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Abstract. We focus on the numerical solver of unilateral cracks by the Schwarz Method
with Total Overlap. The aim is to isolate the treatment at the vicinity of the cracks from
other regions of the computational domain. This avoids any direct interaction between
specific approximations one may use around the singularities born at the tips of the
cracks and more standard methods employed away from the cracks. We apply an iter-
ative sub-structuring technique to capture the small structures by insulating the cracks
into patches and making a zoom around each of them. The macro-problem is in turn
set on the whole domain. As for the classical Schwarz method, the communication be-
tween the micro (local) and macro (global) levels is achieved iteratively through some
suitable boundary conditions. The micro problem is fed by Dirichlet data along the
(outer) boundary of the patches. The specificity of our approach is that the macro prob-
lem inherits transmission conditions. Although they are expressed across the cracks,
the final algebraic system to invert is blind to the discontinuities of the solution. In
fact, the stiffness matrix turns out to be the one related to a safe domain, as if cracks
were closed or the unilateral singularities were switched off. Only the right hand side
is affected by what happens at the vicinity of the cracks. This enables users to run one
of many efficient algorithms found in the literature to solve the linear macro-problem.
In the other hand side, in spite of the still bad conditioning and the non-linearity of
the unilateral micro problems, they are reduced in size and may be inverted properly
by convex optimization algorithms. A successful convergence analysis of this variant
of the Schwarz Method is performed after adapting to the unilateral non-linearity the
variational tools developed by P. L. Lions.
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1 Introduction

Realistic cracks that occur in many engineering fields are most often subjected to non
linear unilateral contact conditions. Designing affordable methodologies for their reliable
numerical simulation still arises substantial interest. Multifold enhancements may be on
increasing the accuracy of the approximation, on improving the efficiency of the solvers
to run for evaluating the discrete solution or on the implementation and parallelization
procedures of these solvers, ... etc.

Enrichments of finite element methods have been elaborated to strengthen the ac-
curacy of the discrete displacement, strain and stress fields. A qualitative analysis of
the singularities arisen at the vicinity of crack tips is now known and practitioners can
therefore refine the mesh in a well adapted shape so to well capture the singular part of
the solution. Newer procedures may also be employed to improve the computed solu-
tion (see [5, 13, 14, 32, 33, 35, 37]). We point out, in particular, different versions of X-fem,
PU-fem and G-Fem with or without (Heaviside) cut-off functions (see [2, 9, 10, 36]). The
reverse of the medal has to do with the condition number of the discrete problems to
solve. These problems suffer from bad and possibly very bad conditioning. We refer
for instance to [2, 10] for some convincing examples. Solving efficiently the discrete sys-
tem, after carrying out a finite element approximation of any kind, requires some known
effective techniques such as multi-grid, multi-scale or sub-structuring approaches. This
is the way followed for instance in [7, 15, 24, 26, 38, 39]. We pursue here a similar ob-
jective by applying the iterative Schwarz Method with Total Overlap for the unilateral
cracks introduced in for linear problems in [6, 23]. The aim here is the realization, at
each iteration, of a numerical zoom where it is needed, in a thin region surrounding
the cracks. Zooming methods has been used in the finite elements analysis of the linear
case and proved to be helpful in well capturing the localized singularities. We recom-
mend [3, 4, 7, 8, 11, 15, 16, 20, 22, 28, 29, 31, 34] and references therein.

The purpose is hence to apply the Schwarz Method with Total Overlap to compute
the displacement or temperature field at the vicinity of cracks where the contact is of Sig-
norini’s type. It is successfully used and analyzed for linear cracks in [6]. It helps making
a numerical zoom around the geometrical singularities, born along and especially at the
tips of the cracks. The displacement field satisfies then a variational inequality within
a patch surrounding the cracks. To complete the construction of the full solution, a lin-
ear problem is solved in the whole domain. Both problems talk to each other alternately
through some suitable transmission conditions. How the coupling operates is the dis-
tinctive marker of the method. The core advantage is related to the linear problem which
can be set up on the safe domain. Things occur as if the cracks are closed, at least for the
stiffness matrix. The straightforward result is the enhancing of the condition number of
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that matrix as observed in [30]. We perform the convergence analysis in the nonlinear
Signorini context. The mathematical methodology is rooted in [27] with the modifica-
tions required by the unilateral contact ; it enables us to state a strong convergence of the
algorithm with respect to the natural norms.

