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Solitary Waves for the Generalized
Nonautonomous Dual-power Nonlinear

Schrödinger Equations with Variable Coe�cients⇤

Jin Gao1, Lijia Han2,† and Yehui Huang2

Abstract In this paper, we study the solitary waves for the generalized
nonautonomous dual-power nonlinear Schrödinger equations (DPNLS) with
variable coe�cients, which could be used to describe the saturation of the
nonlinear refractive index and the solitons in photovoltaic-photorefractive ma-
terials such as LiNbO3, as well as many nonlinear optics problems. We gen-
eralize an explicit similarity transformation, which maps generalized nonau-
tonomous DPNLS equations into ordinary autonomous DPNLS. Moreover,
solitary waves of two concrete equations with space-quadratic potential and
optical super-lattice potential are investigated.

Keywords Solitary waves, dual-power law, nonlinear Schrödinger equation,
variable coe�cients.
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1. Introduction

Phenomena in nonlinear optics and the Bose-Einstein condensates(BECs) are often
described by nonlinear Schrödinger equations(NLS) [4–6,9–11,14,16–18,20,23,28].
For example, the wave phenomena observed in fluid dynamics, plasma and elastic
media and optical fibers, etc. When we want to understand the physical mechanism
of phenomena, exact solutions for the nonlinear Schrödinger equations have to be
explored. Moreover, various types of the NLS with non-Kerr nonlinearities, which
contain Kerr law, power law, parabolic law, dual-power law as well as the logarithmic
law, and other varying potentials were studied by many researchers in [1–3, 7, 11–
13,15,19,22,24–27,30].

In this paper, we consider solitary waves of the 1D generalized nonautonomous
dual-power nonlinear Schrödinger equations with variable coe�cients(DPNLS)

iQ
t

+D(x, t)Q
xx

+ (lR
1

(x, t)|Q|n + kR

2

(x, t)|Q|2n)Q+ V (x, t)Q = 0, (1.1)

where Q(x, t) is the complex envelope of the propagating beam of the modes, x is
the propagation distance, and t is the retarded time, l, n, k are arbitrary constants,
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D(x, t) is the dispersion coe�cient, R
1

(x, t), R
2

(x, t) are the dual-power nonlinearity
coe�cients, respectively, and V (x, t) is the external potential. This model contains
many special types of the NLS with variable coe�cients such as the cubic NLS
equation, the cubic-quintic(CQ) NLS model, the generalized NLS model, etc [28].
Let n = 2, k = 0, l is still arbitrary constants, (1.1) collapses to the Kerr law
nonlinear Schrödinger equations with variable coe�cients

iQ
t

+D(x, t)Q
xx

+ lR

1

(x, t)|Q|2Q+ V (x, t)Q = 0, (1.2)

which relates to Eq.(1) of [9]. Let l = 0, n, k is still arbitrary constants, (1.1)
collapses to the power law nonlinear Schrödinger equations with variable coe�cients

iQ
t

+D(x, t)Q
xx

+ kR

2

(x, t)|Q|2nQ+ V (x, t)Q = 0, (1.3)

which relates to Eq.(1) of [19] and Eq.(2) of [24]. Let n = 2, l, k are still arbitrary
constants, (1.1) collapses to the parabolic law or CQ law nonlinear Schrödinger
equations with variable coe�cients

iQ
t

+D(x, t)Q
xx

+ (lR
1

(x, t)|Q|2 + kR

2

(x, t)|Q|4)Q+ V (x, t)Q = 0, (1.4)

which relates to Eq.(1) of [11] with �(x, t) = 0. If V (x, t) = 0,D(x, t),R
1

(x, t),R
2

(x, t)
are constant coe�cients, (1.1) become an autonomous DPNLS equations, which de-
scribes the saturation of the nonlinear refractive index, and also serves as a basic
model to describe the solitons in photovoltaic-photorefractive materials such as
LiNbO3 [2]. However, if V (x, t), D(x, t), R

1

(x, t), R
2

(x, t) are the functions of x and
t respectively, we can’t obtain solutions by using the traveling wave method of [27].
To deal with this problem, we hope to use the similarity transformation to obtain
solitary waves of (1.1).

