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Abstract Han et al. [Han et al., Polynomial Hamiltonian systems with a
nilpotent critical point, J. Adv. Space Res. 2010, 46, 521–525] successfully
studied local behavior of an isolated nilpotent critical point for polynomial
Hamiltonian systems. In this paper, we extend the previous result by analyzing
the global phase portraits of polynomial Hamiltonian systems. We provide 12
non-topological equivalent classes of global phase portraits in the Poincaré disk
of cubic polynomial Hamiltonian systems with a nilpotent center or saddle at
origin under some conditions of symmetry.
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1. Introduction

Hamiltonian systems are relevant to a variety of space and astrophysical studies such
as celestial mechanics, cosmology and nonlinear plasma waves. In this paper, we
study polynomial Hamiltonian systems with a nilpotent critical point. Let H(x, y)
be a real polynomial in (x, y). Then, as we know, a system of the form

ẋ = Hy, ẏ = −Hx. (1.1)

is called a polynomial Hamiltonian system. There have been many studies on the
number of limit cycles of various perturbed systems to the form of system (1.1) by
using the method of Melnikov functions. For the unperturbed system (1.1), one
usually supposes that it has a period annulus consisting of a family of periodic
orbits with its boundary containing an elementary center point or a hyperbolic
saddle point. Han et al. [9] give a complete classification to nilpotent critical points
for the polynomial Hamiltonian system (1.1) with exact three different types of
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a center, a cusp or a saddle. Then for quadratic and cubic Hamiltonian systems
they obtain necessary and sufficient conditions for a nilpotent critical point to be a
center, a cusp or a saddle. They also give local phase portraits of this kind of these
systems under some conditions of symmetry.

Recently Colak, Llibre and Valls [1–4] provided the global phase portraits on the
Poincaré disk of all Hamiltonian planar polynomial vector fields having only linear
and cubic homogeneous terms which have a linear type center or a nilpotent center
at the origin, together with their bifurcation diagrams. The complete classification
of the phase portrait of the nilpotent centers in the last case was given in [5]. The
quasi-homogeneous but non-homogeneous polynomial differential systems have also
been investigated from different aspects, for example, the structural stability, the
integrability, the polynomial and rational integrability, the centers and limit cycles,
the normal forms. Recently, Garćıa et al. [8] provide an algorithm for obtaining
all the quasi-homogeneous but not homogeneous polynomial differential systems
with a given degree. Using this algorithm they obtain all the quadratic and cubic
quasi-homogeneous but not homogeneous vector fields. Liang et al. [10] give a
complete classification of the global phase portraits of planar quasi-homogeneous
but not homogeneous polynomial differential systems of degree 4. More recently,
Dias, Llibre, Valls [6] classify the global phase portraits of all Hamiltonian planar
polynomial vector fields of degree three symmetric with respect to the x-axis having
a nilpotent center at the origin.

In this paper, we extend the previous result in [9] by analyzing the global phase
portraits of polynomial Hamiltonian systems. We provide 12 non-topological equiv-
alent classes of global phase portraits in the Poincaré disk of cubic polynomial
Hamiltonian systems with a nilpotent center or saddle at origin under some condi-
tions of symmetry.

2. Main results

For the cubic polynomial Hamiltonian system

H(x, y) =
y2

2
+

∑
3≤i+j≤4

hijx
iyj , (2.1)

where i, j are natural number, Han et al. give a complete classification for the
nilpotent singular point (see Theorem 2 in [9]). In the following suppose (2.1) holds
with

H(±x,±y) = H(x, y).