The outline of the paper is as follows. In Section 2, we describe two examples from
solid mechanical and hydrostatic where unilateral cracks may occur. They are model-
ing semi-permeable leaks in the latter and fatigue fractures in the former. We then write
down the variational inequality for the thermal problem and conduct a brief discussion
about the singularities born at the vicinity of the tips of the cracks. This suggests to prac-
tice a zoom around these special points to get a better insight on their singular behavior.
Section 3 is precisely dedicated to the description of the numerical zooming method. The
cracks are isolated within patches or (narrow) sub-domains where (local) variational in-
equalities should be handled. The temperature field in the remaining part of the domain
is computed as the solution of a linear problem where boundary conditions along the
cracks are obtained from the micro subproblems, already inverted. The non standard
point resides in the nature of these informations which are transmission conditions. D-
ifferent subproblems are updated iteratively by means of the alterning Schwarz process.
We discuss some of its fundamental properties. Afterwards, we make a condensation a-
long the boundaries of the patches surrounding the cracks and explain why our iterative
algorithm is equivalent to the Picard method applied to a particular nonlinear opera-
tor we define here. In Section 4, we state and prove an abstract convergence result in a
Hilbert space of the Picard sequence. In Section 5, the abstract result is applied to our
Schwarz procedure which allows us to derive a convergence result of the Schwarz iter-
ates toward the exact solution, with respect to the energy norm.

Some notations — Let Ω be a bounded domain in Rd,d=2,3, with a boundary Γ. The
generic points of Ω are denoted by x or y. The Lebesgue space L2(Ω) of square integrable
complex valued functions is endowed with the natural norm ∥·∥L2(Ω) and we set L2(Ω)=

L2(Ω)d. We need also some Sobolev spaces, H1(Ω) involves all the functions that are in
L2(Ω) so as their partial derivatives. The subspace containing the functions in H1(Ω)
that vanish on Γ is denoted by H1

0(Ω). The set of the traces over Γ of all the functions of
H1(Ω) is denoted H1/2(Γ) and H−1/2(Γ) is its dual (see [1]). The symbol [·] stands for
the jump across a given boundary.

2 Nonlinear cracks

Cracks initiation or cracks growth that currently occur in mechanical or thermal struc-
tures due to fatigue are non linear phenomena. Unilateral conditions or the Signorini
type conditions versus linear Dirichlet or Neumann boundary conditions are generally
adopted along those cracks. Many examples involving nonlinear crack models may be
presented. We choose to briefly describe two configuration, one picked-up in mechanical
structures and the other in thermal diffusion.
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2.1 Fatigue cracks in the elasticity model

Consider an elastic solid that occupies the domains Ω⊂Rd in its unconstrained config-
uration. The boundary is ∂Ω and the unit external normal is denoted by n. We assume
that ∂Ω is partitioned into ΓD and ΓN . We suppose that Ω contains a crack represented
by a connected Lipschitz surface γ, entirely embedded in Ω(†). We denote Ωγ=Ω\γ (see
Figure 1). To specify the boundary conditions on the crack γ, we need the symbols γ+

and γ− to distinguish both lips of γ. We denote by n the unit normal to γ oriented from
γ+ toward γ−.

γ−

γ+

ω γ
Ω Σγ

n

Figure 1: The cracked solid. Inter-penetration is not authorized along the crack γ. The surface Σ is
only indicative.

The solid Ω is fixed along ΓD and is subjected to a surface solicitation g∈ L2(ΓN) on
ΓN and to a volume force f ∈ L2(Ω), which is most often its own weight. The elastic
system we are concerned with consists in: finding a displacement fields u satisfying the
boundary value equation

−div σ(u)= f in Ωγ, (2.1)
u=0 on ΓD, (2.2)
σ(u)n= g on ΓN . (2.3)

The symbol div stands for the divergence operator of a tensor field and is defined by

divσ=
(

∂σkr
∂xr

)k
. The body is made of Hook material whose constitutive law is provided by

σ(u)=A(x)ε(u), where A(x) is a fourth order symmetric and elliptic tensor. Frictionless
unilateral contact conditions are enforced on γ required to close the system,

[u·n]≤0, [(sn)·n]=0, sn ≥0, ⟨sn,[u·n]⟩=0, (2.4)
s+τ = s−τ =0. (2.5)

The notation [u·n]=(u+·n−u−·n) stands for the jump of the normal displacements across
the contact zone γ and sn=(sn)·n is the normal stress while στ=σ−snn is the tangential
stress. Condition (2.5) indicates that the contact occurs without friction while (2.4) are

†The assumption that γ is connected does not restrict the generality.
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the Signorini conditions, they are non-linear and involve no-penetration inequalities, no-
tensile-contact-stresses inequalities and complementarity relation.

