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Existence of Solutions for Fractional
Integro-differential Equations with Impulsive and

Integral Conditions∗
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Abstract This paper presents the existence of solutions for a class of Cauchy
problems with integral condition for impulsive fractional integro-differential
equations. Based on definition of solution for impulsive fractional integro-
differential equations, the existence theorems of solutions of fractional differ-
ential equation are obtained by applying fixed point methods. Finally, three
examples are given to demonstrate the feasibility of the obtained results.

Keywords Existence of solutions, impulsive fractional differential equations,
fixed point theorems.

MSC(2010) 34A12, 34A37.

1. Introduction

During the past decades, impulsive differential equations have been attracting in-
creasing attention due to their applications in various sciences such as Physics,
Chemistry, Mechanics, Engineering, Biomedical sciences, etc. Moreover, fractional
differential equations have been proved to be valuable tools to model of phenomena
in both physical and social sciences.

Fractional impulsive differential equations have been extensively studied by
many researchers, in which, fractional calculus, an important branch of mathemat-
ics, has been attached great importance to. For details, see [1–10] and references
therein. For example, Anguraj et al. [2] considered the following initial value prob-
lems for impulsive fractional differential equation given by

cDα(y)(t) = f(t, y(t),

∫ t

0

k(t, s, y(s))ds), t ∈ J
′

:= J\{t1, ..., tm},

y(t+k ) = y(t−k ) + yk, yk ∈ R,

y(0) =

∫ 1

0

g(s)y(s)ds,

(1.1)

where 0 < α ≤ 1 and J = [0, 1]. They proved the existence results for the above
equation by means of the contraction mapping principle and the Krasnoselskii fixed
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point theorem.
Liu et al. [7] studied the following problem

cDα
t u(t) = f(t, u(t), u′(t), u′′(t)), t ∈ J

′
:= J\{t1, ..., tm},

∆u(tk) = Ak(u(t−k )), ∆u′(tk) = Bk(u(t−k )), ∆u′′(tk) = Ck(u(t−k )),

u(0) = λ1u(T ) + ξ1

∫ T

0

q1(s, u(s), u′(s), u′′(s))ds,

u′(0) = λ2u(T ) + ξ2

∫ T

0

q2(s, u(s), u′(s), u′′(s))ds,

u′′(0) = λ3u(T ) + ξ3

∫ T

0

q3(s, u(s), u′(s), u′′(s))ds, λi 6= 1(i = 1, 2, 3),

(1.2)

where 2 < α ≤ 3. By the use of the well-known fixed point theorems, they obtained
the uniqueness and existence of the solutions for the above equation.

Motivated by the above mentioned works, we investigated sufficient conditions
for the existence of solutions to the following impulsive fractional differential equa-
tions with integral initial condition :

cDα(x)(t) = f(t, x(t),

∫ t

0

k(t, s, x(s))ds), t ∈ J
′

:= J\{t1, ..., tm},

∆x(tk) = Ak(x(t−k )), ∆x′(tk) = Bk(x(t−k ))

x(0) =

∫ T

0

g(s)x(s)ds, x′(0) =

∫ T

0

h(s)x′(s)ds,

(1.3)

where k = 1, · · · ,m, J = [0, T ], 1 < α ≤ 2, cDα is the Caputo fractional
derivative, X denote a Banach space, f : J × X × X → X is a given func-
tion, the functions Ak, Bk : X → X are continuous, Ω = {(t, s) : 0 ≤ s ≤ t ≤
T}, k : Ω × X → X, g, h ∈ C[0, T ], 0 = t0 < t1 < · · · < tm < tm+1 = T ,
∆x(tk) = x(t+k ) − x(t−k ), ∆x′(tk) = x′(t+k ) − x′(t−k ). For brevity, let us take

Ax(t) =
∫ t

0
k(t, s, x(s))ds.

This thesis is composed of four sections. In section 2, we will introduce some
definitions, lemmas and preliminary results. In section 3, we will apply some stan-
dard fixed point principles to yield existence result of problem (1.3). In section 4,
three examples are given to illustrate our main results.

2. Preliminaries

In this section, we introduce definitions and preliminary results which are needed in
this paper. Let X be a Banach space. Let C(J,X) be the Banach space of contin-
uous functions x(t) with x(t) ∈ X for t ∈ J = [0, T ] and ‖x‖C(J,X) =maxt∈J |x(t)|.
Also consider the Banach space PC(J,X) = {x : J → X : x ∈ C((tk, tk+1], X), k =
0, · · · ,m and there exist x(t+k ) and x(t−k ), k = 1, · · · ,m with x(t−k ) = x(tk)}, with
the norm ‖x‖PC = supt∈J |x(t)|. Set J ′ := [0, T ]\{t1, ..., tm}.

