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Dynamics of a Predator-prey Model with Delay
and Fear Effect∗

Weiwei Gao1 and Binxiang Dai1†

Abstract Recent manipulations on vertebrates showed that the fear of preda-
tors, caused by prey after they perceived predation risk, could reduce the prey’s
reproduction greatly. And it’s known that predator-prey systems with fear ef-
fect exhibit very rich dynamics. On the other hand, incorporating the time
delay into predator-prey models could also induce instability and oscillations
via Hopf bifurcation. In this paper, we are interested in studying the com-
bined effects of the fear effect and time delay on the dynamics of the classic
Lotka-Volterra predator-prey model. It’s shown that the time delay can cause
the stable equilibrium to become unstable, while the fear effect has a stabi-
lizing effect on the equilibrium. In particular, the model loses stability when
the delay varies and then regains its stability when the fear effect is stronger.
At last, by using the normal form theory and center manifold argument, we
derive explicit formulas which determine the stability and direction of periodic
solutions bifurcating from Hopf bifurcation. Numerical simulations are carried
to explain the mathematical conclusions.

Keywords Predator-prey interaction, fear effect, delay, combined effect, Hopf
bifurcation.
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1. Introduction

Predator-prey interactions play a crucial role in mathematical modeling of ecologi-
cal processes. Following the work of Lotka and Volterra , there are extensive papers
studying the mechanisms of predator-prey systems by observing direct killing of
prey by predators. However, from about the early 1990s onwards, many theoretical
biologists have argued that indirect effects, caused by costs of prey’s behavioral
defenses to perceived predation risk, could also alter the prey’s reproductive physi-
ology and demography powerfully (see [1, 2, 13]).

Animals will take many kinds of measures, including making fewer forays, en-
hancing vigilance, and even changing habitats, to cope with the perceived predation
risk (for more details, we refer to [2, 17, 18] and [7]). Nevertheless, these anti-
predator responses could also cause harmful impacts on them. For example, when
scared parents forage less, the birth rate is decreased and it will be more tough
for the juvenile to survive because of starvation(see, e.g., [1–3]). Similarly, if prey
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migrate from the high-risk habitat to low-risk habitats to escape from predating,
they may consume much energy especially when the environment of low-risk habi-
tats are harsh(see [2,16]). In general, such an anti-predator behavior can lower the
reproductive rate in long term even though it enhances the probability of survival
temporarily.

Except the viewpoints of these theoretical ecologists and evolutionary biologists,
direct experimental evidence demonstrating that fear can affect the population of
prey was given in 2011. In this year, Zanette et al. conducted an experimental study
on wild, free-living song sparrows throughout their breeding season to test whether
perceived predation risk could alone affect the number of offspring produced every
year. And we can refer to the monograph [25] to obtain the specific experimental
details. In this manipulation, females showed a variety of anti-predator responses,
such as stopping incubation, foraging less and bringing less food to the nest. Several
correlative experimental findings in [4–6, 9, 10, 20, 24] and [19] also suggested that
fear of predators could alter prey’s demography.

Based on the experimental facts in [27], Wang et al [25] considered a predator-
prey model incorporating the cost of the fear into prey’s reproduction. Their model
is as follows {

u′(t) = ur0f(k, v)− du− au2 − g(u)v,

v′(t) = v(−m+ cg(u)),

where u(t) and v(t) denote the densities of prey and predator at time t, respectively,
all the parameters are positive, r0 is the birth rate of prey while d represents the
natural death rate of prey, a describes the effect of intra-species competition of prey,
c is the conversion rate of prey’s biomass to predator’s biomass, m is the natural
death rate of predator, g(u(t)) represents the functional response between prey and
predator, f(k, v) accounts for the cost of anti-predator defense due to perceived
predation risk, and k reflects the level of fear which drives anti-predator behaviors
of the prey. By the biological meaning of k, v and f(k, v), they assume that

f(0, v) = 1, f(k, 0) = 1, lim
k→+∞

f(k, v) = 0, lim
v→+∞

f(k, v) = 0,

∂f(k, v)

∂k
< 0,

∂f(k, v)

∂v
< 0.