2.2 Thermal unilateral cracks

Another problem where unilateral cracks may be modeled by a variational inequality
pertains to the thermostatic or hydrostatic problem. A different configuration, from the
physical view, may yield to a similar model of Signorini unilateral conditions. An ex-
ample may be provided by a thermal reservoir or a water tank, based on the principle
of storing heat or water, for a later reuse. Consider the quasi-static thermal problem ex-
posed in [12]. In the water reservoir the physical quantity to look at is the pressure. To
fix the ideas, we restrict ourselves to the thermal reservoir, and we are then interested in
the temperature field φ in a heat conducting domain Ω. Let γ be an internal heating leak
surface causing thermal discontinuity. One lip of γ is denoted γ+ and the other is γ−. As
previously, we set Ωγ =Ω\γ. Assume given g∈ L2(Γ) and f ∈ L2(Ω). The heat problem
consists in finding (φ), satisfying the following equations:

φ−div (c∇φ)= f in Ωγ, (2.6)
(c∂n)φ= g on Γ. (2.7)

The heat conductivity of the media c is generally piecewise regular, belongs to L∞(Ω)
and is bounded away from zero. To complete and close the model, we provide unilateral
conditions along γ

[φ]= φ+−φ−≥0, [c∂n φ]=0,

(c∂n)φ≥0, ⟨(c∂n)φ,[φ]⟩=0.
(2.8)

The variational setting— Given that the cracked domain Ωγ is an open domain, the con-
struction of the Sobolev space H1(Ωγ) is defined as in [17]. The functions in H1(Ωγ) may
have a jump across γ. That jump [ψ] belongs to H1/2

00 (γ) (see [1]). The notation ⟨·,·⟩ in the
complementary condition is the duality between H1/2

00 (γ) and (H1/2
00 (γ))′. Throughout

the paper we use the following norm

∥ψ∥2
H1(Ωγ)

=∥ψ∥2
L2(Ωγ)

+∥
√

c ∇ψ∥2
L2(Ωγ)

. (2.9)

Taking into account the unilateral contact condition on γ in the weak formulation is made
by incorporating it in the admissible closed convex cone

K(Ω)=
{

ψ∈H1(Ωγ), ([ψ])|γ ≥0
}

.

We apply the variational principle for the semi-permeable tank to produce the variational
inequality consisting in : finding φ∈K(Ω) such that:∫

Ω
[φ(ψ−φ)+c∇φ∇(ψ−φ)]dx≥

∫
Ω

f (ψ−φ)dx+
∫

Γ
g(ψ−φ)dΓ, ∀ψ∈K(Ω). (2.10)
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Using here again Stampacchia theorem we state the well-posedness of the variational in-
equality (2.10) which has therefore only one solution φ∈K(Ω) that depends continuously
on the data ( f ,g) (see [19, 25]).

3 Schwarz algorithm with a total overlap

Now, we turn to the description of the Schwarz algorithm applied to the Laplace-Signorini
problem. Let us encircle the crack γ by a closed surface Σ in Ωγ and denote by ωγ the
internal domain delimited by Σ and containing γ (see Figure 2). The iterative method we
aim at is based on an exchange of some boundary conditions between the two domains
ωγ and Ωγ that turns to be profitable.

ω γ
Σ

n

γ−

γ+

Ω γ = Ω +
ω γ

Σ

n

Figure 2: Global-local sub-structuring scheme. Dashed lines for the crack are to say that the discrete problem
to solve does not really see the crack.