In recent years, the similarity transformation has been used to obtain the so-
lution of the nonlinear Schrödinger equations. In [9, 11], the authors solve the
nonlinear Schrödinger equations with variable coe�cients by using the similarity
transformation. In [6–8], the authors also skillfully obtain solitary wave for the cou-
pled nonlinear Schrödinger equations with variable coe�cients by using the similar-
ity transformation. In our paper, we firstly deduce the generalized nonautonomous
DPNLS to the usual autonomous DPNLS equation (2.2) and obtain stationary soli-
tary waves of the usual autonomous DPNLS (2.2), then using Galilean invariance,
we can obtain moving solitary waves of (2.2). Finally using similarity transforma-
tion, we could obtain solitary waves of (1.1), so we only need to study solitary waves
of (2.2).

Equation (1) can be viewed as the evolution equation Q

t

= �H
�(iQ

⇤
)

, where H is
the Hamiltonian function

H = �
Z

+1

�1
[Q⇤

D(x, t)Q
xx

+ lR

1

(x, t)|Q|n+2 + kR

2

(x, t)|Q|2n+2 + V (x, t)|Q|2]dx.

Generally speaking, the Hamiltonian H in our model (1) is not conserved. It will be
seen that this situation would be changed by employing a similarity transformation
technique, and the Hamiltonian H can only be conserved under some special cases.

The organization of this paper is as follows: In Section 2, we map the gener-
alized nonautonomous DPNLS into the DPNLS by using the similarity transfor-
mation, then through some computation, we get stationary solitary waves of the
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nonautonomous DPNLS. In Section 3, we design two interesting external potentials
such as space-quadratic potential and optical super-lattice potential with DP non-
linearity, which have strong physical meanings in the nonlinear science. Moreover,
we obtain solitary waves for these two interesting nonautonomous DPNLS with
di↵erent values of k, l, n.

2. Solitary waves of nonautonomous NLSE

2.1. The similarity transformation

In this section, the generalized nonautonomous DPNLS (1.1) will be reduced into
the autonomous DPNLS by the similarity transformation. In other words, solitary
waves of the generalized nonautonomous DPNLS can be written as

Q(x, t) = q(X,T )p(x, t)ei�(x,t), (2.1)

where X = X(x, t), T = T (t), q, p, � are real smooth functions of x and t. Using
(2.1), we can reduce the generalized nonautonomous DPNLS (1.1) into the usual
autonomous DPNLS

iq
T

+ q

XX

+ (l|q|n + k|q|2n)q = 0, (2.2)

where q(X,T ) is solution of (2.2), l|q|n + k|q|2n is dual-power nonlinearity. In the
following computation process, if T is only expressed by t, we can eliminate q

XT

and obtain (2.2) by setting di↵erent function D,R

1

, R

2

, V . Take (2.1) into (1.1),
we obtain

iei�(pq
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T
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X
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+ pq
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xx

q � pq�

2
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+ ipq�
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) + (lR
1

|pqei�|n + kR

2

|pqei�|2n)pqei�
+ V qpe

i� = 0, (2.3)

where D = D(x, t), R
1

= R

1

(x, t), R
2

= R

2

(x, t),� = �(x, t) are arbitrary functions
of x and t. In order to mapping (1.1) to (2.2), let

D =
T

t

2X
x

2

, R

1

=
T

t

p

n

, R

2

=
T

t

p

2n

, (2.4)

then take (2.4) into (2.3), we obtain
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) +
V q

T

t

= 0, (2.5)

or they also can be written as

iq
T

+ q

XX

+ (l|q|n + k|q|2n)q + (ik
1

+ k

2

)q
X

2pX
x

2

T

t

+
(ik

3

+ k

4

)q

2pX2

x

T

t

= 0, (2.6)

where k

i

, i = 1, 2, 3, 4 are given by

k

1

= 2pX2

x

X

t

+ 2pX
x

�

x

T

t

, (2.7)
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k

2

= 2p
x

X

x

T

t

+ pX

xx

T

t

, (2.8)

k

3

= 2p
t

X

2

x

+ 2p
x

�

x

T

t

+ p�

xx

T

t

, (2.9)

k

4

= p

xx

T

t

� 2pX2

x

�

t

� p�

2

x

T

t

+ 2V pX

2

x

. (2.10)

(2.6) is very close to (2.2), so we need to do an assumption k

1

= k

2

= k

3

= k

4

= 0,
which is vital step to our transformation. From k

2

= 0, we obtain p

2

X

x

= f

2

1

(t).