Definition 2.1 (definition 2.1, [3]). The Riemann-Liouville fractional integral of
order α > 0, of a function f ∈ L1(R+) is defined as

Iαf(t) =
1

Γ(α)

∫ t

0

(t− s)α−1f(s)ds, for α > 0 and t > 0,
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where Γ(.) is the Euler gamma function.

Definition 2.2 (definition 2.2, [3]). The Caputo fractional derivative of order α >
0, n− 1 < α < n, is defined as

(Dα
0+f)(t) =

1

Γ(n− α)

∫ t

0

f (n)(s)

(t− s)α−n+1
ds,

where the function f(t) has absolutely continuous derivatives up to order (n− 1).

Lemma 2.1. If g, h ∈ C[0, T ] satisfies g(s), h(s) ≥ 0, max
t∈[0,T ]

g(t) = Mg, max
t∈[0,T ]

h(t) =

Mh and Q(τ, α) =
∫ T
τ

(s− τ)α−1g(s)ds, P (τ, α) =
∫ T
τ

(s− τ)α−2h(s)ds, for τ ∈
[0, T ], then

(i) Q(τ,α)
Γ(α) ≤Mge

T ,

(ii) P (τ,α)
Γ(α−1) ≤Mhe

T ,

(iii)
∫ t
0

(t−s)α−1ds

Γ(α) ≤ eT .

Proof. The proof is similar to that in Lemma 3 [2].

Lemma 2.2. Let f : J×X×X → X be continuous,
∫ T

0
g(s)ds = a1 6= 1,

∫ T
0
h(s)ds =

a2 6= 1,
∫ T

0
g(s)sds = b,

∫ T
0
g(s)(s− tk)ds = ck(k = 1, 2, · · · ,m). If x is a solution

of the following impulsive initial value problem
cDα

t x(t) = f(t, x(t), Ax(t))dt, t ∈ J
′
, 1 < α ≤ 2,

∆x(tk) = Ak(x(t−k )), ∆x′(tk) = Bk(x(t−k )), k = 1, 2, · · · ,m,

x(0) =

∫ T

0

g(s)x(s)ds, x′(0) =

∫ T

0

h(s)x′(s)ds,

(2.1)

then x(t) satisfies the following impulsive fractional integral equation

λ0 + λ1t+
1

Γ(α)

∫ t

0

(t− s)α−1f(s, x(s), Ax(s))ds, t ∈ [0, t1],

λ0 + λ1t+

j−1∑
k=1

Ak(x(tk)) +

j−1∑
k=1

Bk(x(tk))(t− tk)

+
1

Γ(α)

∫ t

0

(t− s)α−1f(s, x(s), Ax(s))ds, t ∈ (tj−1, tj ],

(2.2)

where

λ0 =
1

1− a1

(
a1

m∑
k=1

Ak(x(tk)) +

m∑
k=1

Bk(x(tk))
ck(1− a2) + a2b

1− a2

+
b

(1− a2)Γ(α− 1)

∫ T

0

P (τ, α)f(τ, x(τ), Ax(τ))dτ

+
1

Γ(α)

∫ T

0

Q(τ, α)f(τ, x(τ), Ax(τ))dτ
)
,
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λ1 =
1

1− a2

(
a2

m∑
k=1

Bk(x(tk)) +
1

Γ(α− 1)

∫ T

0

P (τ, α)f(τ, x(τ), Ax(τ))dτ
)
,

P (τ, α) =

∫ T

τ

(s− τ)α−2h(s)ds, Q(τ, α) =

∫ T

τ

(s− τ)α−1g(s)ds.

Proof. The proof is similar to that in Lemma 2.6 [7].

Theorem 2.1 (theorem 1, [2]). Let M be a closed convex and nonempty subset of
a Banach space X. Let A and B be two operators such that

(i) Ax+By ∈M whenever x, y ∈M ,

(ii) A is compact and continuous,

(iii) B is a contraction mapping.

Then there exists z ∈M such that z = Az +Bz.

Theorem 2.2 (theorem 4.5, [10]). Let X be a Banach spaces and F : X → X be a
completely continuous operator. If the set

E(F ) = {y ∈ X : y = λFy for some λ ∈ [0, 1]}

is bounded, then F has at least a fixed point.

Theorem 2.3 (theorem 4.7, [10]). Let C be a nonempty convex subset of X. Let
U be a nonempty open subset of C with 0 ∈ U and F : U → C be a compact and
continuous operators. Then either

(i) F has fixed points, or

(ii) there exist y ∈ ∂U and λ∗ ∈ [0, 1] with y = λ∗F (y).