By (1.1) and (2.1) we can obtain

H(x, y) =
y2

2
+ cx4 + ax2y2 + by4,

with a = h22, b=h04, c=h40. We can get the system ẋ = y(1 + 2ax2 + 4by2),

ẏ = −2x(ay2 + 2cx2).
(2.2)

Han et al. [9] show that the origin is a nilpotent saddle if c < 0, and when c > 0,
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the origin is a nilpotent center. Our main result is the following

Theorem 2.1. The global phase portraits of system (2.2) with a nilpotent saddle
or nilpotent center at the origin are topologically equivalent to one of the phase
portraits given in Fig. 1.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 1. Global phase portraits of system (2.2).
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3. The Poincaré compactification

In order to study the distribution of trajectories of plane autonomous systems on
the whole plane, besides the singular point of the system in the finite plane, the orbit
of the system is also studied at infinity. We introduce Poincaré compactification.
For more detail on the Poincaré compactification please refer to Chapter 5 of [7].
Let S2 be the set of points (s1, s2, s3) ∈ R3 such that s21 + s22 + s23 = 1, called the
Poincaré sphere. Given a polynomial vector field

X(x, y) = (ẋ, ẏ) = (P (x, y), Q(x, y))

in R2 of degree d (where d is the maximum of the degrees of the polynomials P
and Q) it can be extended analytically to the Poincaré sphere by projecting each
point x ∈ R2 identified with the point (x1, x2, 1) ∈ R3 in the Poincaré sphere using
a straight line through x and the origin of R3. The equator S1 = {(s1, s2, s3) ∈ S2 :
s3 = 0} corresponds to the infinity of R2. In this way we obtain a vector field X̂
in S2 \ S1. The vector field X̂ is formed by two copies of X: one on the northern
hemisphere {(s1, s2, s3) ∈ S2 : s3 > 0} and another on the southern hemisphere
{(s1, s2, s3) ∈ S2 : s3 < 0}. The local charts need for doing the calculations on the
Poincaré sphere are

Ui = {s ∈ S2 : si > 0}, Vi = {s ∈ S2 : si < 0}

where s = (s1, s2, s3), with the corresponding local maps

ϕi(s) : Ui → R2, ψi(s) : Vi → R2,

such that ϕi(s) = −ψi(s) = (sm/si, sn/si) = (u, v) for m < n and m,n 6= i
(i = 1, 2, 3). The expression for the corresponding vector field on S2 in the local
chart U1 is given by  u̇ = vd[−uP (1/v, u/v) +Q(1/v, u/v)],

ż = −vd+1P (1/v, u/v);
(3.1)

the expression for U2 is u̇ = vd[−uQ(u/v, 1/v) + P (u/v, 1/v)],

v̇ = −vd+1Q(u/v, 1/v);
(3.2)

and the expression for U3 is  u̇ = P (u, v),

v̇ = −Q(u, v).

The expressions for the charts Vi are those for the charts Ui multiplied by
(−1)d−1, for i = 1, 2, 3. Hence for studying the vector field X it is enough to
study its Poincaré compactification restricted to the northern hemisphere plus S1.
To draw the phase portraits we consider the projection by π(s1, s2, s3) = (s1, s2)
of the closed northern hemisphere in to the local disk D = {(s1, s2) : s21 + s22 ≤ 1},
called the Poincaré disk.
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Finite singular points of X are the singular points of its compactification which
are in S2/S1, and they can be studied using U3. Infinite singular points of X, on the
other hand, are the singular points of the corresponding vector field on the Poincaré
disk lying on S1. Note that if s ∈ S1 is an infinite singular point, then −s is also
an infinite singular point. Hence to study the infinite singular points it suffices to
look for them only at U1|v=0 and at the origin of U2.

4. Finite singular points

From Han et al. [9], we can know the types of finite singular points of system (2.2).

When x = 0, y 6= 0 and b < 0, we see that the finite singular points of system
(2.2) other than its origin are

A1,2 = (0,±1/(2
√
−b)).

When x 6= 0, y 6= 0 and ac < 0, we see that the finite singular points of system
(2.2) other than its origin are

A3,4 = (

√
a

2(4bc− a2)
,±

√
c

a2 − 4bc
),

A5,6 = (−
√

a

2(4bc− a2)
,±

√
c

a2 − 4bc
).