Their mathematical analysis shows that high levels of fear can stabilize the
predator-prey system by excluding the existence of periodic solutions. In addition,
relatively low levels of fear can induce periodic solutions via Hopf bifurcation.

However, the model mentioned above only exhibits the change of all popula-
tions under ideal conditions. The authors assume that the predator population can
convert the consumption into its growth instantaneously, which is obviously not so.
In the dynamics of real populations, there are reaction-time lags in the response of
predators(see,e.g. [21]), which appear as delays in the numerical response functions.
Besides, it has been shown that delay differential equations exhibit much more com-
plicated dynamics than ordinary differential equations in general since a time delay
could cause a stable equilibrium to become unstable and cause the populations to
fluctuate.

Thus, in this paper, by supposing f(k, v) = 1
1+kv and g(u) = pu for the conve-

nience of analysis, we incorporate a constant time delay τ into the above model in
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the following wayx
′(t) =

r0x(t)

1 + ky(t)
− dx(t)− ax2(t)− px(t)y(t),

y′(t) = cpx(t− τ)y(t− τ)−my(t),

(1.1)

where p is a positive constant.

Then we may wonder whether the time delay can affect the system greatly or how
the fear effect and time delay affect our system together. Therefore, the objective of
this paper is to study the combined impacts of the time delay and fear effect on the
dynamics of predator-prey system. We organise this paper as follows. In the next
section, we consider the stability of the equilibria and show that when the delay takes
some critical values, Hopf bifurcation occurs by choosing delay ŠÓ as a bifurcation
parameter. In Section 3, by using the normal form method and the center manifold
theory introduced by [11], we analyse the properties of the bifurcating periodic
solutions. In section 4, we shall give some numerical simulations.

2. Stability analysis and Hopf bifurcation

From [25],we know that (1.1) has equilibria E0 = (0, 0), E1 = ( r0−da , 0) under the
condition r0 > d, and a unique positive equilibrium E2 = (x, y) if

r0 > d+
am

cp
(2.1)

holds, where x = m
cp and y satisfies r0

1+ky − d− ax− py = 0. In this section, we will

consider the stability of the equilibria and Hopf bifurcation of system (1.1).

2.1. Stability of E0 and E1

In this section, we are concerned with the stability of E0 and E1 of system(1.1),
and in what follows, we need the following results from [21].

Lemma 2.1 ( [21, Lemma 7]). Considering the transcendental polynomial given by

h(λ) = λ+ a− be−λτ ,

where a > 0 , b > 0 , τ ≥ 0 . For the distribution of the zeros of h(λ) , we have

(i) If a < b, then h(λ) admits one positive real zero and all other zeros are complex
numbers;

(ii) If a = b, then λ = 0 is the only real zero of h(λ) and all other zeros are
complex numbers with negative real parts;

(iii) If a > b, then h(λ) has a unique negative real zero, and all other zeros have
negative real parts.

Theorem 2.1. For system (1.1), the trivial equilibrium E0 is stable if r0 < d and
unstable if r0 > d. The semi-trivial equilibrium E1 is locally asymptotically stable
if (2.1) does not hold and unstable while (2.1) holds.
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Proof. Linearizing system (1.1) about E0, we obtain the characteristic equation

(λ+ d− r0)(λ+m) = 0, (2.2)

for which the eigenvalues are λ1 = r0 − d and λ2 = −m < 0. Hence, E0 is stable if
r0 < d and unstable if r0 > d. Similarly, by linearizing system (1.1) about E1 when
r0 > d, we get the characteristic equation as follows

(λ+ r0 − d)h(λ) = 0, (2.3)

where h(λ) = λ+m− cp(r0−d)
a e−λτ . Obviously, λ1 = d−r0 < 0 is a real characteristic

root, and other roots are zeros of h(λ). According to Lemma 2.1, it’s easy to know

that when cp(r0−d)
am < 1, that is, r0 < d+ am

cp , all zeros of h(λ) have negative real parts
for τ ≥ 0. This, together with λ1 < 0, suggests that E1 is locally asymptotically
stable. However, when r0 > d+ am

cp , h(λ) admits a positive zero, which implies E1

is unstable.