The starting point of the total overlapping Schwarz Algorithm is to replace (2.6)-(2.8)
by two coupled subproblems. One, set on the whole domain Ωγ, is a linear transmission
problem that consists in: finding η∈H1(Ωγ) such that

η−div (c∇η)= f in Ωγ, (3.1)
[η]= [χ] on γ, (3.2)
[(c∂n)η]=0 on γ, (3.3)
(c∂n)η= g on Γ. (3.4)

The other is set on ωγ, is nonlinear and involved with the unilateral contact conditions
along the crack. It is written as : find χ∈H1(ωγ) such that

χ−div (c∇χ)= f in ωγ, (3.5)
χ=η on Σ, (3.6)
[χ]≥0, [c∂nχ]=0, (c∂n)χ≥0, ⟨(c∂n)χ,[χ]⟩=0 on γ. (3.7)

Remark 3.1. The idea we pursue through this decomposition is the possibility to carry
out two independent computations with different resolutions, when both sub-problems
are uncoupled by an iterative process. An accurate method is recommended in the local
sub-domain ωγ to simulate the small scales at the vicinity of the crack, either by construct-
ing a dense mesh or by using an X-fem G-fem or PU-fem approximations (see [10, 32]).
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We practice then a numerical zoom. The method to compute η in the global domain Ω,
which contains bigger scales far away from the cracks is rather of a moderate resolution.
Moreover, the problem to solve is linear. Both facts may therefore spare a substantial
computational time and costs.

Priori to the application of an iterative algorithm so to break the coupling between the
transmission sub-problem (3.1)-(3.4) and the reduced unilateral sub-problem (3.5)-(3.7),
we prove the following result holds.

Lemma 3.1. There is a unique solution (η,χ)∈H1(Ωγ)×H1(ωγ) to the coupled problems (3.1)-
(3.4) and (3.5)-(3.7). Moreover, we have that (η,χ)=(φ,φ|ωγ

).

Proof. Straightforwardly (φ,φ|ωγ
) is solution. For the uniqueness, it is easy seen that

(χ−η) satisfies the boundary value problem

(χ−η)−div (c∇(χ−η))=0 in ωγ,
[(χ−η)]=0 on γ,
[(c∂n)(χ−η)]=0 on γ,
(χ−η)=0? on Σ.

We deduce thus that χ= η (in ωγ) and eventually η = φ (in Ωγ) and χ= φ (in ωγ). The
proof is complete.

3.1 The iterative scheme

The iterative method we are interested in has been addressed for the linear cracks in
[6] and its efficiency is fully settled in both theoretical and computational grounds. We
operate an uncoupling on both subproblems by means of an iterative process. Assume
(χm,ηm) are known, ηm+1∈H1(Ωγ) is the solution of the linear global problem

ηm+1−div (c∇ηm+1)= f in Ωγ, (3.8)
[ηm+1]= [χm] on γ, (3.9)
[(c∂n)η

m+1]=0 on γ, (3.10)
(c∂n)η

m+1= g on Γ, (3.11)

and χm+1∈H1(ωγ) satisfies the nonlinear restricted problem

χm+1−div (c∇χm+1)= f in ωγ, (3.12)
χm+1=ηm+1 on Σ, (3.13)
[χm+1]≥0, [(c∂n)χ

m+1]=0, (c∂n)χ
m+1≥0,

⟨(c∂n)χ
m+1,[χm+1]⟩=0, on γ. (3.14)

The recurrence makes a mathematical sense, and results in two coherent sequences (χm)m⊂
H1(ωγ) and (ηm)m ⊂H1(Ωγ).
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The iterative algorithm presented here may be connected to a particular class of Schwarz
method, well formalized in [6], with a total overlap given that ωγ is entirely included
in Ωγ. The fundamental novelty resides on the way both sub-problems talk to each oth-
er. The conditions inherited by ηm+1 from χm are of transmission type rather than pure
Dirichlet or Neumann conditions which are used for the classical version of Schwarz
methods. The distinctive improvement specifically linked to these transmission condi-
tions is that when the macro-problem (3.8)-(3.11) is discretized, the related stiffness ma-
trix is blind to the cracks. Things happen as if the cracks are perfectly closed. Of course,
they have an effect on the right hand side of the algebraic problem to cope with. In the
opposite, when Dirichlet or Neumann data are selected, the cracks have a important in-
fluence on the stiffness matrix and may affect tremendously its condition number.

Remark 3.2. When the domain Ωγ contains a finite number of connected cracks, the sub-
domain ωγ may be multiply connected. Each connected component encloses a single
crack. The Signorini problems are disconnected.

Remark 3.3. Antipode cases of a fully open crack or a fully shut one are linear. For the
first, the active boundary condition is (c∂n)χ=0 on both lips γ+ and γ−. In the second, we
have that [χ]=0 and [c∂nχ]=0 and things happen as if no crack existed. The total Schwarz
algorithm in these two configurations have been addressed, in [6] for the former where
a linear convergence is proved and for the latter the convergence is ensured in a single
iteration. The in-between case turns to be nonlinear which complicates the analysis.

