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Numerical Method for Homoclinic and
Heteroclinic Orbits of Neuron Models

Bo Deng1,†

Abstract A twisted heteroclinic cycle was proved to exist more than twenty-
five years ago for the reaction-diffusion FitzHugh-Nagumo equations in their
traveling wave moving frame. The result implies the existence of infinitely
many traveling front waves and infinitely many traveling back waves for the
system. However efforts to numerically render the twisted cycle were not fruit-
ful for the main reason that such orbits are structurally unstable. Presented
here is a bisectional search method for the primary types of traveling wave solu-
tions for the type of bistable reaction-diffusion systems the FitzHugh-Nagumo
equations represent. The algorithm converges at a geometric rate and the wave
speed can be approximated to significant precision in principle. The method
is then applied for a recently obtained axon model with the conclusion that
twisted heteroclinic cycle maybe more of a theoretical artifact.

Keywords FitzHugh-Nagumo equations, twisted heteroclinic loop bifurca-
tion, singular perturbation, bisection method.
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1. Introduction

The reaction-diffusion equations vt = vxx + f(v)− w

wt = ε(v − γw)
(1.1)

with f(v) = v(v−a)(1− v), 0 < a < 1/2, γ > 0, ε > 0, t ≥ 0, x ∈ R was proposed
by FitzHugh [1]and Nagumo [2] as a model for action potential impulses traveling
along nerve axon. Researchers have been interested in the type of impulses which
can be approximated by a fixed pulse profile but traveling at a constant speed.
Such is a solution of one variable in the so-called moving frame: (v, w)(t, x) =
(V,W )(x+ ct). Denote by X ′ = dX

dz with z = x+ ct. Then, V (z),W (z) satisfy the
following first order system of ordinary differential equations:

V ′ = U

U ′ = cU − f(V ) +W

W ′ = ε
c (V − γW )

(1.2)
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A traveling impulse is a homoclinic orbit of the origin (V,U,W ) = 0 = (0, 0, 0),
satisfying

lim
z→−∞

(V,U,W )(z) = 0 and lim
z→∞

(V,U,W )(z) = 0.

Most early studies in the literature were about such homoclinic solutions, c.f. [3–7].
When parameter γ is sufficiently large γ > vmax/fmax (with fmax = f(vmax)

and vmax = [(a+ 1) +
√

(a+ 1)2 − 3a]/3 being the local maximal value of function
f), the system has three equilibrium steady states which are on the plane U = 0, and
on each branch of the cubic nonlinearity W = f(V ), separated by the critical points
of the curve. The first is the origin 0 from which the impulse solution originates; the
second is between the local minimal point vmin and the local maximal point vmax
along the V axis which will not appear in our consideration from now on; and the
third is above the local maximal point, denoted by p = (Vp, 0,Wp) with (Vp,Wp),
being the solution to the equilibrium equation W = f(V ), V = γW , which together
with 0 are the focus of a few studies, including this one, in the literature. When
the system is in this so-called bistable configuration, it is possible to have a front
wave solution, corresponding to a heteroclinic orbit from 0 to p:

lim
z→−∞

(V,U,W )(z) = 0 and lim
z→∞

(V,U,W )(z) = p.

Similarly a back wave solution may also exist, corresponding to a heteroclinic orbit
from p to 0:

lim
z→−∞

(V,U,W )(z) = p and lim
z→∞

(V,U,W )(z) = 0.

Traveling front and back waves were considered in [8–12]. In particular, Rinzel
and Terman [9] studied the existence of a heteroclinic loop and its bifurcation to
homoclinic orbits of both 0 and p for a closely related model to the FN equations.

The work of [13, 14] was the first to consider the effect of the orientation of the
global stable manifolds in relation to the heteroclinic loop on the bifurcations of
heteroclinic orbits other than the primary types forming the loop. The following
result was obtained in Deng [14,15]:

Theorem 1.1 (Theorem 1.1, [14], Theorem 2.3, [15] ). For each 0 < a < 1/2 there
is a sufficiently small ε0 > 0 and a fixed neighborhood N = (γ1, γ2) × (c1, c2) of
the point B0 := (γ0, c0) = ((1 − 2a)/

√
2, 9/(2 − a)(1 − 2a)) so that the following

statements hold for every 0 < ε < ε0 and in N for system (1.2):

1. There are continuously differentiable curves c = cf,0(γ, ε), c = cb,0(γ, ε) sat-
isfying at the singular limit ε = 0:

cf,0(γ, 0) = (1− 2a)/
√

2, c = cb,0(γ, 0) = −(β1 + β3 − 2β2)/
√

2

for every γ1 < γ < γ2, where β1 < β2 < β3 are the roots to the polynomial
equation −f(v) + Wp = 0. Moreover, the two curves intersect at a point
(γε, cε) with the properties that (γε, cε) = B0 at ε = 0, and the curve cb,0(γ, ε)
decreases through cf,0(γ, ε) in γ at γε.

2. For each γ1 < γ < γ2, the system has a simple front wave at speed cf,0(γ, ε)
and a simple back wave at speed cb,0(γ, ε). In particular, at (γε, cε) there is a
heteroclinic loop from 0 to p and back to 0.
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Figure 1. (a) Twisted heteroclinic loop of Eq.(1.2) at the singular limit ε = 0. (b) Bifurcation diagram
for the twisted loop for sufficiently small 0 < ε � 1. (c) A conceptual twisted heteroclinic loop on a
plane. (d) A bifurcated heteroclinic orbit with one loop.

