
Journal of Nonlinear Modeling and Analysis Website:http://jnma.ca

Volume 1, Number 2, June 2019, 179–192 DOI:10.12150/jnma.2019.179

N -dark Soliton Solutions for the Multi-component
Maccari System∗

Yi Zhang1,†, Chujun Chen1,†, Yinkang Xu1,† and Yinjie Lu1,†

Abstract By virtue of the KP hierarchy reduction method, the N -dark soli-
ton solutions of the multi-component Maccari system are constructed. Taking
the coupled Maccari system for instance, the N -dark soliton solutions are fur-
ther obtained in terms of determinants. In addition, in contrast with bright-
bright soliton collisions, the dynamical analysis shows that the collisions of
dark-dark solitons are elastic and there is no energy exchange among soli-
tons in different components. What’s more, we also investigate the dark-dark
soliton bound states including stationary and moving ones.
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KP hierarchy reduction method.
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1. Introduction

During the past decades, solitons in coupled nonlinear Schrödinger (CNLS) type
equations have been studied intensively due to their intriguing interest and their
applied realms. Many efforts have been made on coupled systems which describe the
interaction of short wave packets with long waves in nonlinear dispersive media, as
they are frequently used in the fields of nonlinear optics, fluid dynamics and others.
Depending on the relative sign between the group velocity dispersion/diffraction
and nonlinearity, solitons have two distinct types, namely, bright and dark solitons.
The appearance of multi-component CNLS equations as dynamical equations in
various areas of physics leads to the identification of bright-, dark-, bright-dark-,
and dark-bright-type solitons. In the case of focusing Manakov system, it has been
reported that there exhibit certain novel inelastic collision properties, which has not
been observed in scalar counterpart. In addition, in the defocusing Manakov system,
two bright-dark solitons can form a stationary bound state, in other words, solitons
undergo elastic collision without shape change in this case. All these interesting
interaction behaviors can be described by multi-soliton solutions in the underlying
integrable system. To our knowledge, results are still scarce for the study on bright-
dark and dark-dark types soliton propagation and their collision dynamics.
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Being motivated by the above reasons, in present work, we consider the Maccari
system [16,23,26,30]

iΦt + Φxx − uΦ = 0, (1.1)

uy = (σΦΦ∗)x, (1.2)

where σ = ±1,Φ is complex while u is real; the asterisk represents complex con-
jugate hereafter. And this system was introduced by Maccari that usually used
to describe the motion of localized isolated waves in physics. Its two-component
generalization is given by

iΦ
(1)
t + Φ(1)

xx − uΦ(1) = 0, (1.3)

iΦ
(2)
t + Φ(2)

xx − uΦ(2) = 0, (1.4)

uy = (σ1Φ(1)Φ(1)∗ + σ2Φ(2)Φ(2)∗)x, (1.5)

where σ1, σ2 = ±1.
For the Maccari system (1.1)-(1.2), many studies have been done. Uthayakumar

etc investigated its integrability property by means of the singularity structure
analysis [20]. In addition, Lai and Chow have obtained its two-dromion solutions
based on the coalescence of wavenumbers technique [13]. By virtue of the variable
separation approach, Zhang etc constructed many coherent soliton structures such
as dromions, foldon and solitoff [27,28]. In recent work, its various rational solutions
have been presented by He etc utilizing the Hirota’s bilinear method [24]. And the
general mixed N -soliton solutions of the multi-component Maccari system have
been investigated by Han and Chen [9]. However, the general dark-dark N -soliton
solutions of the multi-component Maccari system have not been exhibited so far.