Theorem 2.2. If d < r0 < d+ am
cp , the semi-trivial equilibrium E1 of system (1.1)

is globally asymptotically stable. In this case, the predator population will go to
extinction.

Proof. By Theorem 2.1, we see that the equilibrium E1( r0−da , 0) is locally asymp-
totically stable if d < r0 < d+ am

cp . Hence, it is sufficient to show that the equilibrium
E1 is globally attractive.

Following the first equation of (1.1), we can obtain that

x′(t) ≤ x(t)(
r0

1 + ky(t)
− d− ax(t))

≤ x(t)(r0 − d− ax(t))

= ax(t)(
r0 − d
a
− x(t)), t ≥ 0,

which yields

lim sup
t→+∞

x(t) ≤ r0 − d
a

.

Therefore, for ε > 0 sufficiently small satisfying cp( r0−da + ε) < m, there is a T1 > 0

such that if t > T1, x(t) ≤ r0−d
a + ε.

We derive from the second equation of system (1.1) for t > T1 + τ that

y′(t) ≤ cp(r0 − d
a

+ ε)y(t− τ)−my(t).

Consider the following auxiliary equation

v′(t) = cp(
r0 − d
a

+ ε)v(t− τ)−mv(t).

Noting that cp( r0−da + ε) < m , it follows that

lim
t→+∞

v(t) = 0.

By comparison, we derive that

lim
t→+∞

y(t) = 0.



Dynamics of a predator-prey model with delay and fear effect 61

Hence, for any ε > 0 sufficiently small, there exists a T2 > T1 +τ such that if t > T2,
0 < y(t) < ε.

It follows from the first equation of system (1.1) that for t > T2,

x′(t) ≥ x(t)(
r0

1 + kε
− d− pε− ax(t)),

which yields

lim inf
t→+∞

x(t) ≥ r0 − (d+ pε)(1 + kε)

a(1 + kε)
,

Since it is true for any ε > 0 sufficiently small, we have

lim inf
t→+∞

x(t) =
r0 − d
a

.

Thus, the proof is complete.

2.2. Stability of the positive equilibrium and local Hopf bifur-
cation

Linearizing system (1.1) at E2 yields the characteristic equation

λ2 + qλ+ r + (sλ+ l)e−λτ = 0, (2.4)

where q = m + ax > 0, r = amx > 0, s = −m < 0, l = −amx + cp2x̄ȳ + cpkr0x̄ȳ
(1+ky)2 .

For τ = 0, the characteristic equation becomes

λ2 + (q + s)λ+ r + l = 0, (2.5)

which has the roots

λ =
−(q + s)±

√
(q + s)2 − 4(r + l)

2
. (2.6)

Observing equation (2.6), we can find that all roots have negative real parts since
q + s = ax > 0 and r + l = cp2x̄ȳ + cpkr0x̄ȳ

(1+ky)2 > 0.

Now for τ > 0, if λ = iw is a root of equation (2.4) , then we have

−w2 + iqw + r + iswe−iwτ + le−iwτ = 0.

Separating the real and imaginary parts, we have sw sinwτ + l coswτ = w2 − r,

l sinwτ − sw coswτ = qw,
(2.7)

which yields

w4 + w2(q2 − 2r − s2) + r2 − l2 = 0. (2.8)

It follows that if r2 − l2 < 0, equivalently,

k >
(2am− cp2ȳ)(1 + kȳ)2

cpr0ȳ
, (2.9)
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then equation (2.8) has a positive solution

w2 =
(s2 − q2 + 2r) +

√
(q2 − s2 − 2r)2 − 4(r2 − l2)

2
, (2.10)

which suggests the characteristic equation (2.4) has a pair of purely imaginary
roots. However, if r ≥ l, equation (2.4) dose not have purely imaginary roots.
Summmarizing what has been discussed we have the following result.

Theorem 2.3. If (2.9) is reversed, then all roots of equation (2.4) have negative
real parts for all τ ≥ 0; that is, the equilibrium E2 is locally asymptotically stable
for all τ ≥ 0.

From (2.8), we can see that there is a unique positive solution (2.10) if (2.9)
holds. Now we calculate the value of τ by substituting (2.10) into system (2.7) and
obtain

τj =
1

w
{arccos

(l − sq)w2 − lr
l2 + s2w2

+ 2jπ}, j = 0, 1, 2, 3, · · · . (2.11)

From the above analysis, we get the following result.