3. At the loop point (γε, cε), the 0-p heteroclinic orbit connects two different sides
of the stable manifold of 0 and similarly, the p-0 heteroclinic orbit connects
two different sides of the stable manifold of p (with the limiting structure at
ε = 0 depicted as in Fig.1(a)).

4. There is a monotone decreasing sequence of differentiable functions c = cf,n(·, ε)
on (γ1, γε), all asymptotically tangent to cf,0 at the point (γε, cε). Also the se-
quence converges pointwise to a differentiable function c = ci,0(·, ε). Moreover,
for each γ ∈ (γ1, γε) and c = cf,n(γ, ε), the system has a 0-p heteroclinic orbit
which loops n ≥ 0 times in a fixed neighborhood H of the heteroclinic cycle at
(γ0, c0) and ε = 0. For c = ci,0(γ, ε), the system has a homoclinic orbit of 0
cycling only once in H.

5. Similarly, there is a monotone decreasing sequence of differentiable functions
c = cb,n(·, ε) on (γε, γ2), all asymptotically tangent to cb,0 at the bifurca-
tion point (γε, cε), and converging pointwise to a differentiable function c =
ci,p(·, ε). And, for each γ ∈ (γε, γ2) and c = cb,n(γ, ε), the system has a p-0
heteroclinic orbit which loops n ≥ 0 times in H, and for c = ci,p(γ, ε), the
system has a homoclinic orbit of p cycling only once in H.

6. For (γ, c) in the region of N below the homoclinic bifurcation curves ci,0, ci,p,
the system has a periodic orbit looping only once in H, i.e. a traveling train
for (1.1).

Figure 1 illustrates the structure of the twisted heteroclinic loop at the singular value
ε = 0 and the bifurcation diagram in the γc-parameter plane for each sufficiently
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small 0 < ε � 1. It also gives an illustration on why a multiple-loop heteroclinic
orbit can bifurcate from a twisted heteroclinic loop. Notice that without the twist
no infinitely n-pulses front or back waves can bifurcate, see Deng [13].

As one consequence, one can see that since the speed parameter c is not a model
parameter for the reaction-diffusion FN equations (1.1), the result above implies
that for each γ near γε, there are either infinitely many front waves or infinitely
many back waves traveling at different speeds, c.f. Fig.1(b). This result naturally
led to the question whether or not these infinitely many front and back waves are
locally stable for the PDE (1.1)? Based on the manner by which the stable and
unstable manifolds for the heteroclinic orbits break from each other when the speed
parameter is perturbed and the Evans function used in [16,17] for the linearization
of the PDE at each of the front and back waves from the existence proof of the
twisted loop, the stability was conjectured in [13], which was subsequently proved
in [18–20].

In another direction, the question is how to render these orbits numerically
for visualization. This is not a trivial problem it seems. For two dimensional
Hamiltonian systems, this is usually done by plotting the level curves of the energy
function. For higher dimensional systems or non-Hamiltonian systems, it is a hard
problem because such orbits are highly unstable structurally. How to approximate
them and how to control the numerical errors are continuous interests, c.f. [21–23].
The purpose of this paper is to illustrate a numerical method for neuron models
that in effect turns a structurally diverging problem at some exponentially diverging
rate into a numerically converging problem at some exponentially converging rate.
The key idea is of bisectional search for solutions of scalar equations. Our approach
is to use FNE as a test model to develop the method and to apply the method to
a more realistic model.

2. Method and Result

Specifically, suppose finding a homoclinic or a heteroclinic orbit is reduced to finding
a solution of an equation h(x) = 0 in an interval x1 < x < x2 with the property
that h(x1) < 0 < h(x2). Then we simply divide the interval into two equal halves,
x1 < xm < x2 with xm = (x1 + x2)/2. In the next step, we define

x1 = xm if h(xm) < 0 and x2 = xm if h(xm) > 0,

which gives rise to the new interval [x1, x2] for the next iterative search. Let N be
the total number of iterative steps and x∗ be the right (or left) end point of the last
output interval [x1, x2] and x0 be a solution of h(x0) = 0 that is inside the last search
interval. Then the error between the numerical approximation and the exact is of
the order of |x∗−x0| ∼ 2−N with the proportionality being the initial interval length
x2 − x1. With N = 25, 40, 50, the error order is respectively 10−8, 10−12, 10−16.
Namely, the approximation is accurate to, respectively, the 7th, 11th, 15th decimal
place. For all the simulations below, we use N = 40 whenever a bisectional method
is employed.

Also, the various bisectional methods to be presented below are very similar to
each other for the type of reaction-diffusion equations represented by Eq.(1.1). The
first, which is also the simplest, is for finding homoclinic orbits of Eq.(1.2).
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2.1. Method for Homoclinic Orbit

On the outset, the goal is to find bounded solutions of the system, or equivalently,
to exclude unbounded solutions, especially those on the unstable manifold of an
equilibrium for homoclinic orbit. For the type of Eq.(1.2), we will exclude solutions
which escape to infinity in variable V , doing so at a sufficiently high rate |U | =
|V ′| � 1. To this end, we define two exit planes, U = U+ � 1 and U = U− � −1.
For the simulation implementation, we use U+ = 0.25, U− = −0.25.

We will limit parameter γ to a range so that 0 = (0, 0, 0) is the only equilibrium
point of the system, satisfying W = f(V ), V = γW, U = 0. For the simulation
we use γ = 5, a = 0.25, ε = 0.003. The shooting algorithm is to search the speed
parameter c in an interval [c1, c2] at a value c so that the system Eq.(1.2) has a
homoclinic of the origin 0. The algorithm is as follows.