It should be pointed out that the KP reduction technique is an effective way to
derive soliton solutions of integrable systems, which was firstly investigated by the
Kyoto school [11, 17]. So far it has been applied to construct soliton solutions in
many equations such as the mKdV equation, the NLS equation and others. The
reduction of Toda lattice hierarchy with constrained KP systems to derive dark and
bright solitons has been established respectively [21,22]. Additionally, by means of
this reduction technique, Ohta and Yang have obtained the general N -dark-dark
soliton solutions in the CNLS equations [18]. Also based on this method, the general
bright-dark N -soliton solutions have already been found for the CNLS equations [7],
the YO system [1] and the Mel’nikov system. Moreover, the KP reduction technique
has also been applied to derive rational solutions including rogue waves solutions of
integrable equations, see also the literatures [2, 14,19,25,29].

The paper is organized. In Sec.2, by means of the KP reduction technique, we
construct the general N -dark-dark soliton solutions of the two-component Maccari
system. Besides, the dynamics of one and two solitons are discussed in Sec.3. In
Sec.4, we derive the dark-dark soliton bound states, which contain the stationary
and the moving ones. In Sec.5, the general N -dark-dark soliton solutions of the
multi-component Maccari system in Gram determinant form are presented.
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2. N-dark-dark soliton solutions of the two-compon-
ent Maccari system

In this part, we give the dark-dark N -soliton solutions of the coupled Maccari
system.

Through the variable transformation

Φ(1) = ρ1e
iθ1
g

f
,Φ(2) = ρ2e

iθ2
h

f
, u = −2(log f)xx, (2.1)

where f is real, g and h are complex, meanwhile, θi = αix−α2
i t, αi and ρi are two

real constants, the two-component Maccari system (1.3)-(1.5) can be transformed
into the bilinear equations

(D2
x + 2iα1Dx + iDt)g · f = 0, (2.2)

(D2
x + 2iα2Dx + iDt)h · f = 0, (2.3)

DxDyf · f = σ1ρ
2
1(f2 − gg∗) + σ2ρ

2
2(f2 − hh∗), (2.4)

where the operator D is defined by [8]

Dl
xD

m
y D

n
t f · g =(

∂

∂x
− ∂

∂x′
)l(

∂

∂y
− ∂

∂y′
)m(

∂

∂t
− ∂

∂t′
)nf(x, y, t) (2.5)

· g(x′, y′, t′)|x′=x,y′=y=,t′=t.

Theorem 2.1. The N -dark-dark soliton solutions for the coupled Maccari system
(1.3)-(1.5) are

Φ(1) = ρ1e
i(α1x−α2

1t)
g

f
,Φ(2) = ρ2e

i(α2x−α2
2t)
h

f
, u = −2(logf)xx, (2.6)

where

f =

∣∣∣∣∣δij +
1

pi + p∗j
eξi+ξ

∗
j

∣∣∣∣∣
N×N

,

g =

∣∣∣∣∣δij +

(
− pi − iα1

p∗j + iα1

)
1

pi + p∗j
eξi+ξ

∗
j

∣∣∣∣∣
N×N

,

h =

∣∣∣∣∣δij +

(
− pi − iα2

p∗j + iα2

)
1

pi + p∗j
eξi+ξ

∗
j

∣∣∣∣∣
N×N

, (2.7)

with

ξj = pjx+
1

2

(
σ1ρ

2
1

pj − iα1
+

σ2ρ
2
2

pj − iα2

)
y + ip2

j t+ ξj0,

where pj and ξj0 are complex constants.

In what follows, we proceed to show how the dark-dark solitons are derived with
the help of the KP reduction technique. The proof of this theorem is based on the
following elementary lemma.
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Lemma 2.1 (Lemma 1, [11]). The following bilinear equations in the KP hierarchy:

(D2
x1
−Dx2 + 2aDx1)τ(k + 1, l) · τ(k, l) = 0, (2.8)

(D2
x1
−Dx2

+ 2bDx1
)τ(k, l + 1) · τ(k, l) = 0, (2.9)

(Dx1
Dx−1

− 2)τ(k, l) · τ(k, l) = −2τ(k + 1, l)τ(k − 1, l), (2.10)

(Dx1
Dy−1

− 2)τ(k, l) · τ(k, l) = −2τ(k, l + 1)τ(k, l − 1), (2.11)

where a and b are complex constants, and k and l are integers, have the Gram type
determinant solutions