3. Main results

Before stating and proving the main results, we introduce the following hypotheses:

(1) f : J ×X ×X → X is jointly continuous.

(2) There exists Lf > 0 such that

|f(t, x1, y1)− f(t, x2, y2)| ≤ Lf
(
|x1 − x2|+ |y1 − y2|

)
,

for all x1, y1, x2, y2 ∈ X and t ∈ J .

(3) The function k : Ω × X → X is continuous and there exist positive constants
k1, k2 such that

|k(t, s, x1)− k(t, s, x2)| ≤ k1|x1 − x2|,

for all x1, x2 ∈ X, k2 = sup
(t,s)∈Ω

|k(t, s, 0)|.

(4) The functions Ak, Bk : X → X are continuous and there exist positive constants
LA, LB such that

|Ak(x)−Ak(y)| ≤ LA|x− y|, |Bk(x)−Bk(y)| ≤ LB |x− y|,

for each t ∈ J and any x, y ∈ X.
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(5) There exist positive constants MA,MB such that

|Ak(x)| ≤MA, |Bk(x)| ≤MB ,

for each t ∈ J and any x ∈ X.

For the sake of convenience, we denote that

Mf = sup
t∈J
|f(t, 0, 0)|, ρ =

Tα

Γ(α)
(

1− α1

α− α1
)1−α1 (α1 ∈ (0, 1)),

θ1 = (| a1

1− a1
|+ 1)m, θ2 =

m∑
k=1

|ck(1− a2) + a2b

(1− a1)(1− a2)
|+ | a2

1− a2
|mT +mT,

θ3 =
(
| b

(1− a1)(1− a2)
|+ T

|1− a2|
)
Mhe

T +
1

|1− a1|
Mge

T ,

η1 = Lf (1 + k1T ), η2 = Lfk2T +Mf ,

δ1 = θ3η2T +
Tαη2

Γ(α+ 1)
,

δ2 = θ3η1T + Lf

( k1T
α+1

Γ(α+ 1)
+ ρ
)
,

δ3 = θ1MA + θ2MB + δ1,

ω = θ1LA + θ2LB + θ3η1T + Lfρ+
Lfk1T

α+1

Γ(α+ 1)
.

Λ1 = θ1MA + θ2MB + θ3LT +
1

2
Lk2θ3T

2 +
LTα

Γ(α+ 1)
+
LTα+1k2

Γ(α+ 2)
.

Λ2 = θ3LT (1 +
1

2
k1T ) + Lρ+

LTα+1k1

Γ(α+ 1)
.

Theorem 3.1. Let the assumptions (1)−(5) be satisfied. If ω < 1, then the problem
(1.3) has a unique solution on J .

Proof. Define the operator F : PC(J,X)→ PC(J,X) by

(Fx)(t) =



λ0 + λ1t+
1

Γ(α)

∫ t

0

(t− s)α−1f(s, x(s), Ax(s))ds, t ∈ [0, t1],

λ0 + λ1t+

j−1∑
k=1

Ak(x(tk)) +

j−1∑
k=1

Bk(x(tk))(t− tk)

+
1

Γ(α)

∫ t

0

(t− s)α−1f(s, x(s), Ax(s))ds, t ∈ [tj−1, tj ],

(3.1)

where λ0, λ1 are given by Lemma 2.2.
Let us fix r ≥ δ3

1−δ2 . We shall show that FBr ⊂ Br, where

Br = {x ∈ PC(J,X) : ‖x‖PC ≤ r, 0 ≤ t ≤ T}.

For any x ∈ Br, using (1)− (5) and Hölder’s inequality, for each t ∈ J , we have

(Fx)(t) ≤|λ0|+ |λ1t|+
j−1∑
k=1

|Ak(x(tk))|+
j−1∑
k=1

|Bk(x(tk))(t− tk)|



226 Y. Hao & Q. Li

+
1

Γ(α)

∫ t

0

(t− s)α−1|f(s, x(s), Ax(s))|ds

≤ | a1

1− a1
|
m∑
k=1

|Ak(x(tk))|+
m∑
k=1

|Bk(x(tk))
ck(1− a2) + a2b

(1− a1)(1− a2)
|

+ | a2t

1− a2
|
m∑
k=1

|Bk(x(tk))|

+ | b

(1− a1)(1− a2)
|
∫ T

0

P (τ, α)

Γ(α− 1)
|f(τ, x(τ), Ax(τ))|dτ

+ | 1

1− a1
|
∫ T

0

Q(τ, α)