Bisectional Searching for Bounded Unstable Manifold (BSBUM):

1. For any given c1 ≤ c ≤ c2, compute the linearization of the vector filed
at 0 using the first order discretization scheme for every partial derivative,
∂Fi

∂xj
(0) ≈ (Fi(δei))/δ where ei is the standard basis vector with all entries

zeros except for the ith entry which is the unit. For all numerical simulations
δ = 10−16 is used.

2. Compute the stable and unstable eigenspaces Es, Eu of the Jacobian DF (0)
from the previous step. We will restrict the tangent spaces to a small r-
neighborhood of the equilibrium point 0 and use them as approximations to
the local stable and local unstable manifolds, W s

loc, W
u
loc. We know by a

textbook fact that the error between the tangent plane approximation and
the exact local manifold is of order r2. For all numerical simulations r = 10−5

is used. As a result, the approximation error for the stable and unstable
manifolds is in the order of r = 10−10.

3. For homoclinic orbit of the equilibrium point 0, we will take the branch of Wu
loc

having positive U -component as the initial point to integrate it forward in time
since an impulse profile in V increases first and then decreases. Matlab ODE
solver ode15s for stiff systems is used with both the absolute error tolerance
(‘AbsTol’) and the relative error tolerance (‘RelTol’) set at ‘1e-12’ (10−12).
A typical solution which starts on the boundary of the r-neighborhood of 0
and ends on the exit planes U = U± usually takes less than 103 steps to
complete. As a result, the total integration error is in the order of 10−9.
Denote by Wu the part of the global unstable manifold before hitting the exit
planes U = U±.

4. Initially, choose a parameter value c = c1 so that by the method above Wu

escapes through U−, and similarly choose c = c2 > c1 so that Wu escapes
through U+. For the simulation, the initial interval is chosen to be [c1, c2] =
[0.2, 0.5].

5. The key step for the bisectional shooting algorithm is to compute the global
unstable manifold Wu for the midpoint speed cm = c1+c2

2 . The end points for
the new searching interval is determined by the following bisection rule:

c1 := cm, c2 := c2 if Wu exits U = U−; and c1 := c1, c2 := cm if otherwise.

6. The iteration is carried out for N steps. The c value at the last step is expected
to be accurate roughly to the 11th decimal place. But due to the accuracies
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Figure 2. (a) Each trajectory corresponds to the unstable manifold of the trivial equilibrium point of
Eq.(1.2) for the sequence of the speed parameter c generated by BSBUM. The trajectories which end

pointing upward escape through the top exit plane U = U+ and the others escape through the bottom
exit plane U = U−. Each type has the same slope at the end point. The dashed-curves correspond to
the initial shooting speed parameters. (b) The grided parallelogram is the tangent plane of the local
stable manifold, T0W

s
loc, of the only equilibrium point 0. Shooting orbits escape to infinity from either

sides of the local stable manifold through the exit planes U = U+, U−, implying that the searched
bounded orbit is a homoclinic orbit, (c) Each curve, except for the global unstable manifold trajectory,
corresponds to an orbit on the stable manifold of the trivial equilibrium point, ending on the cross-
section plane W = w0 = 0.01 when initial points from the local stable manifold in a neighborhood of
radius r = 10−5 centered at the equilibrium 0 are integrated backward. The curves are the result of the
bisectional shooting algorithm matching up the global unstable manifold (dash) with one orbit of the
stable manifold (solid bold).

limited by other parts of the algorithm, we expect the speed value for the
resulting bounded orbit to approximate the true value in the order of 10−9 at
the least, an over estimate by the use of the Matlab solver.

Figure 2 is a demonstration of this searching algorithm for homoclinic orbit.
In particular, Fig.2(a) shows the family of all unstable manifolds parameterized
by the iterative speeds. All the V -profile curves pointing upward end with the
slope V ′ = U+ and all pointing downward end with the slope V ′ = U−. Fig.2(b)
shows the algorithm seeks out an homoclinic orbit of the system. Specifically, the
grided plane at the origin is the tangent plane of the local stable manifold W s

loc of
0 for the last c value that effectively directs the family of the unstable manifolds
to either sides. As a result the numerically bounded solution the method seeks
out is a homoclinic orbit, connecting the equilibrium point’s unstable manifold
to its stable manifold. The last loose end to tight up is to obtain a numerical
homoclinic orbit which comes out from the r-neighborhood of the equilibrium and
then returns to itself. The global unstable manifold Wu obtained by the bisectional
shooting method about is only part of the homoclinic orbit because its closest
returning distance to the origin is only of order 5×10−3, far from the r-neighborhood
with r = 10−5. As a consequence, we need find a point from the local stable
manifold W s

loc from the r-neighborhood so that when integrated backward it meets
the global unstable manifold Wu on a cross-section W = w0. To stay far away
from the part of Wu that has started to be expelled from the equilibrium point
because of the instability of the equilibrium point due to the existence of the local
unstable manifold, we will choose a fairly large value for w0. Specifically, we will
take w0 = 0.01 for the homoclinic orbit. Again, we will use a bisectional search
method to match the global unstable manifold and the global stable manifold on
the cross-section W = w0 as follows. We denote below the intersection of the global
unstable manifold with the cross-section as Wu ∩ {W = w0} = {(V0, U0, w0)}.