τ(k, l) = |mij(k, l)|1≤i,j≤N , (2.12)

where the entries of the determinant are given by

mij(k, l) = cij +

∫
ϕi(k, l)ψj(k, l)dx1, (2.13)

ϕi(k, l) = (pi − a)k(pi − b)leθi , (2.14)

ψj(k, l) = (− 1

qj + a
)k(− 1

qj + b
)leθ̃j , (2.15)

with

θi =
1

pi − a
x−1 +

1

pi − b
y−1 + pix1 + p2

ix2 + θi0, (2.16)

θ̃j =
1

qj + a
x−1 +

1

qj + b
y−1 + qjx1 − q2

jx2 + θ̃j0, (2.17)

where cij , pi, qj , θi0, θ̃j0, (i, j = 1, 2, ..., N) are complex constants.

Proof. If one assumes x−1, y−1, x1 are real, x2, a(= iα1), b(= iα2) are pure imag-
inary and qi = p∗i , θ̃j0 = θ∗j0, cji = c∗ij = δij (δij is the Kronecker symbol), then we
can get

θ̃j = θ∗j ,mji(k, l) = m∗ij(−k,−l), τ(k, l) = τ∗(−k,−l). (2.18)

Moreover, we let

f = τ(0, 0), g = τ(1, 0), h = τ(0, 1), g∗ = τ(−1, 0), h∗ = τ(0,−1), (2.19)

hence, the bilinear equations (2.8)-(2.11) become

(D2
x1
−Dx2 + 2iα1Dx1)g · f = 0, (2.20)
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(D2
x1
−Dx2

+ 2iα2Dx1
)h · f = 0, (2.21)

(Dx1
Dx−1

− 2)f · f = −2gg∗, (2.22)

(Dx1
Dy−1

− 2)f · f = −2hh∗. (2.23)

Furthermore, by considering the independent variables changes

x1 = x, x2 = it, x−1 =
1

2
σ1ρ

2
1y, y−1 =

1

2
σ2ρ

2
2y, (2.24)

the bilinear equations (2.20)-(2.23) are transformed into the bilinear form (2.2)-
(2.4). Thus, putting the transformation (2.24) into the f, g, h in (2.19), we can
immediately derive an alternative form for solutions of Eqs.(1.3)-(1.5) in Theorem
2.1. So above all, these complete the proof of the theorem.

3. The dynamical analysis of the dark-dark soliton
solutions

In this section, we discuss the dynamics of dark-dark soliton solutions in Eqs.(1.3)-
(1.5) by applying the above theorem.

3.1. One-soliton solution

Taking N = 1 in the Eqs.(2.6)-(2.7), we can exhibit the single soliton solution.
Thus, the determinants read

f = 1 +
1

p1 + p∗1
eξ1+ξ∗1 , (3.1)

g = 1− 1

p1 + p∗1

p1 − iα1

p∗1 + iα1
eξ1+ξ∗1 , (3.2)

h = 1− 1

p1 + p∗1

p1 − iα2

p∗1 + iα2
eξ1+ξ∗1 , (3.3)

and the single dark-dark soliton solution reads

Φ(1) =
ρ1

2
ei(α1x−α2

1t) × [1 +K
(1)
1 + (K

(1)
1 − 1) tanh

(
ξ1 + ξ∗1 + Θ1

2

)
], (3.4)

Φ(2) =
ρ2

2
ei(α2x−α2

2t) × [1 +K
(2)
1 + (K

(2)
1 − 1) tanh

(
ξ1 + ξ∗1 + Θ1

2

)
], (3.5)

u =
1

2
(p1 + p∗1)2 sech2

(
ξ1 + ξ∗1 + Θ1

2

)
, (3.6)
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with

eΘ1 =
1

p1 + p∗1
=

1

2a1
,

K
(1)
1 = −p1 − iα1

p∗1 + iα1
= −a1 + i(b1 − α1)

a1 − i(b1 − α1)
,

K
(2)
1 = −p1 − iα2

p∗1 + iα2
= −a1 + i(b1 − α2)

a1 − i(b1 − α2)
,

ξ1 + ξ∗1 = 2a1x+

[
σ1ρ

2
1a1

a2
1 + (b1 − α1)2

+
σ2ρ

2
2a1

a2
1 + (b1 − α2)2

]
y − 4a1b1t+ 2ξ10R,

where p1 = a1 + ib1, and a1, b1, ξ10R are real constants.