Γ(α)
|f(τ, x(τ), Ax(τ))|dτ

+ | t

1− a2
|
∫ T

0

P (τ, α)

Γ(α− 1)
|f(τ, x(τ), Ax(τ))|dτ

+

j−1∑
k=1

|Ak(x(tk))|+
j−1∑
k=1

|Bk(x(tk))(t− tk)|

+
1

Γ(α)

∫ t

0

(t− s)α−1|f(s, x(s), Ax(s))|ds

≤θ1MA + θ2MB + θ3

∫ T

0

|f(τ, x(τ), Ax(τ))− f(τ, 0, 0)|+ |f(τ, 0, 0)|dτ

+
1

Γ(α)

∫ t

0

(t− s)α−1(|f(s, x(s), Ax(s))− f(s, 0, 0)|+ |f(s, 0, 0)|)ds

≤θ1MA + θ2MB + θ3

∫ T

0

[
Lf (|x|+ k1Tr + k2T ) +Mf

]
dτ

+
1

Γ(α)

∫ t

0

(t− s)α−1(Lf (|x|+ k1Tr + k2T ) +Mf )ds

≤θ1MA + θ2MB + θ3T (η1r + η2) +
(η2 + Lfk1Tr)t

α

Γ(α+ 1)

+
Lf

Γ(α)

(∫ t

0

(t− s)
α−1
1−α1 ds

)1−α1 (∫ t

0

|x(s)|
1
α1 ds

)α1

≤θ1MA +θ2MB +θ3η2T +
η2T

α

Γ(α+ 1)
+
(
θ3η1T +

Lfk1T
α+1

Γ(α+ 1)
+Lfρ

)
r

≤δ3 + δ2r

≤r.

Thus, F maps Br into itself. Let x, y ∈ PC(J,X). Then, for each t ∈ J , we
have

|Fx(t)− Fy(t)|

≤| a1

1− a1
|
m∑
k=1

|Ak(x(tk))−Ak(y(tk))|

+

m∑
k=1

|ck(1− a2) + a2b

(1− a1)(1− a2)

(
Bk(x(tk))−Bk(y(tk))

)
|



Existence of solutions for fractional integro-differential equations 227

+ | a2t

1− a2
|
m∑
k=1

|Bk(x(tk))−Bk(y(tk))|+
j−1∑
k=1

|Ak(x(tk))−Ak(y(tk))|

+

j−1∑
k=1

|
(
Bk(x(tk))−Bk(y(tk))

)
(t− tk)|

+ | b

(1− a1)(1− a2)
|
∫ T

0

P (τ, α)

Γ(α− 1)
|f(τ, x(τ), Ax(τ))− f(τ, y(τ), Ay(τ)) | dτ

+ | 1

1− a1
|
∫ T

0

Q(τ, α)

Γ(α)
|f(τ, x(τ), Ax(τ))− f(τ, y(τ), Ay(τ)) | dτ

+ | t

1− a2
|
∫ T

0

P (τ, α)

Γ(α− 1)
|f(τ, x(τ), Ax(τ))− f(τ, y(τ), Ay(τ))|dτ

+
1

Γ(α)

∫ t

0

(t− s)α−1|f(s, x(s), Ax(s))− f(s, y(s), Ay(s))|ds

≤θ1LA|x− y|+ θ2LB |x− y|+ θ3

∫ T

0

Lf (|x− y|+ |Ax−Ay|)dτ

+
1

Γ(α)

∫ t

0

(t− s)α−1Lf (|x− y|+ k1T‖x− y‖PC)ds

≤(θ1LA +θ2LB)‖x− y‖PC+θ3η1T‖x− y‖PC+Lfρ‖x− y‖PC+
Lfk1T

α+1

Γ(α+ 1)
‖x− y‖PC

≤
(
θ1LA + θ2LB + θ3η1T + Lfρ+

Lfk1T
α+1

Γ(α+ 1)

)
‖x− y‖PC

≤ω‖x− y‖PC .

And ω < 1, which proves that the operator F : PC(J,X) → PC(J,X) is
contraction. Applying Banach contraction fixed point, we deduce that the problem
(1.3) has a unique solution on Br. We complete the proof.

Theorem 3.2. Suppose that (1)− (5) are satisfied and θ1LA + θ2LB < 1, δ2 < 1,
then the problem (1.3) has at least one solution.

