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Weak Solutions of a Reaction Diffusion System
with Superdiffusion and Its Optimal Control∗
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Abstract The existence and uniqueness of weak solutions to the 2-dimensional
reaction diffusion system with superdiffusion and the optimal control of such
model are investigated in this paper. Fractional function spaces, Galerkin ap-
proximation method and Gronwall inequality are used to obtain the existence
and uniqueness of weak solutions. On this basis, an optimal control prob-
lem of such superdiffusive system is further considered by using the minimal
sequence.
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1. Introduction

From a microscopic point of view, diffusion is usually described as the random mo-
tion of the individual particles among some media. Normal diffusion is often referred
to as the Gaussian process, also known as the Brownian motion (Wiener process).
In such process, the waiting time distribution and the jump length distribution
between successive two jumps of particles must have finite moments. Due to the
center limit theorem, it is characterized by the mean square displacement of a typ-
ical particle growing linearly with time < x2(t) >∝ t. Meanwhile, the anomalous
diffusion are frequently observed, for example, in Refs. [6, 7, 10, 16–18] and refer-
ences therein, in which the mean square displacement violates the linear relation
with time and universally obeys the power-law relation, scaled as < x2(t) >∝ tγ .
When 0 < γ < 1, it is called the subdiffusion, with the waiting time distribution
having infinite moments, in this case the particle will wait for long times before
next jumping, such phenomena could be found in porous media, polymers and gels,
etc. When γ = 1, it just corresponds to the normal diffusion. If 1 < γ < 2, it is
said to be the superdiffusion, which is featured as the limiting result of Lévy flight,
with the jumping length distribution having infinite moments. On such occasion,
the particle will execute very long jumps. Such process could occur in the precesses
of plasmas, turbulence, surface diffusion and motion of animals, etc.
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Since the anomalous diffusion has been theoretically speculated and experimen-
tally found in nature, models, such as continuous time random walk, transport
on fractals and fractional Brownian motion, have been established to manifest the
anomalous processes, and differential equations with fractional order derivatives are
presented to serve as a more appropriate mathematical tool to describe anomalous
diffusion and the transmission dynamics of complex systems [2]. As opposed to
the normal diffusion governed by the reaction-diffusion system with the standard
Laplace operator ∆ in it, the superdiffusion process is described by the diffusive
system with the Laplace operator replaced by the fractional order operator ∇α
(α = 2

γ ). So it is reasonable and necessary to take the behaviors of superdiffusive
systems into consideration.

In recent years, many researchers consider the following reaction diffusion system
with superdiffusion

∂u
∂t − k1∇αu = f(u, v), QT := (0, T ]× Ω,

∂v
∂t − k2∇αv = g(u, v), QT := (0, T ]× Ω,

u(x, y, 0) = u0, v(x, y, 0) = v0,

u(x, y, t) = 0, v(x, y, t) = 0,ΣT := [0, T ]× R2\Ω,

(1.1)

where k1 and k2 are diffusion coefficients, 1 < α ≤ 2 and Ω is a bounded open
domain in R2. Reaction terms f and g can be expressed by distinct coupling
reactions between u and v, which satisfy the Lipschitz conditions, i.e.,

|f(u1, v1)− f(u2, v2)| ≤ L||(u1, v1)− (u2, v2)||, (1.2)

|g(u1, v1)− g(u2, v2)| ≤ L||(u1, v1)− (u2, v2)||, (1.3)

for ∀(u1, v1), (u2, v2) ∈ R2, here L is a Lipschitz constant, with f(0, 0) = 0, g(0, 0) =
0. The fractional operator ∇α is a sequential Riesz fractional order operator in
space [15], and could be given in [24] as follows:

∇αu =
∂αu

∂|x|α
+

∂αu

∂|y|α
= − 1

2cos(πα/2)
[(xD

α
Lu+x D

α
Ru) + (yD

α
Lu+y D

α
Ru)] .