From k

1

= 0, we obtain �
x

= �X

x

X

t

T

t

. From k

3

= 0, we obtain p

2

X

x

= 1

F

2
(x)

, where

F (x) is integral function about x. Furthermore, from the assumption, we obtain
the expression of p,X, 

p =

s
f

1

(t)

F (x)
, X =

Z
F (x)f

1

(t)dx+ f

2

(t), (2.11)

� =

Z
(
R
F (x)f

1

t

dx+ f

3

t

)F (x)f
1

(t)

T

t

dx+ f

3

(t), (2.12)

where f

1

(t), f
2

(t), f
3

(t) are integral function of t. Moreover, take the expression of
X, p, T in (2.11)-(2.12) into (2.4), we obtain

D =
T

t

2F 2

f

1

(t)2
R

1

= T

t

✓
F

f

1

(t)

◆n

2

, R

2

= T

t

✓
F

f

1

(t)

◆n

2

. (2.13)

Now the expression of the external potential V (x, t) is given by k

4

= 0

V =
8f2

1

(t)�
t

F

4(x) + 4T
t

�

2

x

F

2(x)� 3T
t

F

2

x

+ 2T
t

FF

xx

8F 4(x)f2

1

(t)
. (2.14)

From the equation (2.11)-(2.12), we find that the external potential V (x, t) isn’t
arbitrary function but relates to X, p, T , � which are decided by F (x), f

1

(t), f
2

(t),
f

3

(t), T .
Thus similarity transformations (2.1) indeed map the generalized nonautonomous

DPNLS to the nautonomous DPNLS systems, we only need to obtain solution of
the nautonomous DPNLS equation (2.2) in the next section. Equations (2.11)-
(2.12) and (2.14) can be seen as integrability condition on the generalized nonau-
tonomous DPNLS (1.1). External potential (2.14) and DP nonlinearity (2.13) have
di↵erent expression by choices of arbitrary functions F (x), f

1

(t)(F (x)f
1

(t) > 0),
f

2

(t), f
3

(t), T (t).

2.2. Solitary waves of the autonomous DPNLS

In this section, we get the stationary solitary waves of the autonomous DPNLS.
Using Galilean invariance, we obtain moving solitary waves of (2.2). The form of
the stationary solitary waves of (2.2) can be written as

q(X,T ) = u(X)eiµT , (2.15)

where µ is a positive propagation constant. u(X) obeys the nonlinear ordinary
di↵erential equation (ODE)

u

XX

� µu+ (lun + ku

2n)u = 0, (2.16)
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where u(X) is a localized real function. Multiplying (2.16) by u

X

and integrating
once, after simple computation, we obtain the explicit expression of u as

u(X) =


A

B + cosh(CX)

� 1
n

, (2.17)

A =
(2 + n)µB

l

, B = sign(l)


1 +

(n+ 2)2kµ

(n+ 1)l2

�� 1
2

, C = n

p
µ,

where (4µk+l

2) > 0 is the condition of existence of solitary wave [27]. Moreover, we
can obtain precisely the soliton solution of equation (1.1) from the soliton solution
of (2.17) and the transformation (2.1) and (2.15). The soliton solution of equation
(1.1) is

Q(x, t) =


A

B + cosh(CX)

� 1
n

p(x, t)ei(µT+�(x,t))

. (2.18)

In order to better illustrate the property of dynamical evolution of solution (2.18) of
(1.1), we set di↵erent functions F (x), f

1

(t), f
2

(t), f
3

(t), T (t), simultaneously T

1

=
0, T

2

= 0, T
3

= 0, c
0

= 1 and then obtain expressions of D,R

1

, R

2

, V , which must
satisfy our condition (2.11)-(2.12) and (2.14).