Proof. Choose r ≥ δ3
1−δ2 and define on Br = {x ∈ PC(J,X) : ‖x‖PC ≤ r} the

operators Φ,Ψ by

(Φx)(t) =


e0 + e1t, t ∈ [0, t1],

e0 + e1t+

j−1∑
k=1

Ak(x(tk)) +

j−1∑
k=1

Bk(x(tk))(t− tk), t ∈ (tj−1, tj ],
(3.2)

where

e0 =
1

1− a1

(
a1

m∑
k=1

Ak(x(tk)) +

m∑
k=1

Bk(x(tk))
ck(1− a2) + a2b

1− a2

)
,

e1 =
a2

1− a2

m∑
k=1

Bk(x(tk)),

and

(Ψx)(t) =
b

(1− a1)(1− a2)Γ(α− 1)

∫ T

0

P (τ, α)f(τ, x(τ), Ax(τ))dτ
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+
1

(1− a1)Γ(α)

∫ T

0

Q(τ, α)f(τ, x(τ), Ax(τ))dτ

+
t

(1− a2)Γ(α− 1)

∫ T

0

P (τ, α)f(τ, x(τ), Ax(τ))dτ

+
1

Γ(α)

∫ t

0

(t− s)α−1f(s, x(s), Ax(s))ds. (3.3)

For any x, y ∈ Br and t ∈ J , we find that

‖Φx+ Ψy‖PC

≤|e0|+ |e1t|+
j−1∑
k=1

|Ak(x(tk))|+
j−1∑
k=1

|Bk(x(tk))(t− tk)|

+ | b

(1− a1)(1− a2)Γ(α− 1)
|
∫ t

0

P (τ, α)|f(τ, y(τ), Ay(τ))|dτ

+ | 1

(1− a1)Γ(α)
|
∫ T

0

Q(τ, α)|f(τ, y(τ), Ay(τ))|dτ

+ | t

(1− a2)Γ(α− 1)
|
∫ T

0

P (τ, α)|f(τ, y(τ), Ay(τ))|dτ

+
1

Γ(α)

∫ t

0

(t− s)α−1|f(s, y(s), Ay(s))|ds

≤θ1MA + θ2MB + θ3η2T +
η2T

α

Γ(α+ 1)
+
(
θ3η1T +

Lfk1T
α+1

Γ(α+ 1)
+ Lfρ

)
r

≤δ3 + δ2r

≤r.

Thus, Φx + Ψy ∈ Br. It is obviously that Φ is a contraction mapping on Br
since

‖Φx− Φy‖PC ≤ (θ1LA + θ2LB)‖x− y‖PC .

On the other hand, the operator Ψ is continuous by the continuity of f . Also,
Ψ is uniformly bounded on Br since

‖Ψ(x)‖PC ≤ δ1 + δ2r.

Now we will prove the compactness of the operator Ψ. For any x ∈ PC(J,X), s1,
s2 ∈ J, tj−1 < s1 < s2 ≤ tj , we have

|Ψx(s2)−Ψx(s1)|

≤ (s2 − s1)

|1− a2|Γ(α− 1)

∫ T

0

P (τ, α)|f(τ, x(τ), Ax(τ))|dτ

+
1

Γ(α)

∫ s1

0

(
(s2 − s)α−1 − (s1 − s)α−1

)
|f(s, x(s), Ax(s))|ds

+
1

Γ(α)

∫ s2

s1

(s2 − s)α−1|f(s, x(s), Ax(s))|ds



Existence of solutions for fractional integro-differential equations 229

≤ (s2 − s1)

| 1− a2 |
Mhe

T (rη1T + η2T ) +
(sα2 − sα1 )

Γ(α+ 1)
(rη1 + η2),

which tends to zero as s2 → s1. This means that Ψ is equicontinuous on interval
(tj−1, tj ]. By the means of the Arzela-Ascoli Theorem, we get that operator Ψ is
completely continuous. Hence, by the conclusion of Theorem 2.1, the problem (1.3)
has at least one solution on Br. The proof is completed.

In addition, we consider the existence of solution to fractional impulsive equation
(1.3) with the following linear growth condition:
(2′) There exists a positive constant L such that

|f(t, x(t), Ax(t)| ≤ L(1 + |x|+ |Ax|),

for any x ∈ X and t ∈ J .

Theorem 3.3. Let the assumptions (1), (2′) and (3)− (5) be satisfied and Λ2 < 1,
then the problem (1.3) has at least one solution.