Problem (3.8)-(3.11) may be changed into another completely disconnected from the
cracks. Indeed, we may consider an intermediary surface γ∗, between γ and Σ, that in
general follows the edges of the finite element mesh used for the discretization of η. Then,
we write down the following problem: find ηm+1

∗ such that

ηm+1
∗ −div (c∇ηm+1

∗ )= f∗ in Ωγ∗ , (3.15)

[ηm+1
∗ ]=χm on γ∗, (3.16)

[(c∂n)η
m+1
∗ ]=(c∂n)χ

m on γ∗, (3.17)

(c∂n)η
m+1
∗ = g on Γ. (3.18)

f∗ is the extension of f by zero in the sub-region of Ω inside γ∗.
Notice that the introduction of such γ∗ to hide the cracks may have an interesting

impact in the implementation when finite elements are used. In addition, the iterative
algorithm is not influenced by this modification. Indeed, the following lemma holds.

Lemma 3.2. The sequence (χm)m defined by the total overlapping Schwarz algorithm (3.15)-(3.18)
and (3.12)-(3.14) is independent of γ∗.

Proof. The statement holds true if we prove that the Dirichlet condition (3.13) on χm+1

does not change which means that the equality to ηm+1
∗ = ηm+1 holds on γ∗. Let first
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γΩ

γ

ω γ

γ −

Σ
γ

+

∗

Figure 3: The transmission conditions may be written on γ∗ instead of γ.

denote by ω∗
γ the sub-domain encircled by γ∗ and surrounding the crack γ. Then, we

define η̃m+1 as follows

η̃m+1=

{
ηm+1
∗ +χm in ω∗

γ,
ηm+1
∗ in Ω\ω∗

γ.

It is direct that
η̃m+1−div (c∇η̃m+1)= f , in ω∗

γ∪(Ω\ω∗
γ).

Now, observe that owing to conditions (3.16) and (3.17) we have that

([η̃m+1])|γ∗ =(χm−χm)|γ∗ =0, ([c∂nη̃m+1])|γ∗ =(c∂nχm−c∂nχm)|γ∗ =0,

this allows to deduce that

η̃m+1−div (c∇η̃m+1)= f , in Ωγ.

Furthermore, it is easily seen that

([η̃m+1])|γ =([χm])|γ, ([(c∂n)η̃
m+1])|γ =0.

Hence, η̃m+1 and ηm+1 are solutions to the same problem (3.8)-(3.11) which is uniquely
solved. This concludes to the equality η̃m+1 = ηm+1. As a result, we obtain in particular
that η̃m+1=ηm+1 on γ∗. The proof is complete.

3.2 Condensation and Picard’s iterates

On the way of the convergence analysis we have in mind a slight modification is added
to the sub-problems (3.1)-(3.4) and (3.5)-(3.7). We realize a shift that brings about more
ease in the theoretical study. Let therefore consider φ̃∈H1(Ωγ) the solution of

φ̃−div (c∇φ̃)= f in Ωγ,
(c∂n)φ̃=0 on γ+∪γ−,
(c∂n)φ̃= g on Γ.
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Then, we operate the changing on the unknowns, we consider η :=(η− φ̃) and χ :=(χ−
φ̃)(‡) instead of the original ones. Setting ζ=−([φ̃])γ∈H1/2

00 (γ) and plugging all in (3.1)-
(3.4) and (3.5)-(3.7) we obtain that η∈H1(Ωγ) is such that

η−div (c∇η)=0 in Ωγ, (3.19)
[η]= [χ] on γ, (3.20)
[(c∂n)η]=0 on γ, (3.21)
(c∂n)η=0 on Γ, (3.22)

and: Find χ∈H1(ωγ) such that

χ−div (c∇χ)=0 in ωγ, (3.23)
χ=η on Σ, (3.24)
[χ]≥ ζ, [c∂nχ]=0, (c∂n)χ≥0, ⟨(c∂n)χ,[χ]−ζ⟩=0 on γ. (3.25)

Notice that the case that ζ ≤0 corresponds to a fully open crack and then χ= η=0, and
φ̃ exactly coincides with φ. The artifice used here is only for the theoretical requirements
and is by no means followed in the practice where rather the Schwarz scheme as formu-
lated in (3.1)-(3.4) and (3.5)-(3.7) is employed.