We classify a singular point q, whether it is a finite singular point or an infinite
singular point, as follows:

q is hyperbolic if its two eigenvalues have non-zero real part. The local phase
portraits of hyperbolic singular points can be obtained from Theorem 2.15 of [7];

q is semi-hyperbolic if one of its eigenvalues is zero and the other is non-zero.
The local phase portraits of semi-hyperbolic singular points are characterized in
Theorem 2.19 of [7];

q is nilpotent if its two eigenvalues are zero but its linear part is not identically
zero. The local phase portraits of nilpotent singular points can be obtained from
Theorem 3.15 of [7];

q is degenerate if its linear part is identically zero. The local phase portraits
of such singular points are studied doing changes of variables called blow-ups, see
Chapters 2 and 3 of [7].

5. Global phase portraits of system (2.2)

From Han et al. [9], we can find the types of finite singular points of system (2.2).
In this section, we will only analyze infinite singular points and draw global phase
portraits of system (2.2).
(i)When c < 0, the origin is a nilpotent saddle.

For system (2.2), the following six cases to discuss:
(ia)b > 0, a > 0

Only O(0, 0) is a finite singular point, and O(0, 0) is a nilpotent saddle.
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We will discuss the infinite singular points of the system (2.2) in the following.
Using (3.1), we see that in the local chart U1 system (2.2) become u̇ = −4au2 − u2v2 − 4bu4 − 4c,

v̇ = −uv3 − 2auv − 4bu3v.
(5.1)

When v = 0, there are two solutions on U1: B1(
√√

(a2 − 4bc)/(4b2)− a/(2b), 0),

B2(−
√√

(a2 − 4bc)/(4b2)− a/(2b), 0). The linear part of system (5.1) at the points

(u, 0) is −8u(a+ 2bu2) 0

0 −2u(a+ 2bu2)

 .

The both of the eigenvalues of two singular points are negative if u > 0, and posi-
tive if u < 0. Hence the singular points B1 and B2 are stable and unstable nodes,
respectively.

Using (3.2), we see that in the local chart U2 system (2.2) become u̇ = v2 + 4au2 + 4b+ 4cu4,

v̇ = 2auv + 4cu3v.
(5.2)

When b 6= 0, the origin is not a singular point of the system (5.2). We say that
two vector fieldsdisk are topologically equivalent on the Poincaré if there exists a
homeomorphism from one onto the other which sends orbits to orbits preserving or
reversing the direction of the flow. When a ≤ 0, the global phase portrait of system
(2.2) is topologically equivalent to the phase portrait (a) of Fig. 1.

The global phase portrait is shown in (a) of Fig. 1.
(ib)b = 0, a > 0

Only O(0, 0) is a finite singular point, and O(0, 0) is a nilpotent saddle. The
following is a discussion of the infinite singular point of the system. Using (3.1), we
see that in the local chart U1 system (2.2) becomes u̇ = −4au2 − u2v2 − 4c,

v̇ = −uv3 − 2auv.
(5.3)

When v = 0, the singular points of system (5.3) isB1(
√
−c/a, 0) andB2(−

√
−c/a, 0).

The linear part of system (5.3) is−8ua 0

0 −2au

 .

Hence the singular points B1(
√
−c/a, 0) and B2(−

√
−c/a, 0) are stable and unsta-

ble nodes, respectively. Using (3.2), we see that in the local chart U2 system (2.2)
becomes  u̇ = v2 + 4au2 + 4cu4,

v̇ = 2auv + 4cu3v.
(5.4)
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When b = 0, the origin is a singular point of the system (5.4). We see that the
origin is a degenerate singular point. We need to do blow-up to understand the
local behavior at the point. We perform the directional blow-up (u, v) → (u,w)
with

u = u, w =
v

u
.

and have  u̇ = w2u2 + 4au2 + 4cu4,

ẇ = −2auw − uw3.
(5.5)

We eliminate the common factor u between u̇ and ẇ, and get the vector field u̇ = w2u+ 4au2 + 4cu3,

ẇ = −2aw − w3.
(5.6)

When u = 0, system (5.6) have the unique singular point (0, 0) when a > 0. We
note that the linear part of system (5.6) at the origin is4a 0

0 -2a

 .

The eigenvalues of the linear part of system (5.6) at the origin are 4a and −2a, hence
the origin is a saddle. Going back through the change of variables until system (5.4)
as shown in system (5.4) of Fig. 2. We see that locally the origin of U2 consists of
hyperbolic sectors.

system (5.6) system (5.5) system (5.4)

Figure 2. Blow-up of the origin of U2 of system (5.4).