From (3.4)-(3.6), the intensity functions of |Φ(1)|, |Φ(2)| and u of these solitons
move at velocity 2b1 along the x-direction and 4b1

σ1ρ
2
1

a21+(b1−α1)2
+

σ2ρ
2
2

a21+(b1−α2)2

along the

y-direction respectively. As x, y → ±∞, |Φ(1)| → |ρ1|, |Φ(2)| → |ρ2|,−u→ 0.

Denoting K
(1)
1 = exp(2iφ

(1)
1 ) and K

(2)
1 = exp(2iφ

(2)
1 ), when x and y vary from

−∞ to +∞, it should be pointed out that the Φ(1) and Φ(2) components phase shifts

are in the range of 2φ
(1)
1 and 2φ

(2)
1 while the phase of the −u component is zero, if

2φ
(1)
1 and 2φ

(2)
1 are the phases of K

(1)
1 and K

(2)
1 . Without loss of generality, we can

restrict −π < 2φ
(1)
1 , 2φ

(2)
1 ≤ π, (−π2 < φ

(1)
1 , φ

(2)
1 ≤ π

2 ). Then the center intensities

(ξ1 +ξ∗1 +Θ1 = 0) are |Φ(1)|center = |ρ1|cosφ(1)
1 , |Φ(2)|center = |ρ2|cosφ(2)

1 ,−u = 2a2
1.

For the |Φ(1)|, |Φ(2)| components, in contrast to the background intensities ρ1 and
ρ2, their center intensities are much lower, which implies they are dark-dark solitons.

On the basis of the values of α1 and α2, it can be divided into two different
cases:

(1) α1 = α2, then K
(1)
1 = K

(2)
1 , therefore φ

(1)
1 = φ

(2)
1 , this indicates the Φ(1) and

Φ(2) components are proportional to each other. Similar to the coupled NLS [18]
and the coupled YO equations [3], the single dark-dark soliton for the coupled
Maccari equations is identical to a scalar single dark soliton, which can be viewed
as a degenerate case. We illustrate this situation in Fig.1. It is shown that at the
soliton center both the Φ(1) and Φ(2) components are black.

Figure 1. The one dark-dark soliton solutions (degenerate) for the two-component Maccari system
when t = 0 with ρ1 = 1, ρ2 = 2, α1 = α2 = 1, p1 = 1 + i, σ1 = −1, σ2 = 1, ξ10R = 0.
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(2) α1 6= α2, then K
(1)
1 6= K

(2)
1 , therefore φ

(1)
1 6= φ

(2)
1 , this suggests that the

Φ(1) and Φ(2) components are not proportional mutually. So unlike the degenerate
case, we can not simplify this case to a scalar dark soliton of the single component
Maccari system. As is illustrated in Fig.2, at its center, the Φ(1) component is black,
while the Φ(2) component is only gray.

Figure 2. The one dark-dark soliton solutions (non-degenerate) for the two-component Maccari system
when t = 0 with ρ1 = 1, ρ2 = 2, α1 = 1, α2 = 2, p1 = 1 + i, σ1 = −1, σ2 = 1, ξ10R = 0.