3. Designed external potentials

In this section, we will show two interesting nonautonomous DPNLS, where the
potential functions V in equations (1.1) are specially chosen by setting di↵erent
functions F (x), f

1

(t), f

2

(t), f

3

(t), T (t). In the following, we mainly introduce
nonautonomous DPNLS with space-quadratic potential and optical super-lattice
potential, simultaneously, the corresponding (DP) nonlinearity have significant ex-
pressions, which have important physical applicants in nonlinear optics and BEC
problems [6, 8, 9, 11].

3.1. Space-quadratic potential

Firstly, from equations (2.11)-(2.14), we set F = F

0

, f
1

= a

0

sech(t), f
2

= 1, f
3

= 1
where F

0

a

0

> 0. Then, the X, p,�, T are designed as

X = F

0

a

0

sech(t)x+ 1, T = a

1

tanh(t), (3.1)

p =

r
a

0

F

0

sech(t), � = �a

2

0

F

2

0

2a
1

tanh(t)x2 + 1, (3.2)

where a

1

is constant. From (3.1)-(3.2), we obtain nonautonomous DPNLS

iQ
t

+D(t)Q
xx

+ (lR
1

(t)|Q|n + kR

2

(t)|Q|2n)Q+ V (x, t)Q = 0, (3.3)

where
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F
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0
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0

F

0
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n

2
, (3.4)

R

2
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1

sech(t)2(
a

0

(F
0

cosh(t))
)�n

, V (x, t) = F

2

0

a

3

0

2 sech2(t)� 1

2a
1

x

2

, (3.5)
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(a) V(x,t) (b) l = 1, k = 0, n = 2

(c) l = �1, k = 1, n = 2 (d) l = �1, k = 1, n =

3
2

Figure 1. Solitary waves of the nonautonomous DPNLS.(a), Space-quadratic potential. (b), solitary

waves (3.6) with l = 1, k = 0, n = 2 and a0 = a1 = F0 = 1. (b), solitary waves (3.6) with l =

�1, k = 1, n = 2 and a0 = a1 = F0 = 1. (d), solitary waves (3.6) with l = �1, k = 1, n =

3
2 and

a0 = a1 = F0 = 1.

where D,R

1

, R

2

are functions only of t. V is space-quadratic potential which is
plotted in Fig.1–(a). The space-quadratic potential has been studied in [11] and is
significant in the (BECs) and nonlinear optics [3]. Equation (1.1) is the generalized
dual-power nonlinear Schrödinger equations DPNLS with time coe�cients. Solitary
waves (2.1) can be written as

Q(x, t) =
A

p
a

0

sech(t)p
F

0

(B + cosh(C(F
0

a

0

sech(t)x+ 1)))
e

i(µa1 tanh(t)� a

2
0F

2
0

2a1
tanh(t)x

2
+1)

.

(3.6)

Profiles of |Q|2 are plotted in Fig.1(b)-(d) with di↵erent l, n, k. Meanwhile, from

(3.5), the amplitude of solitary waves is
A

p
a0 sech(t)p
F0(B+1)

, depending on the changes

of the parameter f

1

(t). Therefore, we obtain solitary wave by choosing di↵erent
l, n, k, a

0

, a

1

.

3.2. Optical super-lattice potential

Firstly, from equations (2.11)-(2.14), we set F = 1

b0 cos!0x+1

, f

1

= 1+b

1

cos!
1

t, f

2

=
t, f

3

= t, where b

0

> 1, b
1

> 0, !
i

2 R, i = 0, 1. Then, p,X,�, T are designed as

X =
2b

1

cos(!
1

t) + 2

!

0

p
b

2

0

� 1
arctanh(

b

0

� 1p
b

2

0

� 1
tan(

!