Lemma 2.2. If (2.9) holds, then the equation (2.4) with τ = τj has a pair of purely
imaginary roots ±iw.

Differentiating equation (2.4) with respect to τ , we obtain

(2λ+ q + (s− τ(sλ+ l))e−λτ )
dλ

dτ
= λ(sλ+ l)e−λτ . (2.12)

Thus,

(
dλ

dτ
)−1 = − 2λ+ q

λ(λ2 + qλ+ r)
+

s

λ(sλ+ l)
− τ

λ
. (2.13)

Then we can obtain

sign

{
Re

dλ

dτ

}
τ=τj

= sign

{
Re

dτ

dλ

}
λ=iw

= sign

{
w4s2 + 2w2l2 − 2rl2 + q2l2 − s2r2

[q2w2 + (r − w2)2](w2s2 + l2)

}
. (2.14)

Substituting the expression of w2 into equation (2.14) under the condition l−r >
0, we can get the result sign

{
Redλdτ

}
τ=τj

> 0 . Regrouping our results we have the

following theorem.

Theorem 2.4. For system (1.1) ,we have:

(i) If (2.9) is reversed, then the positive equilibrium E2 is locally asymptotically
stable for all τ ≥ 0;

(ii) If (2.9) holds, then the positive equilibrium E2 is locally asymptotically stable
for τ ∈ [0, τ0) and unstable for τ > τ0. Hopf bifurcation occurs when τ = τ0;
that is, a family of periodic solutions bifurcates from E2 as τ passes through
the critical value τ0.

Remark 2.1. By making comparison, we are able to discover a fabulous fact.
In [25], the positive equilibrium is globally asymptotically stable in the model with
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linear functional response. However, if we consider the time delay τ in the way as
system (1.1), the positive equilibrium is even not locally asymptotically stable when
τ is bigger than τ0, that is, the time delay can destabilize a stable equilibrium and
induce oscillations in the predator-prey model.

3. Direction and stability of the Hopf bifurcation

In this section, we get the conditions which guarantee system (1.1) undergoes the
Hopf bifurcation at the positive equilibrium E2 when τ = τj . In this section, we shall
determine the direction, stability and period of the bifurcating periodic solutions
by using the norm form and the center manifold theory developed by Hassard et
al. [11] . Denote any of these critical values τ = τj(j = 0, 1, 2, · · ·) by τ̃ . Let
u1(t) = x(τt)− x, u2(t) = y(τt)− y and τ = τ̃ + µ, µ ∈ R. Then µ = 0 is the Hopf
bifurcation value of system (1.1). Then (1.1) can be written asu

′
1(t)=(τ̃+µ)

(
r0(u1(t)+x)
1+k(u2(t)+y)−d(u1(t)+x)−a(u1(t)+x)2−p(u1(t)+x)(u2(t)+y)

)
,

u′2(t)=(τ̃ + µ)(cp(u1(t− 1) + x)(u2(t− 1) + y)−m(u2(t) + y)).

(3.1)
Hence, we can analyze in the space D = C([−1, 0], R2), which does not depend

on the time delay τ . And the system above can be translated into a FDE as

˙u(t) = Lµ(ut) + F (µ+ ut). (3.2)

Denote the right side of the first equation of (1.1) as f1(x(t − τ), x(t), y(t −
τ), y(t)) and the right side of the second equation of (1.1) as f2(x(t− τ), x(t), y(t−
τ), y(t)), then for any ϕ = (ϕ1, ϕ2) ∈ D, let

Lµ(ϕ) = (τ̃ + µ)

 −axϕ1(0)−
(

kr0x
(1+ky)2 + px

)
ϕ2(0)

cpyϕ1(−1) + cpxϕ2(−1)−mϕ2(0)

 (3.3)

and

F (µ, ϕ) = (τ̃ + µ)

 f1
22(ϕ1(0))2 + f1

24ϕ1(0)ϕ2(0) + f1
44(ϕ2(0))2 + · · ·

cpϕ1(−1)ϕ2(−1)

 , (3.4)

where

f1
22 =

∂2f1(x(t− τ), x(t), y(t− τ), y(t))

∂x(t)2

∣∣∣∣
(x,y)

,

f1
24 =

∂2f1(x(t− τ), x(t), y(t− τ), y(t))

∂x(t)∂y(t)

∣∣∣∣
(x,y)

,

f1
44 =

∂2f1(x(t− τ), x(t), y(t− τ), y(t))

∂y(t)2

∣∣∣∣
(x,y)

.