The global phase portrait is shown in (b) of Fig. 1.
(ic)b = 0, a ≤ 0

When b = 0 and a = 0 the finite singular point is only O(0, 0), and O(0, 0) is a
nilpotent saddle.

The following is a discussion of the infinite singular point of the system (2.2).
Using (3.1), we see that in the local chart U1 system (2.2) becomes u̇ = −u2v2 − 4c,

v̇ = −uv3.
(5.7)
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When v = 0, there are no singular points on the local chart U1.
Using (3.2), we see that in the local chart U2 system (2.2) becomes u̇ = v2 + 4cu4,

v̇ = 4cu3v.
(5.8)

When b = 0, the origin is a singular point of the system (5.8). We see that the
origin is a degenerate singular point. We need to do blow-up to understand the
local behavior at the point. We perform the directional blow-up (v, z) → (v, w)
with

u = u, w =
v

u
,

and have  u̇ = w2u2 + 4cu4,

ẇ = −uw3.

We eliminate the common factor u between u̇ and ẇ, and get the vector field u̇ = uw2 + 4cu3,

ẇ = −w3.
(5.9)

We see that the origin is still a degenerate singular point. We need to do blow-up
to understand the local behavior at the point. We perform the directional blow-up
(u,w)→ (u, z) with

u = u, z =
w

u
,

and have  u̇ = z2u3 + 4cu3,

ż = −2z3u2 − 4cu2z.

We eliminate the common factor u2 between u̇ and ẇ, and get the vector field u̇ = z2u+ 4cu,

ż = −2z3 − 4cz.
(5.10)

When u = 0, the possible singular points of system (5.10) are (0, 0), (0,
√
−2c) and

(0,−
√
−2c). The linear part of system (5.10) at the points (0,±

√
−2c) is 2c 0

0 8c

 .

The both of the eigenvalues of two singular points are negative. Hence the
singular points B1 and B2 are stable nodes.

The eigenvalues of the linear part of system (5.10) at the point (0, 0) are ±4c,
hence it is a saddle. Then, tracing back the change of variables to system (5.8),
see Fig. 3. We see that locally the origin of U2 has two elliptic sectors and two
parabolic sectors.
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system (5.10) system (5.9) system (5.8)

Figure 3. Blow-up of the origin of U2 of system (5.8).

The global phase portrait is shown in (c) of Fig. 1.

When b = 0, a < 0 the finite singular point is only O(0, 0), and O(0, 0) is a
nilpotent saddle.

The following is a discussion of the infinite singular point of the system (2.2).
Using (3.1), we see that in the local chart U1 system (2.2) becomes system (5.3).
When v = 0, system (5.3) has no singular point since a < 0.

Using (3.2), we see that in the local chart U2 system (2.2) becomes system (5.4).
When b = 0, the origin is a singular point of the system (5.4). We see that the
origin is a degenerate singular point. We need to do blow-up to understand the local
behavior at the point.We can get system (5.6). When u = 0 the singular points of
system (5.6) are (0, 0),(0,±

√
−2a). The linear part of system (2.2) at the points

(0, w) is w2 + 4a 0

0 −2a− 3w2

 .

So the points (0,±
√
−2a) are both stable nodes. The origin is a saddle. Then,

tracing back the change of variables to system (5.4), see Fig. 4. Therefore, the
origin of U2 has two elliptic sectors and two parabolic sectors in this case.

system (5.6) system (5.5) system (5.4)

Figure 4. Blow-up of the origin of U2 of system (5.4).

When b = 0 and a < 0 the global phase portrait of system (2.2) are topologically
equivalent to the phase portrait (c) of Fig. 1.
(id)b < 0, a ≤ 0
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When a < 0, O(0, 0) is a nilpotent saddle. A1 = (0, 1/2
√
−b) and A2 =

(0,−1/2
√
−b) are all centers.