Bisectional Matching of Stable and Unstable Manifolds (BMSUM):
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1. Consider one line segment on the tangent plane Es of the local stable manifold
W s
loc on W = r = 10−5, and parameterize the segment by a parameter s. For

each s, integrate the corresponding stable manifold orbit backward to meet
the cross-section W = w0, and denote the intersection by (vs, us, w0). Denote
also the displacement in the V -direction between the global manifolds by
d(s) = V0 − vs. The goal is to find s so that d(s) = 0.

2. Find two values s1 < s2 to form the initial bisectional search interval so that
d(s1) < 0 < d(s2).

3. Carry out bisectional search in 40 steps to find a numerical solution s to
d(s) = 0.

Fig.2(c) illustrates the process and the result of the bisectional match. The matching
error is |d(s)| = 5.420851781762215 × 10−7. Corresponding to the U -variable, the
matching error is 1.946175840534473 × 10−6. We also tested the effective decimal
digit for the speed c. This is done by keeping its decimals to a given position to see
its effect on the homoclinic orbit. It shows that there is no discernible difference
for the homoclinic orbit in the phase space (not shown, more on this later for
heteroclinic cycle’s effective digits) if the decimals are kept up to the 11th place.
Here are resulting initial values:

(0.827998911477971, 0.560603803549176, 0.011881836452815)× 10−5

for the unstable manifold to pair with

(−0.973640759733335, 0.099386723238672, 0.204784726526954)× 10−5

for the stable manifold of 0, whose eigenvalues are −0.3407, −0.1021, 0.6771.
By keeping track of all the numerical errors throughout the bisectional shooting

and matching processes we can state the following result.

Numerical Proposition 1: Within a margin of error in the order of 10−6,
Eq.(1.2) has a numerical homoclinic orbit of the equilibrium point 0 for parame-
ter values a = 0.25, γ = 5, ε = 0.003, and c = 0.286619666889283, up to the 11th
decimal place.

2.2. Method for Heteroclinic Orbit

We next consider a moderate range for parameter γ. Specifically, γ ∈ [8, 12] for
the remaining exposition. For this range for γ and a = 0.25 the system has three
equilibrium points, with the left most in the v-direction being the origin 0 = (0, 0, 0)
and the right most denoted by p = (Vp, 0,Wp) for Eq.(1.2). For each 8 ≤ γ ≤ 12,
the p equilibrium point is found by a bisectional search in 40 steps to solve this
equation

h(v) := f(v)− v/γ = 0, in the interval vmax ≤ v ≤ 1

where vmax is the local maximum point of the cubic curve w = f(v). The lineariza-
tion of the vector field of Eq.(1.2) at p is computed similarly as is done at 0 above for
homoclinic orbit. Now the method to find the 0-0 homoclinic orbit (impulse wave)
above can be easily adapted to obtain the 0-p heteroclinic orbit (front wave) and the
p-0 heteroclinic orbit (back wave). A few simple modifications are (a) for the 0-p
heteroclinic orbit, the exit planes are U = U+

0 = 0.25, U = U−0 = −0.01 for finding
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Figure 3. (a) Bifurcation diagram for the front and back waves of Eq.(1.2). The curves for ε = 0 are
exact, given by part (1) of Theorem. The other curves are for ε = 0.0016, 0.003, respectively, with the
latter for the thicker curves. (b) The unstable manifolds of the two equilibrium points 0, p are shown
for the parameter values from the discretized bifurcation curve cf,0 that is nearest the intersection of
the interpolated intersection, (γ∗, c∗) = (10.285774076269378, 0.295700502206311), of the front and the
back bifurcation curves, cf,0, cb,0. (c) The same type plot at (b) except for the nearest value from
the back bifurcation curve cb,0. (d) The same type of plot as (b,c) except at the interpolated values
γ = γ∗ c = c∗. (e) The same type of plot except at the parameter values obtained by AHDBM with
40 steps. The resulting values are γd = 10.285714184392418, cd = 0.295700471139480. (f) The same
type of plot at the parameter values obtained by BBM with 40 steps bisection of the initial γ parameter
interval [8, 12]. The resulting values are γb = 10.285714185542020, cb = 0.295700432794638. The other
parameter values are a = 0.25, ε = 0.003 for all simulations.

a bounded unstable manifold Wu
0 of 0; (b) for the p-0 heteroclinic orbit, the exit

planes are U = U+
p = 0.01, U = U−p = −0.25 for finding a bounded unstable man-

ifold Wu
p of p ((4) of BSBUM). The implementation parameters, r, δ, N, c1, c2,

are the same as for the implementation of BSBUM above.

For the primary heteroclinic bifurcation curves cf,0, cb,0, we use 41 equally
spaced discretization points for the γ-parameter interval [8, 12]. For each point γi,
the bisectional method finds two speed values, one is for the simple front wave
cf,0(γi, ε) and the other is for the simple back wave cb,0(γi, ε). These bifurcation
curves, c = cf,0(·, ε), c = cb,0(·, ε), are plotted in Fig.3(a). It contains the ones
with ε = 0 which is done by the formula in part (1) of Theorem, and those with
ε = 0.0016, 0.003 which are done by the bisectional searching method. It shows
that for each fixed ε ∈ [0, 0.003], the two curves cross each other transversally at a
point (γε, cε), giving rise to a bifurcation point of heteroclinic cycle.