We consider the following linear equation

˙u(t) = Lµ(ut). (3.5)
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By the Riese representation theorem, there exists a matrix of which components
are bounded variation η(θ, µ) in θ ∈ [−1, 0] such that

Lµϕ =

∫ 0

−1

dη(θ, µ)ϕ(θ), for ϕ ∈ D,

and η(θ, µ) can be chosen as

η(θ, µ) =



(τ̃ + µ)

−ax −kr0x
(1+ky)2 − px

0 −m

 , θ = 0,

0, θ ∈ (−1, 0),

(τ̃ + µ)

 0 0

−cpy −cpx

 , θ = −1.

(3.6)

For any ϕ ∈ C1([−1, 0], R2), define

A(µ)ϕ =


dϕ(θ)

dθ , θ ∈ [−1, 0),∫ 0

−1
dη(ξ, µ)ϕ(ξ), θ = 0,

R(µ)ϕ =

0, θ ∈ [−1, 0),

F (µ, ϕ), θ = 0.

Then system (3.1) can be written as

u̇t = A(µ)ut +R(µ)ut, (3.7)

where ut(θ) = u(t+ θ) for θ ∈ [−1, 0].
For ψ ∈ C1([0, 1], (R2)∗) , define

A∗ψ =

−
dψ(s)

ds , s ∈ (0, 1],∫ 0

−1
ψ(−θ)dηT (θ, 0), s = 0,

and a bilinear inner product

〈ψ(s), ϕ(θ)〉 = ψ̄(0)ϕ(0)−
∫ 0

−1

∫ θ

ξ=0

ψ̄(ξ − θ)dη(θ, 0)ϕ(ξ)dξ. (3.8)

Then A(0) and A∗ are adjoint operators.
By the analysis in the last section, we get that ±iτ̃w are eigenvalues of A(0).

Hence, they are also eigenvalues of A∗. Supposing that q(θ) is the eigenvector of
A(0) corresponding to iτ̃ω and q∗(s) is the eigenvector of A∗ corresponding to −iτ̃ω,
then it is easy to calculate q(θ) = (1, γ)T eiθωτ̃ and q∗(s) = H(γ∗, 1)eisωτ̃ , where

γ = −(ax+iw)(1+ky)2

kr0x+(1+ky)2px , γ∗ = cpyeiwτ̃

ax−iw . Since

〈q∗(s), q(θ)〉 = H̄

{
(γ̄∗, 1)(1, γ)T −

∫ 0

−1

∫ θ

ξ=0

(γ̄∗, 1)e−i(ξ−θ)ωτ̃dη(θ, 0)(1, γ)T eiξωτ̃dξ

}
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= H̄[γ̄∗ + γ + (cpy + γcpx)τ̃ e−iwτ̃ ]

= 1,

we can choose H as

H =
1

γ̄ + γ∗ + (cpy + γ̄cpx)τ̃ eiwτ̃
. (3.9)

Using the same notations as in Hassard et al.[32], We first compute the coor-
dinates to describe the center manifold D0 at µ = 0. Let ut be the solution of
equation (3.1) when µ = 0. Denote

z(t) = 〈q∗, ut〉, W (t, θ) = ut(θ)− z(t)q(θ)− z̄(t)q̄(θ), (3.10)

then on the center manifold D0, we have

W (t, θ) = W (z(t), z̄(t), θ),

where

W (z, z̄, θ) ,W20(θ)
z2

2
+W11(θ)zz̄ +W02(θ)

z̄2

2
+ · · · ,

z and z̄ are local coordinates for center manifold D0 in the direction of q∗ and q̄∗.
Note that W is real if ut is real. We only consider real solutions. For the solution
ut ∈ D0 of (3.1), since µ = 0, we have