0

2
x)) + t, T = t, (3.7)
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(a) V(x,t) (b) l = 1, k = 0, n = 2

(c) l = �1, k = 1, n = 2 (d) l = �1, k = 1, n =

3
2

Figure 2. Solitary waves of the nonautonomous DPNLS. (a), Fourier-synthesized lattice potential.(b),

solitary waves (3.14) with l = 1, k = 0, n = 2 and b0 = b1 =

1
2 ,!0 = !1 = 1. (c), solitary waves

(3.14) with l = �1, k = 1, n = 2 and b0 = b1 =

1
2 ,!0 = !1 = 1. (d), solitary waves (3.14) with

l = �1, k = 1, n =

3
2 and b0 = b1 =

1
2 ,!0 = !1 = 1.

p =
p

(1 + b

1

cos(!
1

t))(b
0

cos(!
0

x) + 1), (3.8)

� =
1

!

0

p
b

2

0

� 1

Z
[

1

b

0

cos(!
0

x) + 1
(�2b

1

!

1
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1

t) arctanh(
b

0
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b

2

0

� 1
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!

0

2
x))

+ !

0

q
b

2

0

� 1)(cos(!
1

t)b
1

+ 1)]dx+ t. (3.9)

The variable coe�cients in (1.1) are designed as

D =

✓
b

0

cos(!
0

x) + 1

b

1

cos(!
1

t) + 1

◆
2

, (3.10)

R

1
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1

cos(!
1

t))(b
0

cos(!
0
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n

2
, (3.11)

R

2

= (1 + b

1

cos(!
1

t))(b
0

cos(!
0

x) + 1)�n

, (3.12)

V = �

t

+
1

2
�

2

x

� b

2

0

!

2

0

sin2(!
0

)

8(1 + b

1

cos!
1

t)2
+

2b
0

!

2

0

cos(!
0

x)

8(1 + b

1

cos!
1

t)
, (3.13)

where D,R

1

, R

2

, V are functions about space x and time t, V is fourier-synthesized
lattice potential which is plotted in Fig.2–(a). The Fourier-synthesized lattice po-
tential resembles a periodic sequence of hills in the transverse and longitudinal
directions. In [10, 11, 21, 29], the authors consider the Fourier-synthesized lattice
potential which have important physics meanings. In our paper, we consider the
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more widely Fourier-synthesized lattice potential. (1.1) with the Fourier-synthesized
lattice potential (3.13) display nonuniform distribution both transverse and longi-
tudinal directions in the nonlinear science.

Solitary waves (2.1) can be written as

Q(x, t) =
A

p
(1 + b

1

cos(!
1

t))(b
0

cos(!
0

x) + 1)

B + cosh(C(2 b1 cos(!1t)+1

!0

p
b

2
0�1

arctanh(
q

b0�1

b0+1

tan(!0
2

x)) + t))
e

i(µt+�)

.

(3.14)

Profiles of |Q|2 are plotted in Fig.2(b)-(d) with di↵erent l, n, k. Meanwhile, from

(3.2), the amplitude of solitary waves is
A

p
(1+b1 cos(!1t))(b0 cos(!0x)+1)

B+1

, depending
on the parameters f

1

(t), F (x). Therefore, the amplitude will be a↵ected by all the
parameters l, n, k, b

0

, b

1

,!

0

,!

2

, which leads to the complex changes of the solitary
wave.

4. Conclusion

In this paper, we analytically obtain the solitary waves for the generalized dual-
power nonlinear Schrödinger equations (DPNLS) with variable coe�cients by using
the similarity transformation. We design two interesting external potential and DP
nonlinearity, and obtain solitary waves of corresponding nonautonomous DPNLS,
which have important physical meanings in the nonlinear science. The method
we used in this paper can be extended to obtain solitary waves of the higher-
dimensional generalized DPNLS and study their interaction properties. Stability of
solitary waves for (1.1) with time coe�cients will be further discussed in a separate
paper. In addition, Based on some novel physical phenomena in nonlinear optics
and the BECs, we predict that new exact solutions of the generalized DPNLS will
exist, such as rogue waves.
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