2.3. Methods for Heteroclinic Cycle

There are various ways to find numerical approximation to the heteroclinic loop
bifurcation point (HLBP). We will start with the lest effective one. To this end, we
consider the displacement function between the front and back bifurcation curves
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as a function of parameter γ:

c = φ(γ) := cb,0(γ, ε)− cf,0(γ, ε), (2.1)

dropping the reference to the singular parameter ε for φ since it is fixed for what
follows. The goal is to find the solution

φ(γ) = 0

for the HLBP, denoting it by γh the exact solution, dropping the reference to ε as
well. An intuitive method is by the way of discretization. Specifically, let G be the
number of partitioning subintervals for an interval, say [g2, g2], around γh. Denote
by γi, i = 0, 1, 2, . . . , G the discrete points of partition. For ε = 0.003, G = 40, and
[g1, g2] = [8, 12], Fig.3(b,c) show the nearest point approximation of γi to γh. It
shows this approximation does poorly always to one of the two heteroclinic orbits.

The second method is by linear interpolation. That is, find the nearest points
on both sides of γh and approximate γh by interpolation. Specifically, find i so that
φ(γi) > 0 and φ(γi+1) < 0, and then find the intersection, denoted by (γ∗, c∗), of
the lines through the ith and the (i+ 1)st points on cf,0 and cb,0. Using (γ∗, c∗) as
an approximation of HLBP, Fig.3(d) shows the loop in the phase space. Comparing
to the nearest point approximations, it has a better overall appearance for the loop
but each connection is worse off than the best one by the nearest approximations.
The follow-up question is will it become better by including more points to the
discretization? Although the answer is affirmative but the rate of improvement is
poor. Specifically, the approximation error is only improved linearly with respect
to the reciprocal of the step size ∼ 1/G. The reason is because the error function
φ decreases transversely through γh with a nonzero slope, as it is shown by the
bifurcation diagram Fig.3(a). As a result, if we double the points of discretization,
we only expect to half the error. This is exactly what happened by our simulations.
(For example, for the γ parameter, with G = 40, the error against the next bet-
ter approximation (to be explained below) is 0.598918769600942× 10−4, and with
G = 80, the same type error is 0.247911361377362× 10−4.) The conclusion is this
interpolation method is not an effective method for HLBP because except for the
points near the exact point all the other points contribute little to the accuracy of
the approximation. (For comparison among various methods on the number of calls
to the Matlab ODE solver, we use G = N throughout.)

The next method is an ad hoc method, which works better than the previous
methods but is not consistently reliable. Its performance depends on a few ad hoc
factors we do not fully understand. The implementation parameters given below
are the ones with which the method works well. For other choices, the result is
ordinary. The method is a bisectional search carried out simultaneously on two
parameters, γ and c. It works as follows.

Ad Hoc Double Bisection Method (AHDBM):

1. Find one interval each for parameters γ, c, g1 ≤ γ ≤ g2 and respectively
c1 ≤ c ≤ c2, with the following properties: (i) For γ = g1+g2

2 , the unstable
manifold of 0 corresponding to c = c1 and c = c2 exits through the plane
U = U−0 = −0.01, respectively, U = U+

0 = 0.25. (ii) For c = c1+c2
2 , the

unstable manifold of p corresponding to γ = g1 and γ = g2 exits through the
plane U = U+

p = 0.01, respectively, U = U−p = −0.25.
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2. For c = c1+c2
2 and γ = g1+g2

2 , compute the global unstable manifold Wu
0 of

0 and the global unstable manifold Wu
p of p. Define c to be the new c1 iff

Wu
0 exits through U = U−0 . Similarly, define γ to be the new g1 iff Wu

p exits
through U = U+

p .

3. Repeat the process for N times.

For the parameter values a = 0.25, ε = 0.003, the simulation presented here uses
[g1, g2] = [8, 16], [c1, c2] = [0.25, 0.35] for the initial search intervals, and for a total
of N = 40 steps. Fig.3(e) shows the global unstable manifolds Wu

0 , W
u
p at the

last step of the AHDBM. The Matlab solver ode15s was set to these values of
controlling parameters: ‘1e-8’ for both ‘RelTol’ and ‘AbsTol’, ‘on’ for ‘BDF’.
Notice that only 2N many calls to ode15s are made for this method.

This leads to the last method, combining the ideas of bifurcation and bisectional
search. Recall the function φ(γ) from (2.1), the displacement function of the back
bifurcation curve from the front bifurcation curve. We use bisection to find the
solution of φ(γ) = 0 on the interval [g1, g2]. In doing so at each step of a given
value γ, the algorithm computes first the front and the back bifurcation curves
cf,0(γ, ε), cb,0(γ, ε) before determining the sign of φ(γ). Specifically, we have the
following.

Bifurcational Bisection Method (BBM):

1. Set γ = g1+g2
2 , and compute φ(γ), using r = 0.00001, δ = 10−16, U = U−0 =

−0.01, U = U+
0 = 0.25 for the exit planes for the unstable manifold of 0,

and U = U+
p = 0.01, U = U−p = −0.25 for the exit planes for the unstable

manifold of p.

2. Set γ to be the new g1 iff φ(γ) > 0.

3. Iterate the process for N times or terminate the search if the new φ value is
greater than the one from the previous step and if both are of the same sign.

Fig.3(f) shows the result for N = 40 and the initial interval [g1, g2] = [8, 12] and
the initial speed interval [c1, c2] = [0.1, 0.6] for every search for cf,0, cb,0. Since
each bisectional search for the front and back speeds calls the Matlab ODE solver
ode15s N times, the total number of such calls is in the order of 2N × N , the
same number as for the nearest point interpolation method if G = N . The point
(γb, cb) is expected to be accurate at least to the 8th decimal place (the bisectional
matching affects only the accuracy of the orbits in the phase space), much better
than the nearest point interpolation method, and more consistently reliable than
AHDBM.