˙z(t) = iτ̃ωz + 〈q∗(θ), F (0, zq(θ) + z̄q̄(θ) +W (z, z̄, θ))〉
, iτ̃ωz + q̄∗(0)F0,

that is,
ż(t) = iωτ̃z(t) + g(z(t), ¯z(t)), (3.11)

where

g(z, z̄) = q̄∗(0)F0(z, z̄) = g20
z2

2
+ g11zz̄ + g02

z̄2

2
+ g21

z2z̄

2
· · · . (3.12)

It follows from (3.10) that

ut(θ) = (u1t(θ), u2t(θ))
T

= W (t, θ) + zq(θ) + z̄q̄(θ)

= W20(θ)
z2

2
+W11(θ)zz̄ +W02(θ)

z̄2

2
+ (1, γ)T eiwτ̃θz + (1, γ)T e−iwτ̃θz + · · ·.

This, together with (3.4), suggests that

g(z, z̄) = q̄∗(0)F0(z, z̄)

= τ̃ H̄(γ̄∗, 1)

−2au2
1t(0)− ( kr0

(1+ky)2 + p)u1t(0)u2t(0) + 2kr0x
(1+ky)3u

2
2t(0)

cpu1t(−1)u2t(−1)


, τ̃ H̄(γ̄∗, 1)

−2au2
1t(0)− βu1t(0)u2t(0) + δu2

2t(0)

cpu1t(−1)u2t(−1)


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= τ̃ H̄
{
−2au2

1t(0)γ̄∗ − βu1t(0)u2t(0)γ̄∗ + δu2
2t(0)γ̄∗ + cpu1t(−1)u2t(−1)

}
= τ̃ H̄

{[
− 2aγ̄∗ − βγ̄∗γ + δγ̄∗γ2 + cpγe−2iwτ̃

]
z2

+

[
− 4aγ̄∗ − βγ̄∗(γ + γ̄) + 2δγ̄∗γγ̄ + cp(γ̄ + γ)

]
zz

+

[
− 2aγ̄∗ − βγ̄∗γ̄ + δγ̄∗γ̄2 + cpγ̄e2iwτ̃

]
z2

+

[
− 2aγ̄∗

(
W

(1)
20 (0) + 2W

(1)
11 (0)

)
− βγ̄∗

(
W

(2)
11 (0) +

1

2
W

(2)
20 (0) +

1

2
W

(1)
20 (0)γ̄ +W

(1)
11 (0)γ

)
+ cp

(
(W

(2)
11 (−1) +W

(1)
11 (−1)γ)e−iwτ̃ +

1

2
(W

(2)
20 (−1) +W

(1)
20 (−1)γ̄)eiwτ̃

)
+δγ̄∗

(
2W

(2)
11 (0)γ +W

(2)
20 (0)γ

)]
z2z + · · ·

}
.

Comparing the coefficients with (3.12), we get

g20 = 2τ̃ H̄(−2aγ̄∗ − βγ̄∗γ + δγ̄∗γ2 + cpγe−2iwτ̃ ),

g11 = τ̃ H̄(−4aγ̄∗ − βγ̄∗(γ + γ̄) + 2δγ̄∗γγ̄ + cp(γ̄ + γ)),

g02 = 2τ̃ H̄(−2aγ̄∗ − βγ̄∗γ̄ + δγ̄∗(γ̄)2 + cpγ̄e2iwτ̃ ),

g21 = 2τ̃ H̄

[
(−2aγ̄∗ − 1

2
βγ̄∗γ̄)W

(1)
20 (0) + (−4aγ̄∗ − βγ̄∗γ)W

(1)
11 (0)

+ (−1

2
βγ̄∗ + δγ̄∗γ̄)W

(2)
20 (0) + (2δγ̄∗γ − βγ̄∗)W (2)

11 (0)

+
1

2
cp(W

(1)
20 (−1) +W

(2)
20 (−1))eiwτ̃ + cp(γW

(1)
11 (−1) +W

(2)
11 (−1))e−iwτ̃

]
.