When a = 0, we see that A1 and A2 are degenerate singular points. We need to
do blow-up to understand the local behavior at the two points. First we translate
A1 to the origin. The system (2.2) becomes ẋ = y − 2by3 − 3

√
−by2,

ẏ = 2cx3.
(5.11)

The system has the Hamiltonian

H(x, y) =
1

2
y2 − 1

2
by4 −

√
−by3 − c

2
x4.

In [9], h30 and h40 represent the coefficient of x3y0 and x4y0, respectively. We
can know that A1 is a center when h30 = 0, h40 = −c/2 > 0.

We translate A2 to the origin. The system (2.2) becomes system (5.8), so A2

is also a center. We see that in the local chart U1 plane, bu4 + au2 + c = 0 has
no solution, and in the U2 plane the origin is not a solution, so there is no infinite
singular point.

The global phase portrait is shown in (d) of Fig. 1.
(ie)b < 0, 0 < a < 2

√
bc

O(0, 0) is a nilpotent saddle. A1 and A2 are all saddles. Ai(i = 3, 4, 5, 6) are all
centers. If b < 0 and 0 < a < 2

√
bc, we see that the equation bu4 + au2 + c = 0

has no solution in the local chart U1 plane, and D(0, 0) is not a solution in the U2

plane. So there is no infinite singular point.
The global phase portrait is shown in (e) of Fig. 1.

(if)b < 0, a ≥ 2
√
bc

O(0, 0) is a nilpotent saddle. A1 and A2 are all saddles.

When v = 0, there are four solutions B1,2(
√
±
√

(a2 − 4bc)/4b2 − a/2b, 0),

B3,4(−
√
±
√

(a2 − 4bc)/(4b2)− a/(2b), 0) on U1. The linear part of system (5.1) at

the point (u, 0) is −8u(a+ 2bu2) 0

0 −2u(a+ 2bu2)

 .

The eigenvalues of the linear part of system (5.1) are −8u(a+2bu2) and −2u(a+
2bu2) at the point (u, 0) . Hence the singular points B1 and B4 are unstable nodes
and B2 and B3 are stable nodes. We see that the origin is not a solution in the U2

plane.
The global phase portrait is shown in (f) of Fig. 1.

(ii)When c > 0, the origin is a nilpotent center. For system (2.2), the following six
cases to discuss:
(iia)b > 0, a ≥ −2

√
bc

The finite singular point is only O(0, 0), and O(0, 0) is a nilpotent center.If b > 0
and a ≥ −2

√
bc we see that in the local chart U1 plane, bu4 + au2 + c = 0 has no

solution, and in the U2 plane the origin is not a solution, so there is no infinite
singular point.

The global phase portrait is shown in (g) of Fig. 1.
(iib)b > 0, a < −2

√
bc
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The finite singular points are O(0, 0), Ai(i = 3, 4, 5, 6). O(0, 0) is a nilpotent
center. Ai(i = 3, 4, 5, 6) are all saddles.

We see that in U1 plane, there has solutionsB1,2(
√
±
√

(a2 − 4bc)/4b2 − a/2b, 0),

B3,4(−
√
±
√

(a2 − 4bc)/4b2 − a/2b, 0). The linear part of system (5.1) at the point

(u, 0) is −8u(a+ 2bu2) 0

0 −2u(a+ 2bu2)

 .

The eigenvalues of the linear part of system (5.1) at the points (u, 0) are −8u(a+
2bu2) and −2u(a + 2bu2). Therefore, the singular points Bi (i = 1, 4) and Bi

(i = 2, 3) are stable and unstable nodes, respectively. We see that in the U2 plane
the origin is not a solution.

The global phase portraits is shown in (h) of Fig. 1.
(iic)b = 0, a ≥ 0

The finite singular point is only O(0, 0), and O(0, 0) is a nilpotent center. We
see that in the local chart U1 plane, bu4 + au2 + c = 0 has no solution, and in the
U2 plane the origin is a solution. The eigenvalues of the linear part of system (5.6)
at the origin are 4a and −2a , hence the origin is a saddle. Going back through the
change of variables until system (5.4) as shown in system (5.4) of Fig. 2. We see
that locally the the origin of U2 consists of hyperbolic sectors.