We pursue now a static condensation of the problem on the boundary Σ and consider
the λ = χ|Σ ∈ H1/2(Σ) as the main unknown. We denote by (3.23)-(3.25) where instead
of (3.24) we impose χλ =λ on Σ. In the same spirit, we call ηλ ∈ H1(Ωγ) the solution of
(3.19)-(3.22) where (3.20) is replaced by [ηλ]= [χλ] on γ. The trace function λ we look
for, the one which allows the reconstruction of φ is so that (ηλ,χλ) satisfies the coupled
problems (3.19)-(3.22) and (3.23)-(3.25). It is therefore solution of the nonlinear fixed point
problem

λ=TΣ(λ), in H1/2(Σ). (3.26)

The nonlinear operator TΣ maps H1/2(Σ) into H1/2(Σ) and is defined by

TΣ(µ)=(ηµ)|Σ, ∀µ∈H1/2(Σ).

Because of the uniqueness of the solution (χ,η) of the coupled problem (3.8)-(3.11) and
(3.12)-(3.14) established in Lemma 3.2, TΣ has a unique fixed point λ that coincides with
(φ− φ̃)|Σ. Observe that TΣ depends on ζ, by then on φ̃ and consequently on ( f ,g). Now,
consider the Picard iterates

λm+1=TΣ(λ
m). (3.27)

It can be checked through some easy manipulations that this is but another way to ex-
press the iterative Schwarz algorithm with the following relation (ηm,χm)= (ηλm χλm)+
(φ̃, φ̃|ωγ

). The convergence of the algorithm is narrowly connected to the properties of
TΣ and relies on the theory we propose here below for an abstract nonlinear fixed point
problem.

‡For commodity of the presentation we accept here the notation abuses.
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4 An abstract convergence result

Let (H,∥·∥) be a Hilbert space and T a nonlinear operator in H. For a given µ∈ H, we
define the Picard iterates (µm)m by the induction

µm+1=Tµm, ∀m∈N.

T is said to be completely-continuous if it is continuous and compact. It is asymptotically
regular if for any µ∈H, we have that (µm+1−µm)m converges to zero. This means that

lim
m→∞

∥Tm+1µ−Tmµ∥=0, ∀µ∈H.

We have the following convergence of the Picard sequence.

Proposition 4.1. Assume that T completely-continuous, asymptotically regular and has a unique
fixed point λ. Let (µm)m∈N be a Picard sequence. If (µm)m∈N is bounded then it converges
towards λ.

Proof. The aim is to state that the sequence (µm)m∈N has λ a the unique cluster point. On
account of the compactness of T and to (Tµm)m∈N =(µm)m≥1, that (µm)m∈N is bounded
yields that it is pre-compact. Hence, there exists a sub-sequence (µmk)k that converges let
us say, towards ϱ∈H. Due to the asymptotic regularity of T, we have that (µmk+1=Tµmk)k
has the same limit ϱ. Now, seen T is continuous we have necessarily that Tϱ = ϱ. The
uniqueness of the fixed point of T yields that ϱ=λ and λ is a cluster point of (µm)m∈N and
it is unique. The sequence (µm)m∈N converges toward λ and the proof is complete.

5 Convergence of the Schwarz algorithm

The convergence of the Schwarz method is the aim here. The foundation of the analysis
are appropriate variational tools applied to the linear problem on η and to the nonlinear
problem on χ. In a way, the proof follows [27], the inspring reference on the subjet.

5.1 The iterating operator

The properties of TΣ we need to state are that it is a Lipschitz operator, asymptotically
regular and compact. There holds that

Lemma 5.1. There exists a constant β>0 such that

∥TΣλ−TΣµ∥H1/2(Σ)≤β∥λ−µ∥H1/2(Σ), ∀λ,µ∈H1/2(Σ).

The operator TΣ is then Lipschitz. It is also compact.
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Proof. The operator TΣ may be viewed as the composition of two operators, one is defined
by RΣ(µ)=([χµ])|γ and the other is determined by SΣ(([χµ])|γ)=(ηµ)|Σ. The first RΣ maps
H1/2(Σ) into H1/2

00 (γ) is nonlinear while the second SΣ maps H1/2
00 (γ) into H1/2(Σ) and

is linear. That TΣ is Lipschitz comes from the two facts, that RΣ is Lipschitzian and SΣ is
bounded. Thought, RΣ is well known to be Lipschitzian, we propose the proof of it to be
self contained. Let λ∈H1/2(Σ) be given and define ξλ ∈H1(ωγ) to be a stable expansion
of λ that vanishes at the vicinity of γ. Decomposing χλ = χ̃λ+ξλ, it comes out that χ̃λ

belongs to the closed convex set

Kζ,0(ωγ)=
{

ψ∈H1(ωγ), ([ψ])|γ ≥ ζ, ψ|Σ =0
}

.