Then we still need to compute W20(θ) and W11(θ) since they are included in g21.
From (3.7) and (3.10), we have

Ẇ = u̇t − żq − ˙̄zq̄

=

AW − gq(θ)− ḡq̄(θ), θ ∈ [−1, 0),

AW − gq(0)− ḡq̄(0) + F0, θ = 0.

(3.13)

Besides, on the center manifold D0 near the origin, we obtain

Ẇ = Wz ż +Wz̄ ˙̄z

= [W20(θ)z +W11(θ)z̄] ż + [W11(θ)z +W02(θ)z̄] ˙̄z + · · ·
= [W20(θ)z +W11(θ)z̄] (iωτ̃z + g(z, z̄))

+ [W11(θ)z +W02(θ)z̄] (−iωτ̃ z̄ + ḡ(z, z̄)) + · · · .

This, together with (3.13), implies that

(2iωτ̃I −A)W20(θ) =

−g20q(θ)− ḡ02q̄(θ), θ ∈ [−1, 0)

−g20q(0)− ḡ02q̄(0) + Fz2 , θ = 0
(3.14)
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and

−AW11(θ) =

−g11q(θ)− ḡ11q̄(θ), θ ∈ [−1, 0)

−g11q(0)− ḡ11q̄(0) + Fzz̄, θ = 0.
(3.15)

According to (3.14) and the definition of A0, when θ ∈ [−1, 0), we obtain

W ′20(θ) = 2iωτ̃W20(θ) + g20q(θ) + ḡ02q̄(θ),

of which the solution is

W20(θ) =
ig20

ωτ̃
q(0)eiωτ̃θ +

iḡ02

3ωτ̃
q̄(0)e−iωτ̃θ + E1e

2iωτ̃θ. (3.16)

And when θ = 0, we have∫ 0

−1

dθη(θ, 0)W20(θ) = 2iωτ̃W20(0) + g20q(0) + ḡ02q̄(0)− Fz2 . (3.17)

Substituting (3.16) into (3.17), and noticing
(
iωτ̃I −

∫ 0

−1
eiωτ̃θdθη(θ, 0)

)
q(0) = 0,

we can derive that

E1 =

[
2iωτ̃I −

∫ 0

−1

e2iωτ̃θdθη(θ, 0)

]−1

Fz2

= (τ̃)−1

 2iω + ax − kr0x
(1+ky)2 + px

−cpye−2iwτ̃ 2iw +m− cpxe−2iwτ̃

−1

×

−2a− βγ + δγ2

cpγe−2iwτ̃

 .

Similarly, as discussed above ,when θ ∈ [−1, 0), we have

W ′11(θ) = g11q(θ) + ḡ11q̄(θ).

It is easy to calculate the solution as follows,

W11(θ) = − ig11

ωτ̃
q(0)eiωτ̃θ +

iḡ11

ωτ̃
q̄(0)e−iωτ̃θ + E2, (3.18)

and W11(θ) satisfies∫ 0

−1

dθη(θ, 0)W11(θ) = g11q(0) + ḡ11q̄(0)− Fzz̄. (3.19)

when θ = 0. Then

E2 =−
[∫ 0

−1

dθη(θ, 0)

]−1

Fzz̄

= (τ̃)−1

 ax kr0x
(1+ky)2 + px

−cpy m− cpx

−1

×

−4a− β(γ + γ) + 2δγγ

cp(γ + γ)


can be calculated.
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Now, we can compute the values of W20(θ) and W11(θ), and get the following
values:

c1(0) =
i

2ωτ̃

[
g11g20 − 2|g11|2 −

|g02|2

3

]
+
g21

2
,

µ2 = −Re(c1(0))

Re(λ′(τ̃))
,

β2 = 2Re(c1(0)),

T2 = − Im(c1(0)) + µ2Im(λ′(τ̃))

ωτ̃
,

which determine the properties of bifurcating periodic solutions at the critical value
τ̃ , i.e. , µ2 determines the directions of the Hopf bifurcation: if µ2 > 0(< 0), then
Hopf bifurcation is supercritical (subcritical) and the bifurcating periodic solutions
exist for τ > τ̃(τ < τ̃); β2 determines the stability of the bifurcating periodic solu-
tions: the bifurcating periodic solutions in the center manifold are stable(unstable)
if β2 < 0(β2 > 0); and T2 determines the period of bifurcating periodic solutions:
the period increases (decreases) if T2 > 0(< 0). Furthermore, according to what
has been analysed above, we obtain the following theorem about the direction of
the Hopf bifurcation.