3.2. Two-soliton solution

To study the collision of two solitons, we take N = 2 in the Eqs. (2.6)-(2.7). Then,
we have

Φ(1) = ρ1e
i(α1x−α2

1t)
g2

f2
, (3.7)

Φ(2) = ρ2e
i(α2x−α2

2t)
h2

f2
, (3.8)

u = −2(log f2)xx, (3.9)

with

f2 = 1 + eξ1+ξ∗1+Θ1 + eξ2+ξ∗2+Θ2 + Ω12e
ξ1+ξ∗1+ξ2+ξ∗2+Θ1+Θ2 , (3.10)

g2 = 1 +K
(1)
1 eξ1+ξ∗1+Θ1 +K

(1)
2 eξ2+ξ∗2+Θ2 + Ω12K

(1)
1 K

(1)
2 eξ1+ξ∗1+ξ2+ξ∗2+Θ1+Θ2 ,

(3.11)

h2 = 1 +K
(2)
1 eξ1+ξ∗1+Θ1 +K

(2)
2 eξ2+ξ∗2+Θ2 + Ω12K

(2)
1 K

(2)
2 eξ1+ξ∗1+ξ2+ξ∗2+Θ1+Θ2 ,

(3.12)

and

eΘj =
1

pj + p∗j
=

1

2aj
, (3.13)
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K
(1)
j = −pj − iα1

p∗j + iα1
= −aj + i(bj − α1)

aj − i(bj − α1)
, (3.14)

K
(2)
j = −pj − iα2

p∗j + iα2
= −aj + i(bj − α2)

aj − i(bj − α2)
, (3.15)

Ω12 =

∣∣∣∣p1 − p2

p1 + p∗2

∣∣∣∣2 =
(a1 − a2)2 + (b1 − b2)2

(a1 + a2)2 + (b1 − b2)2
, (3.16)

ξj + ξ∗j = 2ajx+

[
σ1ρ

2
1aj

a2
j + (bj − α1)2

+
σ2ρ

2
2aj

a2
j + (bj − α2)2

]
y − 4ajbjt+ 2ξj0R

= kx,jx+ ky,jy + ωjt+ 2ξj0R, (3.17)

where pj = aj + ibj , aj , bj , ξj0R, (j = 1, 2) are real constants.
On this particular wave number of a2 = −a1 and b2 = b1,i.e., p2 = −p∗1, the

denominator of Ω12 is zero, that is to say, Ω12 is singular. This choice will possess
the Y -shape soliton interaction which is called the resonant solution in the KP
system. In general, these two soliton interactions can be sorted into two different
types : [4–6,12]

(1) If a1a2 < 0, then Ω12 > 1. This soliton interaction is called O-type. The
interaction peak (the maximum of −u) is always greater than the sum of the asymp-
totic soliton amplitudes.

(2) If a1a2 > 0, then 0 < Ω12 < 1. This soliton interaction is known as the
P -type. The interaction peak (the maximum of −u) is always less than the sum of
the asymptotic soliton amplitudes.

Figure 3. The two dark-dark soliton solutions of the two-component Maccari system when t = 0 with

ρ1 = 1, ρ2 = 2, α1 = 1, α2 = 2, p1 = 1 + 1
2 i, p2 = 2 + 1

3 i, σ1 = 1, σ2 = 1, ξ10R = ξ20R = 0.
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Obviously, the types of interaction do not rely on b1 and b2. By taking the
limit b2 → b1 into the two-soliton solution expressions of the equal-amplitude O-
type interaction (a1 = −a2), we can obtain the resonant Y -shape soliton solutions.
In addition, resemble to Mel’nikov system, the interaction coefficient Ω12 in the
coupled Maccari system is always non-negative while for the KP equation, Ω12 can
be negative.

In Fig.3, we displayed the two dark-dark solitons collision. It is easy to observe
that after collision, the two dark-dark solitons cross over each other without any
change of darkness, velocity or shape in its two components. Hence, between the
two solitons or between the Φ(1) and Φ(2) components after collision, there is no
energy exchange. For the coupled Maccari equation, this kind of phenomenon is
distinctly different from the bright-bright solitons collisions [15,30]. The bright two
solitons interaction is elastic or inelastic, while there are only elastic interactions
for the dark ones. This complete transmission of energy occurs for all combinations
of σ1, σ2 values.