Proof. Consider the operator F : PC(J,X) → PC(J,X) defined as (3.1). Let
{xn} be a sequence such that xn → x in PC(J,X). Then for any t ∈ J , we have

|(Fxn)(t)− (Fx)(t)|

≤| a1

1− a1
|
m∑
k=1

|Ak(xn(tk))−Ak(x(tk))|

+

m∑
k=1

|ck(1− a2) + a2b

(1− a1)(1− a2)

(
Bk(xn(tk))−Bk(x(tk))

)
|

+ | a2t

1− a2
|
m∑
k=1

| Bk(xn(tk))−Bk(x(tk))|+
j−1∑
k=1

|Ak(xn(tk))−Ak(x(tk))|

+

j−1∑
k=1

|
(
Bk(xn(tk))−Bk(x(tk))

)
(t− tk)|

+ | b

(1− a1)(1− a2)
|
∫ T

0

P (τ, α)

Γ(α− 1)
|f(τ, xn(τ), Axn(τ))− f(τ, x(τ), Ax(τ))|dτ

+ | 1

1− a1
|
∫ T

0

Q(τ, α)

Γ(α)
|f(τ, xn(τ), Axn(τ))− f(τ, x(τ), Ax(τ))|dτ

+ | t

1− a2
|
∫ T

0

P (τ, α)

Γ(α− 1)
|f(τ, xn(τ), Axn(τ))− f(τ, x(τ), Ax(τ))|dτ

+
1

Γ(α)

∫ t

0

(t− s)α−1|f(s, xn(s), Axn(s))− f(s, x(s), Ax(s))|ds

≤(θ1LA + θ2LB)|xn(tk)− x(tk)|

+ θ3T

∫ T

0

P (τ, α)

Γ(α− 1)
|f(τ, xn(τ), Axn(τ))− f(τ, x(τ), Ax(τ))|dτ

+
1

Γ(α)

∫ t

0

(t− s)α−1|f(s, xn(s), Axn(s))− f(s, x(s), Ax(s))|ds,
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which means that the operator F is continuous. There exists a positive constant l1
such that for each x ∈ Br∗ = {x ∈ PC(J,X) : ‖x‖PC ≤ r∗} and t ∈ J , we have

|(Fx)(t)|

≤|λ0|+ |λ1t|+
j−1∑
k=1

|Ak(x(tk))|+
j−1∑
k=1

|Bk(x(tk))(t− tk)|

+
1

Γ(α)

∫ t

0

(t− s)α−1|f(s, x(s), Ax(s)))ds

≤θ1MA + θ2MB + θ3

∫ T

0

|f(τ, x(τ), Ax(τ)|dτ

+
1

Γ(α)

∫ t

0

(t− s)α−1|f(s, x(s), Ax(s))|ds

≤θ1MA + θ2MB + θ3LT (1 + r∗ + k1r
∗T + k2T )

+
LTα

Γ(α+ 1)
(1 + r∗ + k1r

∗T + k2T )

:=l1

which means that ‖(Fx)(t)‖PC ≤ l1. Hence, F is uniformly bounded on Br∗ . Now,
we will prove the operator F is equicontinuous. For any x ∈ PC(J,X), s1, s2 ∈
J, tj−1 < s1 < s2 ≤ tj , we have

|Fx(s2)− Fx(s1)|

≤| a2

1− a2
|
m∑
k=1

|Bk(x(tk))|(s2 − s1) +

j−1∑
k=1

|Bk(x(tk))|(s2 − s1)

+ | 1

1− a2
|(s2 − s1)

∫ T

0

P (τ, α)

Γ(α− 1)
|f(τ, x(τ), Ax(τ)|dτ

+
1

Γ(α)

∫ s2

0

(s2 − s)α−1|f(s, x(s), Ax(s))|ds

+
1

Γ(α)

∫ s1

0

(s1 − s)α−1|f(s, x(s), Ax(s))|ds

≤(| a2

1− a2
|+ 1)(s2 − s1)mMB +

Mhe
TLT

|1− a2|
(s2 − s1)(1 + r∗ + k1r

∗T + k2T )

+
L(sα2 − sα1 )

Γ(α+ 1)
(1 + r∗ + k1r

∗T + k2T ).

As s2 → s1, the above inequality tends to zero. Thus, F is equicontinuous on Br∗ .
By the Arzela-Ascoli Theorem, F is completely continuous. Let x ∈ E(F ) = {x ∈
Br∗ : x = λFx for some λ ∈ [0, 1]}. For t ∈ J , we have

|x(t)| ≤ |(Fx)(t)|

≤|λ0|+ |λ1t|+
j−1∑
k=1

|Ak(x(tk))|+
j−1∑
k=1

|Bk(x(tk))(t− tk)|

+
1

Γ(α)

∫ t

0

(t− s)α−1|f(s, x(s), Ax(s))|ds
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≤θ1MA + θ2MB + θ3L

∫ T

0

(1 + |x|+ |Ax|)dτ

+
L

Γ(α)