Theorem 3.1. For system (1.1) , suppose that (2.9) holds, then the Hopf bifurca-
tions occur at E2 when τ = τj. Moreover, if Re(c1(0)) < 0 (Re(c1(0)) > 0), the
Hopf bifurcations are supercritical (subcritical), and the bifurcating periodic solu-
tions in the center manifold are stable(unstable).

4. Numerical simulations
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Figure 1. (a) The equilibrium (x̄, ȳ) = (0.500, 0.2355)is locally asymptotically stable when τ = 0. Here
x(0) = 0.32, y(0) = 0.15. (b) There is a bifurcating periodic solution for τ = 5.28.

In this section, to better demonstrate the analytical results about the effects of
the time delay and the fear of predators, we will give some numerical simulations
for the system (1.1) by using the software Matlab R2014a.
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As an example, by making parameters are r0 = 0.14, k = 8, d = 0.02, a =
0.01, p = 0.1, c = 0.4,m = 0.02, we firstly consider the systemx′(t) = 0.14x(t)

1+8y(t) − 0.02x(t)− 0.01(x(t))2 − 0.1x(t)y(t),

y′(t) = 0.04x(t− τ)y(t− τ)− 0.02y(t).
(4.1)

There is a positive equilibrium (x̄, ȳ) = (0.500, 0.2355). Case I. τ = 0. In this
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Figure 2. Behavior of the prey and predator populations for k = 8, τ = 6.

case, the numerical simulation (see Fig.1(a)) shows that the predator and prey’s
populations spiral toward the equilibrium (0.500, 0.2355).

Case II. τ 6= 0. We are interested in the combined effect of the delay τ and
the fear effect k on the dynamics of the model. By Theorem 2.4, There is a critical
value τ0 = 5.2706 , the equilibrium (x̄, ȳ) is stable when τ < 5.2706; Hopf bifurcation
occurs when τ = 5.2706; and the equilibrium becomes unstable and a bifurcating
periodic solution exists when τ > 5.2706(see Fig.1(b)).

We can also vary the value of k to see how it affects the dynamics. For example,
choose τ = 6 (a value at which the positive equilibrium is unstable), both the prey
and predator’s populations oscillate about the equilibrium values when k = 8 (see
Fig.2);

However, when k = 60 (a value which is bigger enough), both the prey and
predator’s populations converge to the equilibrium values (See Fig.3).Therefore,
the system regains its stability when the fear effect is increased. This indicates that
the fear effect k has an effect of stabilizing the equilibrium of the model.

5. Summary and discussion

In this paper, we have studied a predator-prey system with time delay and fear
effect caused by the prey after they perceived the predation risk. In our model,
the linear functional response function has been considered and we have got some
interesting results.

It has been shown that when the time delay does not exist, the unique positive
equilibrium is locally asymptotically stable, that is, the cost of fear does not affect
the dynamical behaviors of the system (1.1). However, compared with the model



70 W. Guo & B. Dai

0 1000 2000 3000 4000 5000 6000
0

0.2

0.4

0.6

0.8

1

1.2

1.4

time t

x(
t)

(a)

0 1000 2000 3000 4000 5000 6000
0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

time t

y(
t)

(b)

Figure 3. Behavior of the prey and predator populations for k = 60, τ = 6.

in [25], if the time delay exists, it can not only destroy the global stability of
the positive equilibrium, but also can induce instability and oscillations via Hopf
bifurcation in our model, and then by using the normal form theory and center
manifold argument, we have derived explicit formulas which determine the stability
and the direction of periodic solutions bifurcating from Hopf bifurcation ; Moreover,
fear of predators has the effect of stabilizing the positive equilibrium, and then our
model regains its stability when the fear level is increased.

There still be a tremendous amount of work to do in this area. For example,
it would be interesting to see what the behaviors of system (1.1) would be when
the spatial dispersal is considered into the interaction. Besides, system (1.1) with
the harvesting strategy could also be observed. We leave these for future research
projects.
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