Moreover, writing that χλ is solution of (3.23)-(3.25) yields the following variational in-
equality: χ̃λ ∈Kζ,0(ωγ) is such that∫

ωγ

[(χ̃λ+ξλ)(ψ−χ̃λ)+c∇(χ̃λ+ξλ)∇(ψ−χ̃λ)]dx≥0, ∀ψ∈Kζ,0(ωγ).

As a result, χ̃λ is the projection of (−ξλ) on Kζ,0(ωγ). We deduce that

∥χ̃λ−χ̃µ∥H1(ωγ)≤∥ξλ−ξµ∥H1(ωγ).

Calling for the trace theorem and the stability of (ξλ,ξµ) with respect to (λ,µ), we end to

∥[χλ−χµ]∥H1/2
00 (γ)≤β′∥χλ−χµ∥H1(ωγ)≤2β′∥ξλ−ξµ∥H1(ωγ)≤β′′∥λ−µ∥H1/2(Σ),

which proves the first result. The constant β′′ depends of course on ζ. Now, the compact-
ness of TΣ holds true if SΣ is compact. This is ensued from the elliptic regularity of the
transmission problem (see [17]). Indeed, we have that actually ηλ ∈ H1/2+ϵ(Σ) for some
ϵ>0 with the stability

∥SΣ([χµ])∥H1/2+ϵ(Σ)=∥ηλ∥H1/2+ϵ(Σ)≤β′′′∥[χλ]∥H1/2
00 (γ).

The compactness of SΣ is achieved owing to the compactness of the embedding of H1/2+ϵ

(Σ) into H1/2(Σ). The proof is complete.

Lemma 5.2. The operator TΣ is asymptotically regular. Moreover, for any µ ∈ H1/2(Σ) the
sequence ((TΣ)

mµ)m is bounded in H1/2(Σ).

Proof. We first simplify the notations we use. Let µm = (TΣ)
mµ and set (χm,ηm+1) =

(χµm ,ηµm). Therefore, we have µm+1=(ηm+1)|Σ=(TΣ)
m+1µ=TΣµm. The convergence anal-

ysis will be conducted in the space H1(Ωγ). We need, therefore, to extend χm∈H1(ωγ) by
ηm, in Ωγ\ωγ. The new function has no jump across Σ and, hence, belongs to H1(Ωγ). By
a notation abuse that functions is still denoted by χm. We recall that H1(Ω) is the Sobolev
space on the safe domain (without cracks). The proof takes three steps.
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(i) Using equations (3.19)-(3.22) on ηm+1, where (3.20) reads as [ηm+1]= [χm], on γ we
deduce the variational relation∫

Ωγ

(
ηm+1ψ+c∇ηm+1∇ψ

)
dx=0, ∀ψ∈H1(Ω).

Plugging χm, it comes out that∫
Ωγ

(
(ηm+1−χm)ψ+c∇(ηm+1−χm)∇ψ

)
dx

=−
∫

Ωγ

(χmψ+c∇χm∇ψ) dx, ∀ψ∈H1(Ω).

Since [χm−ηm+1]|γ = 0, then (χm−ηm+1) belongs to H1(Ω) and it is therefore the
orthogonal projection of χm on H1(Ω) with respect to the norm ∥·∥H1(Ωγ) defined
in (2.9). Consequently we obtain the Pythagore formula

∥χm−ηm+1∥2
H1(Ω)+∥ηm+1∥2

H1(Ωγ)
=∥χm∥2

H1(Ωγ)
. (5.1)

(ii) Writing down the variational formulation of (3.23)-(3.25) on χm+1, after changing
(3.24) into χm+1=ηm+1 on Σ, requires to work with the closed convex set

Kζ,ηm+1(ωγ)=
{

ψ∈H1(ωγ), ([ψ])|γ ≥ ζ, ψ|Σ =ηm+1
}

.