To visualize the heteroclinic loop in the phase space, we can use BMSUM to
match up the unstable manifold of one equilibrium to the stable manifold of the
other. With the same implementation parameters the matching error is of the
order of 10−6 on two cross-sections, 0.005 displacement in the W direction from
the equilibrium points. Fig.4(a,b,c) show both AHDBM and BBM simulations,
the matching, and the finished heteroclinic loop. Fig.4(d,e,f) also show the effective
decimal digits for the parameter values γb, cb by BBM. It shows that BBM’s effective
order of accuracy can be of 10−12. Here are the initial points found by the methods:

(0.826307053570776, 0.563118860237200, 0.010667823786521)× 10−5
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Figure 4. (a) AHDBM generated simple front wave. Dashed curves corresponding to the initial searching
unstable manifolds of the equilibrium point 0 for two different speed parameters, c1 < c2 with γ =
(g1 + g2)/2. Simultaneously, the back is searched (not shown) with the initial values g1 < g2 with
c = (c1 + c2)/2. (b) The global unstable manifold from 0 from BBM is matched up to the stable
manifold of p by the same BMSUM as for Fig.2(b) on cross-section W = Wp−w0 with w0 = 0.005. The
same is done for the back wave (not shown) on the cross-section W = w0. (c) The finished heteroclinic
loop in the phase space. (d) The approximated heteroclinic loop by keeping the first 10 decimal digits of
each parameter value γb = 10.285714185542020, cb = 0.295700432794638 from BBM. (e) The same plot
by keeping the first 11 decimal digits. (f) The same plot by keeping the first 13 decimal digits. Compare
these to Fig.3(f) when no decimal digits of γb, cb are dropped.

for the unstable manifold of 0 to pair with

(0.834492362203881, −0.000218598815839, 0.080799817752526)

for the stable manifold of p = (0.8333, 0, 0.0810), and

(0.833325124012760, −0.000005712385775, 0.081018403166356)

for the unstable manifold of p to pair with

(−0.971912781779798, 0.157393926626783, 0.170966471616465)× 10−5

for the stable manifold of 0. The eigenvalues at 0, p are, −0.3281, −0.1621, 0.6815,
and respectively, −0.3668, −0.1531, 0.6960, showing the twist of both front and
back waves can be well-defined.

The last numerical demonstration is to show that each heteroclinic orbit is
twisted with respect to the other, namely, each comes out and return to oppo-
site sides of the global stable manifold of an equilibrium point that contains the
other heteroclinic orbit. This is shown in Fig.5 where the global stable manifolds
are generated by integrating a set of points backward that are near the heteroclinic
orbits and on the respective local stable manifolds. As a result when all numer-
ical analyses are considered we have obtained an in silico proof for the following
proposition:
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Figure 5. (a) The family of orbits forming the band are from the stable manifold of the equilibrium
point 0. The parallelogram is the tangent plane of the local stable manifold of 0 at the equilibrium
point. Together they show one side of the stable manifold W s

0 of 0. The 0-p heteroclinic orbit (front
wave) connects two different sides of W s

0 . (b) The same description as (a) except that the roles of 0 and
p are reversed.

Numerical Proposition 2: Within a margin of error in the order of 10−6,
Eq.(1.2) has a twisted heteroclinic cycle for parameter a = 0.25, ε = 0.003, γb =
10.285714185542020, and cb = 0.295700432794638, up to the 11th decimal place.

This result says that within the margin of the error, what we have found by the
method is indistinguishable from a twisted heteroclinic cycle. Equivalently, the
exact orbit for the system with the parameter values can be something else entirely,
but that may only be ascertained when all the errors are subject to a higher precision
order.

3. Application

We now apply the ideas above to a mechanistic axon model obtained recently,
Eq.(10) of [24]. It is as follows

CVt = DVxx − [ḡ
K
n(V − EK) + ḡ

Na
m(V − ENa) + ḡ

G
h(V − EG)]

nt = τ
K

(e(V−EK)/b
K − n)

mt = τNa(e(V−ENa)/b
Na −m)

ht = τ
G

(e−(V−EG)/b
G − h)

(3.1)

Here, V is the intracellular membrane voltage, m,n, h are the dimensionless con-
ductances for sodium, potassium and gating currents respectively, C is the mem-
brane capacitance, D the axon diffusion parameter, ENa, EK, EG the sodium,
potassium, gating currents’ resting potentials, ḡ

Na
, ḡ

K
, ḡ

G
the sodium, potassium,

gating channels’ intrinsic conductances, bNa , bK , bG the sodium, potassium, gating
channels’ activation range parameters, τNa , τK , τG the sodium, potassium, gating
conductances’ adaptation-time parameters. Since the sodium and gating channels
appear to activate first with a faster adaptation time than the potassium channel
for the generation of action potentials, as a model simplification we can consider the
slow V n-system by taking the limit τ

Na
, τ

G
→ ∞ in the equations above to obtain
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m = e(V−ENa)/b
Na , h = e−(V−EG)/b

G , and CVt = DVxx − ḡK
(V − EK)(n− f(V ))

nt = τK(e(V−EK)/b
K − n)

(3.2)

where

f(V ) = −[ḡ
Na
e(V−ENa)/b

Na (V − ENa) + ḡ
G
e−(V−EG)/b

G (V − EG)]/[ḡ
K

(V − EK)].

