field data, i.e., an ensemble of
snapshots of at some time instants. Based on these phase field data, the reduced order
model is derived by Proper Orthogonal Decomposition (POD) for the construction of
the reduced basis, and Discrete Empirical Interpolation Method (DEIM) for dealing with
the nonlinear term. Finally, a same SAV based second-order unconditionally stable time
stepping scheme is applied to yield the reduced order system. Several numerical exam-
ples were provided to demonstrate the efficiency of the proposed POD and POD-DEIM.
In particular, the obtained numerical results showed that the reduced order model gave
good approximations to the full order system and achieve substantial improvement in
efficiency as compared to directly solving the full order system. It is worthy to empha-
size that the proposed method can be extended to solve other kinds of gradient flow
problems.
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