4. Dark-dark soliton bound states

In this part, we explore the multi-dark-soliton bound states. In order to keep the
constituent dark solitons staying together all the time, we take parameters

ω1

kx,1
=

ω2

kx,2
(4.1)

and

ω1

ky,1
=

ω2

ky,2
. (4.2)

4.1. The stationary dark-dark soliton bound states

Through analysis, only when the common velocity equals to zero, the dark-dark
solitons can form a stationary bound states, which requires

4aibi = 0, (i = 1, 2). (4.3)

If aj ≤ 0, the soliton solutions would be singular, so we take aj > 0 to avoid
this singularity, i.e., bi = 0. These constraints of the Maccari system can not be
satisfied for all possible nonlinearity coefficients combinations, while for the CNLS
[18] and the coupled YO system [3] , only when σ1 and σ2 take opposite signs,
the corresponding constraints are possible, and for the coupled Mel’nikov equation
[10], the stationary solitons are possible for any combination of the nonlinearity
coefficients.

In what follows, we illustrated two diverse examples of bound states. Corre-
sponding to an oblique bound state, a nontrivial case of

ky,1
kx,1
6= ky,2

kx,2
is shown in

Fig.4. Whereas, corresponding to a quasi-one-dimensional case, a trivial case of
ky,1
kx,1

=
ky,2
kx,2

is displayed in Fig.5.

For the coupled Maccari system, the nontrivial case of
ky,1
kx,1
6= ky,1

kx,1
of the sta-

tionary soliton bound states are possible for any combination of σ1 and σ2. But in
the trivial case of

ky,1
kx,1

=
ky,1
kx,1

, the bound states exist for only mixed types. The
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Figure 4. A nontrivial case of the stationary dark-dark soliton bound states when
ky,1
kx,1

6= ky,1
kx,1

with

the parameters ρ1 = 1, ρ2 = 2, α1 = 1, α2 = 1, p1 = 2, p2 = 3, σ1 = 1, σ2 = 1, ξ10R = ξ20R = 0.

Figure 5. A trivial case of the stationary dark-dark soliton bound states when
ky,1
kx,1

=
ky,1
kx,1

with the

parameters ρ1 = 1, ρ2 = 2, α1 = 1, α2 = 2, p1 = 1, p2 = 2, σ1 = 1, σ2 = −1, ξ10R = ξ20R = 0.

reason is as follows. To obtain the trivial bound states, the parameters must satisfy
the following condition:

σ1ρ
2
1

a2
1 + (b1 − α1)2

+
σ2ρ

2
2

a2
1 + (b1 − α2)2

=
σ1ρ

2
1

a2
2 + (b2 − α1)2

+
σ2ρ

2
2

a2
2 + (b2 − α2)2

, (4.4)

b1 = b2 = 0.

When σ1 and σ2 are both positive or negative, the left (or right) hand side of Eq.(4.4)
is a decreasing or increasing function of a2

j . So there is at most one a2
j solution,

hence at most one positive aj value. This suggests that there are no stationary
bound states when σ1 and σ2 are all focusing or defocusing. Nevertheless, when
σ1 and σ2 are mixed, the left (or right) hand side may become non-monotone of
a2
j , hence it becomes possible for Eq.(4.4) to acquire two different positive values
a1 and a2 when b1 = b2 = 0. In conclusion, the trivial-soliton bound states would
occur only for mixed types.

4.2. The moving dark-dark soliton bound states

The common velocity of the moving bound states needs to be nonzero, i.e., ω1 6= 0
and ω2 6= 0. So we choose the parameters as

σ1ρ
2
1

a2
1 + (b1 − α1)2

+
σ2ρ

2
2

a2
1 + (b1 − α2)2

=
σ1ρ

2
1

a2
2 + (b2 − α1)2

+
σ2ρ

2
2

a2
2 + (b2 − α2)2

, b1 = b2.