Similar to the FHN, we can introduce the traveling wave moving frame with speed
c, (V, n)(t, x) = (V, n)(z) with z = x+ ct and U = V ′(z) to have the corresponding
traveling wave equations:

V ′ = U

U ′ = [cCU + ḡ
K

(V − EK)(n− f(V ))]/D

n′ = τK(e(V−EK)/b
K − n)/c.

(3.3)

For a more numerically friendly version of the model, we scale the variables by
V := s1V, U := s2U, n := s3n with s1 = 70, s2 = 200, s3 = 300. The dimensionless
equations become

V ′ = s2U/s1

U ′ = [cCs2U + ḡK(s1V − EK)(s3n− f(s1V ))]/(s2D)

n′ = τ
K

(e(s1V−EK)/b
K − s3n)/(s3c).

(3.4)

The qualitative similarities between this model and the FitzHugh-Nagumo equations
lie in their nullclines. Specifically, the U -nullcline n = f(V ) on the V -nullcline
surface U = 0 shapes like a letter N , and the n-nullcline n = e(V−EK)/b

K can
easily intersect the former in a bistable configuration as shown in Fig.6(d). The
similarity is more so if we treat the n-dynamics as slowly evolving, allowing the
adaptation time parameter τ

K
for the potassium conductance to be sufficiently

small and turning it into a singularly perturbed system. As a result, the methods
presented above can apply.

First, by BSBUM and BMSUM we obtained the following result for the model
on impulse solution:

Numerical Proposition 3: For the same parameter values as of [24] with EK =
−59.5, ḡK = 0.0229, bK = 16.6, ENa = 67.5, ḡNa = 100, bNa = 18.4, EG = −56,
ḡG = 9.3333, bG = 7.0667, C = 1, τK = 0.8667, and D = 1, Eq.(3.4) has a numer-
ical traveling wave solution of the equilibrium point (−0.7455, 0, 0.0052) with wave
speed c = 2.856562267319505 cm/msec up to the 11th decimal place. The eigenval-
ues of the linearization at the equilibrium point are −0.8088, −0.3058, 3.6678. The
forward initial values for the wave are

V0 = −0.745445704516082, U0 = 0.000007888895922, n0 = 0.005180183446415

from the equilibrium point’s unstable manifold and the backward initial values are

V0 = −0.745455211292413, U0 = 0.000000356972661, n0 = 0.005189578595573
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Figure 6. (a) It shows the matching of the unstable manifold to the stable manifold on the section
n = 0.4 in V for impulse traveling wave of Eq.(3.4). (b) The impulse solution in the phase space, showing
in addition the N-shaped U-nullcline n = f(V ) and the n-nullcline (dashed curve) on the V -nullcline
surface U = 0. (c) Front and back bifurcation curves with different τ

K
values next to the back curves.

The intersection of each pair represents the existence of a heteroclinic loop. (d) The singular heteroclinic
loop in the phase space for τ

K
= 0. One orbit (dot-dash curve) from the center-stable manifold of each

equilibrium point is shown, which all converge to the spiral equilibrium point in the middle branch of
the N-shaped U-nullcline n = f(V ), indicating each singular heteroclinic orbit from one equilibrium
point connects different sides of the center-stable manifold of the other equilibrium point. All plots are
in the dimensional values of the variables.

from the stable manifold. The matching errors for V and U on the cross-section
n = 0.4 are 0.000331402898996 and 0.000041476895305, respectively.

We note that except for the sodium and gating adaptation time constants, which are
assumed to be the same and set to τNa = τG =∞, the impulse solution is found for
the parameter values fitted to Hodgkin-Huxley’s experimental data (see [24]) with
the speed value consistent with the result of Hodgkin and Huxley [25]. See Fig.6(a,b)
for plots of the numerical orbit. Notice that unlike the FNE, the n-nullcline inter-
sects the U -nullcline always at three points, creating the all-or-nothing firing config-
uration for the action potential impulse, consistent with empirical findings of nerve
axons.

Next, we consider the existence of heteroclinic loops for the model, and more
specifically, how far away from the fitted parameter values does such an orbit exist.
We searched for them by BBM, with Fig.6(c,d) summarizing the result. Fig.6(c)
shows the bifurcation diagram for the front bifurcation curve and the back bifurca-
tion curve for four different values of the potassium adaptation time constant τK .
At the singular value τ

K
= 0, a singular heteroclinic loop is found for the same

parameter values as for Fig.6(a,b) except for b
K

= 19.222761097550393 and c =
2.952684300151825. The bottom equilibrium (with low n value) is (−0.7454, 0, 0.0049)
with eigenvalues 3.7420, −0.7894, 0, and the top equilibrium is (0.6912, 0, 0.9126)
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Figure 7. (a) Bisectional search of homoclinic orbit for the full model Eq.(3.5). (b) The orbit projected
into the V Un-space. Because the local matching algorithm does work, the orbit is missing a piece on
the local stable manifold of the resting equilibrium point.

with eigenvalues 4.1011, −1.1484, 0. Fig.6(d) shows the singular loop with the
initial value for the front solution being

(−0.745372997141170, 0.000007948107972, 0.00487905548732)

and the initial value for the back solution being

(0.691203659413845, −0.000008205114823, 0.912613114307757).