The global phase portrait is shown in (i) of Fig. 1.
(iid)b = 0, a < 0

The finite singular points are O(0, 0), Ai(i = 3, 4, 5, 6). O(0, 0) is a nilpotent
center. Ai(i = 3, 4, 5, 6) are all saddles. We see that in the local chart U1 plane,
there have two solutions B1(

√
−c/a, 0) and B2(−

√
−c/a, 0). When v = 0 and

a < 0, the singular points of system (5.3) are B1(
√
−c/a, 0) and B2(−

√
−c/a, 0).

The linear part of system (5.3) is−8ua 0

0 −2au

 .

When a < 0, the eigenvalues of the linear part of system (5.3) at the points (u, 0)
are −8au and −2au. So, the singular points B1 and B2 are stable and unstable
nodes, respectively.

We see that the origin is a solution and the origin is a degenerate singular point
in the U2 plane. We need to do blow-up to understand the local behavior at the
point. Similar to (ib) situation we can get system (5.6).

When u = 0, the possible singular points of system (5.6) are (0, 0), (0,
√
−2a)

and (0,−
√
−2a).

When a < 0, the singular points of system (5.6) are (0,±
√
−2a) ,and they are

all stable nodes.
The point (0, 0) is a saddle because the eigenvalues of system (5.7) at the point

are 4a and −2a. Then, tracing back the change of variables to system (5.4), see
Fig. 4.

The global phase portraits is shown in (j) of Fig. 1.
(iie)b < 0, a ≥ 0

The finite singular points are O(0, 0), A1 and A2.
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O(0, 0) is a nilpotent saddle. A1 = (0, 1/2
√
−b) and A2 = (0,−1/2

√
−b) are all

saddles.

In U1 plane, there have two solutions B1(
√√

(a2 − 4bc)/(4b2)− a/(2b), 0),

B2(−
√√

(a2 − 4bc)/(4b2)− a/(2b), 0). The linear part of system (5.1) at the points

(u, 0) is −8u(a+ 2bu2) 0

0 −2u(a+ 2bu2)

 .

The eigenvalues of the linear part of system (5.1) at the points (u, 0) are 8u
√
a2 − 4bc

and 2u
√
a2 − 4bc. Therefore, the singular points B1 and B2 are unstable and stable

nodes, respectively.
When a = 0, we see that A1 and A2 are degenerate singular points. We need to

do blow-up to understand the local behavior at the two points. Firstly, we translate
A1 to the origin. The system (2.2) becomes ẋ = y − 2by3 − 3

√
−by2,

ẏ = 2cx3.

The system has the Hamiltonian

H(x, y) =
1

2
y2 − 1

2
by4 −

√
−by3 − c

2
x4.

In [9], we can know that A1 is a saddle when h30 = 0, h40 = −c/2 < 0. First we
translate A1 to the origin. A1 and A2 are all saddles.

We see that in the local chart U1 plane, there are two solutions B1(
√√

−c/b, 0)

and B2(−
√√

−c/b, 0). The linear part of system (5.1) at the point (u, 0) is−16bu3 0

0 −4bu3

 .

Therefore, the singular points B1 and B2 are unstable and stable nodes, respec-
tively.

We see that in the U2 plane the origin is not a solution.

The global phase portrait is shown in (k) of Fig. 1.
(iif)b < 0, a < 0

The finite singular points are O(0, 0), Ai(i = 1, 2, 3, 4, 5, 6). O(0, 0) is a nilpotent
center. A1 = (0, 1/2

√
−b) and A2 = (0,−1/2

√
−b) are all centers. Ai(i = 3, 4, 5, 6)

are all saddles.

In the U1 plane, there have two solutions B1(
√√

(a2 − 4bc)/(4b2)− a/(2b), 0)

and B2(−
√√

(a2 − 4bc)/(4b2)− a/(2b), 0). The linear part of system (5.1) is−8ua− 16bu3 0

0 −2au− 4bu3

 .
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When a < 0, the singular points B1 and B2 are unstable and stable nodes, respec-
tively.

The global phase portrait is shown in (l) of Fig. 1.
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