∫ t

0

(t− s)α−1(1 + |x|+ |Ax|)ds

≤θ1MA + θ2MB + θ3LT + θ3L

∫ T

0

|x(τ)|dτ + θ3L

∫ T

0

∫ τ

0

k1|x(s)|dsdτ

+
1

2
Lk2θ3T

2 +
LTα

Γ(α+ 1)
+

L

Γ(α)

∫ t

0

(t− s)α−1|x(s)|ds

+
L

Γ(α)

∫ t

0

(t− s)α−1

∫ s

0

k1|x(τ)|dτds+
Lk2

Γ(α)

∫ t

0

(t− s)α−1sds

≤θ1MA + θ2MB + θ3LT +
1

2
Lk2θ3T

2 +
LTα

Γ(α+ 1)
+
LTα+1k2

Γ(α+ 2)

+ (θ3LT +
1

2
θ3LT

2k1)‖x‖pc +
L

Γ(α)

∫ t

0

(t− s)α−1|x(s)|ds

+
Lk1

Γ(α)

∫ t

0

∫ s

0

(t− s)α−1|x(τ)|dτds

≤Λ1 + (θ3LT +
1

2
θ3LT

2k1)‖x‖pc +  Lρ‖x‖pc +
LTα+1k1

Γ(α+ 1)
‖x‖pc

≤Λ1 +
(
θ3LT (1 +

1

2
k1T ) + Lρ+

LTα+1k1

Γ(α+ 1)

)
‖x‖PC

≤Λ1 + Λ2‖x‖PC ,

which implies that

‖x‖pc ≤
Λ1

1− Λ2
.

This proves that the set E(F ) is bounded. Therefore, by Theorem 2.2, we deduce
that the problem (1.3) has at least one solution. The proof is completed.

In addition, let us introduce two conditions for impulsive fractional differential
equations (1.3) that will be useful in what follows:
(2′′) There exist a real valued function ν(t) ∈ C[0, T ] and a nondecreasing function
µ : [0,+∞)→ (0,+∞) such that

|f(t, x(t), Ax(t)| ≤ ν(t)
(
µ(|x|) + |Ax|

)
,

for any t ∈ J and x ∈ X.
(6) The following inequality

r′

ξ1 + ξ2
(
µ(r′) + k1Tr′ + k2T

) > 1,

has at least a positive solution r′ > 0, ξ1 = θ1MA + θ2MB , ξ2 = θ3T + Tα

Γ(α+1) and

Mν = sup
t∈J

ν(t).

Theorem 3.4. Assume that (1), (2′′) and (3)− (6) are satisfied. Then the problem
(1.3) has at least one solution.
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Proof. Consider the operator F : PC → PC defined as (3.1). It is easy to prove
that F is continuous and completely continuous. Let λ∗ ∈ (0, 1) and x = λ∗Fx,
then for each t ∈ J , we have

|x(t)| = |λ∗Fx(t)|

≤|λ0|+ |λ1t|+
j−1∑
k=1

|Ak(x(tk))|+
j−1∑
k=1

|Bk(x(tk))(t− tk)|

+
1

Γ(α)

∫ t

0

(t− s)α−1ν(s)
(
µ(|x|) + |Ax|

)
ds

≤θ1MA + θ2MB + θ3

∫ T

0

Mν

(
µ(‖x‖pc) + Tk1‖x‖pc + Tk2

)
dτ

+
1

Γ(α)

∫ t

0

(t− s)α−1Mν

(
µ(‖x‖pc) + Tk1‖x‖pc + Tk2

)
ds

≤θ1MA + θ2MB +Mν

(
µ(‖x‖pc) + Tk1‖x‖pc + Tk2

)(
θ3T +

Tα

Γ(α+ 1)

)
≤ξ1 + ξ2Mν

(
µ(‖x‖pc) + Tk1‖x‖pc + Tk2

)
.

Thus

‖x‖pc
ξ1 + ξ2Mν

(
µ(‖x‖pc) + k1T‖x‖pc + k2T

) ≤ 1.

By (6), there exists a positive constant r
′

such that ‖x‖PC 6= r
′
.

Let U = {x ∈ PC(J,X) : ‖x‖PC < r
′}. The operator F : U → PC(J,X) is

completely continuous. From the choice U , there is no x ∈ ∂U or λ∗ ∈ [0, 1] with
x = λ∗F (x). As a consequence of Theorem 2.3, we can obtain that the operator
F has a fixed point x ∈ U , which means that the problem (1.3) has at least one
solution. The proof is completed.

4. Application

In this section, we will give three examples to demonstrate the feasibility of the
obtained results.