Each is a V U -fast orbit lying on an n = constant plane. The n-slow orbits lie on
the left and right branches of the U -nullcline. The plot of one stable fiber for each
branch of the center manifold also suggests that each singular heteroclinic orbit is
twisted with respect to the other satisfying the conditions of Bell and Deng [15]. Our
analysis also shows the heteroclinic loop can be continued to higher τ

K
< 0.5 but not

to the experiment-fitted value 0.8667. In addition, the twist of the loop cannot be
continued beyond τ

K
= 0.09 at which the stable eigenvalues of the top equilibrium

point become a pair of complex numbers. For example, for τ
K

= 0.15, the bottom
equilibrium is (−0.7454, 0, 0.0049) with eigenvalues 3.7434, −0.7984, −0.0512, and
the top equilibrium is (0.6819, 0, 0.9164) with eigenvalues 3.9278, −0.5171±0.4833i.
Such eigenvalue conditions are well-known to create chaotic dynamics for homoclinic
orbits (e.g. [26,27]). Furthermore, the heteroclinic loop bifurcation point is far from
the experiment-fitted value in the range parameter value b

K
= 16.6. In fact, for

bK < 18.5, the top equilibrium point lies on the middle branch of the N -shaped
U -nullcline, destroying the bi-stability configuration for twisted heteroclinic cycle.
As a consequence, heteroclinic cycle is not a realistic phenomenon for axon because
the parameter values are far from the experiment-fitted values.

Last, the goal for developing the method above is to study the full mechanistic
model Eq.(3.1). By casting it in the traveling wave moving frame and changing it
to dimensionless form with scales s1 = 70, s2 = 200, s3 = 300, s4 = 1, s5 = 10,
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we obtain the following five-dimensional traveling wave equations

V ′ = s2U/s1

U ′ = [cCs2U + ḡKs3n(s1V − EK) + ḡNas4m(s1V − ENa)

+ḡGs5h(s1V − EG)]/(s2D)

n′ = τ
K

(e(s1V−EK)/b
K − s3n)/(s3c)

m′ = τ
Na

(e(s1V−ENa)/b
Na − s4m)/(s4c)

h′ = τG(e−(s1V−EG)/b
G − s5h)/(s5c).

(3.5)

The resting potential equilibrium has one positive eigenvalue and four negative
eigenvalues. As a result, BSBUM applies. However, because of the higher dimen-
sionality for the stable manifold, the matching algorithm BMSUM does not work
as is. Nonetheless, by using U+ = 1, U− = −1 and c ∈ [2.123, 2.125] with BSBUM
we can find a traveling wave solution and its speed as follows, see also Fig.7.

Numerical Proposition 4: For the same parameter values as of [24] with EK =
−59.5, ḡ

K
= 0.0229, b

K
= 16.6, ENa = 67.5, ḡ

Na
= 100, b

Na
= 18.4, EG = −56,

ḡ
G

= 9.3333, b
G

= 7.0667, C = 1, τ
Na

= 10, τ
G

= 10, τ
K

= 0.8667, and
D = 1.42, Eq.(3.5) has a numerical traveling wave solution of the equilibrium
point (−0.7455, 0, 0.0044, 0.0015, 0.6711) with wave speed c = 2.123808482768276
cm/msec up to the 11th decimal place. The eigenvalues of the linearization at the
equilibrium point are −5.1032, −4.7075, −0.7333, −0.4123, 2.6305. The initial
point for the homoclinic orbit is V0 = −0.745451620653515, U0 = 0.000000204576461,
n0 = 0.004440149175779, m0 = 0.001496784986486, h0 = 0.671107716136303.

We note that the wave speed was 2.12 cm/msec by Hodgkin-Huxley’s experiment
and 1.88 cm/msec by Hodgkin-Huxley’s equations for their squid giant axons, see
[25]. Heteroclinic loop can also be found for the full system by varying parameter
b
K

. But since the range has to be above and beyond the experiment-fitted value in
order for the system to have a bi-stable configuration, such dynamics is probably not
realistic. In addition, for example, with the same parameter values as above except
for bK = 19.2, the linearization of the vector field at the equilibrium point with the
higher n value has one positive eigenvalue and four eigenvalues of negative real part
for the bi-stable configuration of a heteroclinic loop. But the stable eigenvalues that
are nearest the imaginary axis is a pair of complex number under which the twist
of a heteroclinic orbit cannot be defined. As a result we will skip the presentation
of such orbits.

4. Closing Remarks

We have demonstrated for the type of FitzHugh-Nagumo reaction-diffusion equa-
tions a numerical method to find the primary types of traveling impulses, traveling
front, and traveling back waves. The numerical scheme converges at exponential
rate. The errors of approximation can effectively be controlled by keeping tracking
of approximations to the local invariant manifolds, error tolerances of the Matlab
ODE solver, and the matching errors between the global invariant manifolds. How-
ever, our method stops short at the problem of finding the homoclinic bifurcation
curves ci,0, ci,p and the n-pulse heteroclinic curves cf,n, cb,n for n ≥ 1. It is not
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a natural extension of the current method to accomplish these goals because the
required method has to first channel the family of unstable manifolds of one equi-
librium point to avoid hitting the stable manifolds of the other equilibrium point,
and to stay on one side of the stable manifolds of the other and/or of itself before
connecting one member of the family to the stable manifold of the other equilib-
rium point or of itself, c.f. Fig.1(d). Nevertheless, the bisectional searching and
matching ideas presented here should serve as a starting point and be part of the
yet-to-complete strategy.

As for the mechanistic axon models Eq.(3.1), Eq.(3.2), action potential impulse
solutions are also demonstrated for experiment-fitted parameter values, but the ex-
istence of heteroclinic cycles remains more of a theoretical curiosity than a probably
phenomenon. However, a rigorous, singular perturbation proof for a twisted hetero-
clinic loop for the reduced model Eq.(3.4) and its stability should be an interesting
mathematical problem which we shall leave it for another time.
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