Obviously χm+1 belongs to Kζ,ηm+1 (so does ηm+1) and satisfies the variational in-
equality∫

ωγ

(
(χm+1(ψ−χm+1)+c∇χm+1∇(ψ−χm+1)

)
dx≥0, ∀ψ∈Kζ,ηm+1(ωγ).

Choosing ψ=(ηm+1)|ωγ
∈Kζ,ηm+1 , we obtain that∫

ωγ

(
(χm+1(ηm+1−χm+1)+c∇χm+1∇(ηm+1−χm+1)

)
dx≥0.

Owing to the formula 2(a,b−a)=−a2−(a−b)2+b2 we derive that

∥χm+1−ηm+1∥2
H1(ωγ)

+∥χm+1∥2
H1(ωγ)

≤∥ηm+1∥2
H1(ωγ)

.

Recalling that χm+1=ηm+1 outside ωγ, we come up with the estimate on the whole
domain Ωγ

∥χm+1−ηm+1∥2
H1(Ωγ)

+∥χm+1∥2
H1(Ωγ)

≤∥ηm+1∥2
H1(Ωγ)

. (5.2)
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(iii) Summing up both formulas (5.1) and (5.2) yields that
m

∑
k=0

∥χk+1−ηk+1∥2
H1(Ωγ)

+
m

∑
k=0

∥χk−ηk+1∥2
H1(Ωγ)

+∥χm+1∥2
H1(Ωγ)

≤∥χ0∥2
H1(Ωγ)

.

We deduce first that (χm)m is bounded in H1(Ωγ). Since that µm=(χm)|Σ, then using
the trace theorem yields that (µm)m is also bounded in H1/2(Σ). The second result
is that (∥χm+1−ηm+1∥H1(Ωγ))m and (∥χm−ηm+1∥H1(Ωγ))m are both decaying toward
zero and so does (∥χm+1−χm∥H1(Ωγ))m by the triangular inequality. Another use
of the trace theorem produces that (µm+1−µm)m converges toward zero. TΣ is then
asymptotically regular. The proof is complete.

5.2 Convergence Result

Aggregating the results of Lemmas 5.1 and 5.2, together with the abstract convergence
of Proposition 4.1, we are able to state the final convergence of the Total Overlapping
Schwarz algorithm.

Proposition 5.1. The sequences (ηm)m and (χm)m computed by the total overlapping Schwarz
method (3.8)–(3.11) and (3.12)–(3.14) converges towards φ and φ|ωγ

, where φ is the exact solu-
tion of the variational inequality (2.10),

lim
m→∞

∥φ−χm∥H1(ωγ)+∥φ−ηm∥H1(Ωγ)=0.

Proof. The result is proven is we check that the Picard sequence (λm) computed in (3.27)
converges towards the fixed point λ of TΣ in H1/2(Σ). Since TΣ is continuous compact
and asymptotically regular and that (λm)m is bounded we deduce that it is convergent
toward λ. The proof is then complete.

Remark 5.1. Proposition 5.1 tells that the convergence of the Schwarz algorithm is guar-
anteed for Σ arbitrarily chosen provided that Σ∩γ=∅. The evaluation of the convergence
rate remains an open issue. We believe that, similarly to the linear cracks, it should be
linear. This is related to the hypothetic contractivity of the operator TΣ. Additionally,
that convergence speed should be dependant on the size of the overlapping region and
is expected to be higher for thicker ωγ.

6 Conclusion

The extension of the TOSM for the numerical simulation of Signorini unilateral cracks is
the purpose of the present. We describe how the alterning Schwarz’ approach is used as a
zooming in procedure for the computation of variational solution at the vicinity of cracks
with unilateral contact conditions. The convergence analysis based on Picard’s sequence
provide the proofs of the reliability of this method. Implementing this Substructuring
method in the FreeFem code, developed by F. Hecht ([21]), is underway.
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[19] J. Haslinger, I. Hlaváček and J. Nečas. Numerical methods for unilateral problems in solid
mechanics, in Handbook of Numerical Analysis, Volume IV, Part 2, Eds. P.G. Ciarlet and J.-L.
Lions, North Holland, 1996.

[20] J. He, A. Lozinski and J. Rappaz. Accelerating the method of finite element patches using
approximately harmonic functions. C. R. Acad. Sci. Paris (I) Math., 345: 107-112, 2007.

[21] F. Hecht. FreeFem++, User’s Guide, 2011. Université Pierre et Marie Curie, Paris. On the web
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