(4.5)
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From the above expressions, σ1 and σ2 must be mixed types. The reason is the same
as that shown in the stationary trivial bound states. It is obvious that when σ1 and
σ2 take opposite signs, the left (right) hand side of Eq.(4.5) may be non-monotone
of a2

j , hence it becomes possible for Eq.(4.5) to acquire two different positive values
a1 and a2 for the choice b1 = b2, which qualitatively resemble to the CNLS [18] and
the coupled YO equation [3]. And the following figures 6-8 illustrate the profiles for
the dark-dark soliton bound states of the moving case at different times.

Figure 6. The moving dark-dark soliton bound states when t = −10 with the parameters ρ1 = 1, ρ2 =

2, α1 = 1, α2 = 1
2 , p1 = 1 + i, p2 =

√
55

22 + i, σ1 = 1, σ2 = −1, ξ10R = ξ20R = 0.

Figure 7. The moving dark-dark soliton bound states when t = 0 with the parameters ρ1 = 1, ρ2 =

2, α1 = 1, α2 = 1
2 , p1 = 1 + i, p2 =

√
55

22 + i, σ1 = 1, σ2 = −1, ξ10R = ξ20R = 0.

Figure 8. The moving dark-dark soliton bound states when t = 10 with the parameters ρ1 = 1, ρ2 =

2, α1 = 1, α2 = 1
2 , p1 = 1 + i, p2 =

√
55

22 + i, σ1 = 1, σ2 = −1, ξ10R = ξ20R = 0.

It should be noted that both in the stationary and moving case of bound states,
the phase shifts for the components Φ(1) and Φ(2) admit non-zero, while the com-
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ponent u acquires no phase shift, when x and y vary from −∞ to +∞. Actually,

let 2φ
(1)
j and 2φ

(2)
j be the phases of constants K

(1)
j and K

(2)
j , thus Φ

(1)
phaseshift =

2φ
(1)
1 + 2φ

(1)
2 ,Φ

(2)
phaseshift = 2φ

(1)
1 + 2φ

(1)
2 and uphaseshift = 0 are the phase shifts

of the components. We can find that the sum of the individual phase shifts of the
two constituent dark solitons is equal to the total phase shifts of each short wave
component, which is always non-zero, while in the u component they are generally
zero. For example, as can be calculated from the above formula, the total phase
shift of the Φ(1) is 2π, and −3.4007 in the Φ(2) component, they are all non-zero.

5. General N dark soliton solutions of the multi-
component Maccari system

In the same spirit as the coupled Maccari system, we can construct the N dark
soliton solutions of the multi-component Maccari system. Therefore, the multi-
component Maccari system consisting of M short wave components and one long
wave component can be transformed to

(D2
x + 2iαkDx + iDt)gk · f = 0, k = 1, 2, ...,M, (5.1)

DxDyf · f =

M∑
k=1

σkρ
2
k(f2 − gkg∗k), (5.2)

where f ≡ f(x, y, t) is a real, gk ≡ gk(x, y, t) are complex, ρk are constants, αk are
real constants for k = 1, 2, ...,M . Taking the determinants into account, we can
explore the theorem as follows:

Theorem 5.1. The N -dark soliton solutions of the multi-component Maccari sys-
tem (5.1)-(5.2) are

Φ(k) = ρke
i(αkx−α2

kt)
gk
f
, u = −2(log f)xx, (5.3)

where

f =

∣∣∣∣∣δij +
1

pi + p∗j
eξi+ξ

∗
j

∣∣∣∣∣
N×N

,

gk =

∣∣∣∣∣δij +

(
− pi − iαk
p∗j + iαk

)
1

pi + p∗j
eξi+ξ

∗
j

∣∣∣∣∣
N×N

, (5.4)

with

ξj = pjx+
1

2

(
M∑
k=1

σkρ
2
k

pj − iαk

)
y + ip2

j t+ ξj0,

where pj and ξj0 are complex constants.

The proof of Theorem 5.1 is omitted here.
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