Example 4.1. Let us consider the first fractional impulsive problem

cD
3
2x(t) =

x(t)

(t+ 4)2(1 + |x(t)|)
+

1

16

∫ t

0

e−(t−s)|x(s)|ds, t ∈ [0, 1]\{1

3
}

∆x(
1

3
) =

|x( 1
3 )|

4 + |x( 1
3 )|

∆x′(
1

3
) = 1 +

1

8
sin3(x(

1

3
)),

x(0) =
1

20

∫ 1

0

x(s)ds, x′(0) =
1

40

∫ 1

0

x′(s)ds.

(4.1)

Set

f(t, x(t),

∫ t

0

k(t, s, x(s))ds) =
x(t)

(t+ 4)2(1 + |x(t)|)
+

1

16

∫ t

0

e−(t−s)|x(s)|ds,
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Ak(x(t−k )) =
|x( 1

3 )|
4 + |x( 1

3 )|
,

Bk(x(t−k )) = 1 +
1

8
sin3(x(

1

3
)),

g(s) =
1

20
,

h(s) =
1

40
,

α1 =
1

2
,

δ2 = θ3η1T + Lf

( k1T
α+1

Γ(α+ 1)
+ ρ
)
≈ 0.124 < 1.

We have

|f(t, x(t), Ax(t))− f(t, y(t), Ay(t))|

≤ |x− y|
(t+ 4)2(1 + |x(t)|)(1 + |y(t)|)

+
1

16
|Ax(t)−Ay(t)|

≤ 1

16
|x− y|+ 1

16
|Ax−Ay|,

and

ω = θ1LA + θ2LB + θ3η1T + Lfρ+
Lfk1T

α+1

Γ(α+ 1)
≈ 0.775 < 1.

Hence, according to Theorem 3.1, we figure out that the fractional impulsive
problem (4.1) has a unique solution.

Example 4.2. Let us consider the second fractional impulsive problem

cD
3
2x(t) =

e−t|x(t)|
(9 + et)(2 + |x(t)|)

+
1

20

∫ t

0

e−(t−s)|x(s)|ds, t ∈ [0, 1]\{1

3
},

∆x(
1

3
) =

|x( 1
3 )|

3 + |x( 1
3 )|

∆x′(
1

3
) = 1 +

1

12
cos3(x(

1

3
)),

x(0) =
1

30

∫ 1

0

x(s)ds, x′(0) =
1

60

∫ 1

0

x′(s)ds.

(4.2)

Set

f(t, x(t),

∫ t

0

k(t, s, x(s))ds) =
e−t|x(t)|

(9 + et)(2 + |x(t)|)
+

1

20

∫ t

0

e−(t−s)|x(s)|ds,

and

Ax(t) =

∫ t

0

e−(t−s)|x(t)|ds, α1 =
1

2
.

Obviously, for each t ∈ [0, 1]\{ 1
3}, we have

|f(t, x(t), Ax(t))− f(t, y(t), Ay(t))| ≤ 1

20
|x− y|+ 1

20
|Ax−Ay|,
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δ2 = θ3η1T + Lf

( k1T
α+1

Γ(α+ 1)
+ ρ
)
≈ 0.092 < 1.

Hence, the conditions (1) − (5) are satisfied with θ1LA + θ2LB ≈ 0.601 < 1.
According to Theorem 3.2, the problem (4.2) has at least one solution.

Example 4.3. Let us consider the third fractional impulsive problem

cD
3
2x(t) =

e−t|x(t)|
(9 + et)

+
1

10

∫ t

0

e−(t−s)|x(s)|ds+
1

11
t, t ∈ [0, 1]\{1

3
},

∆x(
1

3
) =

|x( 1
3 )|

5 + |x( 1
3 )|

∆x′(
1

3
) = 1 +

1

15
cos3(x(

1

3
)),

x(0) =
1

8

∫ 1

0

x(s)sds, x′(0) =
1

12

∫ 1

0

x′(s)sds.

(4.3)

Let α1 = 1
2 and each t ∈ [0, 1]\{ 1

3}, we have

f(t, x(t),

∫ t

0

k(t, s, x(s))ds) =
e−t|x(t)|
(9 + et)

+
1

10

∫ t

0

e−(t−s)|x(s)|ds+
1

11
t

≤ 1

10
(1 + |x(t)|+ |Ax(t)|),

and Λ2 = θ3LT (1 + 1
2k1T ) + Lρ+ LTα+1k1

Γ(α+1) ≈ 0.246 < 1.

Hence, the conditions (1), (2′) and (3)−(5) are satisfied. Veiwing from Theorem
3.3, the problem (4.3) has at least one solution.
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