Here ∂αu
∂|x|α = − 1

2cos(πα/2) (xD
α
Lu+x D

α
Ru), xD

α
L and xD

α
R are defined, respectively

xD
α
Lu =

1

Γ(2− α)

∂2

∂x2

∫ x

a

(x− s)1−α
u(s, y, t)ds,

xD
α
Ru =

1

Γ(2− α)

∂2

∂x2

∫ b

x

(s− x)
1−α

u(s, y, t)ds,

where α ∈ (1, 2), Γ(·) is the Gamma function. The right Riemann-Liouville frac-
tional derivative ∂αu

∂|y|α can be defined similarly.

The existence and uniqueness of a solution are the basic theory of differential
equations. However, research on the existence and uniqueness of the variational
solution to the evolution equations with superdiffusion was delayed as a result of
difficulties caused by fractional operators. For example, the fractional operator is
non-local and the adjoint of a fractional differential operator is not the negative of
itself. But, Ervin and Roop [3,4,19,20] introduced fractional derivative spaces and
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fractional Sobolev spaces to overcome these difficulties. Therefore, some progress
has been made on the existence and uniqueness of solutions to the variational prob-
lem of fractional diffusion equations. In [1,11,25], the authors studied the existence
and uniqueness of solutions to the variational problems of one-/two- dimensional
Riesz fractional diffusion equations on bounded spaces by Galerkin approximation
method. Meanwhile, the nonlinear terms of those equations are f(t, x) or f(t, x, y).
As we know, the anomalous diffusion is almost universal [18] and anomalous interac-
tion within systems frequently occurs in the real world, such as in the predator-prey
model [12,13] and in inhibitor-activator system [14,27], and so on. Note that many
practical models take the form of (1). However, few results about the existence
and uniqueness of solutions to system (1.1) have been reported. That motivates us
to investigate system (1.1). To this end, fractional functional spaces and Galerkin
approximation method will be formulated to deal with the 2-dimensional Riesz frac-
tional operator. Therefore, it is desirable to study weak solution to the reaction
diffusion system with superdiffusion.

Control theory has been applied in some fields such as engineering, ecology and
computers for normal diffusion systems [5,9] in recently years. In addition, there are
some researches on feedback control and optimal control for subdiffusion systems
[21, 22, 26]. In [21], Wang etc investigated optimal feedback controls of a system
governed by semilinear fractional evolution equations via a compact semigroup in
Banach spaces. In [22], the authors were concerned with feedback control systems
governed by fractional impulsive evolution equations involving Riemann-Liouville
derivatives in reflexive Banach spaces. In [26], Zhou and Peng gave a sufficient
condition of optimal control pairs for the Navier-Stokes equations with the time-
fractional derivative. However, there is few relevant results as to the study on
the optimal control problem of superdiffusion systems. Hence, it motivates us to
investigate the optimal control of the following system.

∂u
∂t − k1∇αu = f(u, v), QT := (0, T ]× Ω,

∂v
∂t − k2∇αv = g(u, v) + ω, QT := (0, T ]× Ω,

u(x, y, 0) = u0, v(x, y, 0) = v0,

u(x, y, t) = 0, v(x, y, t) = 0,ΣT := [0, T ]× R2\Ω,

(1.4)

where ω ∈ L∞(QT ). The admissible control set is defined as

W = {ω(x, y, t) ∈ L∞(QT ),−1 ≤ ω(x, y, t) ≤ 1 a.e. in QT }.

Our ultimate goal is to find a control function ω in W such that

J(U, ω) = −
∫
QT

(l1u+ l2v)(x, y, t)dΩdt−
∫

Ω

(δ1u+ δ2v)(x, y, T )dΩ (1.5)

has a minimum value at the optimal pair (U∗, ω∗), where U∗ = (u∗, v∗) and li, δi, i =
1, 2 are all weights.

The remainder of this paper is organized as follows. Some function spaces and
lemmas are introduced in Section 2. Existence and uniqueness of the weak solutions
to system (1.1) will be investigated in Section 3. In Section 4, the existence of
optimal pair to control system (1.4) is investigated.
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2. Preliminaries

Some fractional derivative spaces, fractional Sobolev spaces and lemmas were in-
troduced by Ervin and Roop in R2 [3, 4]. Liu etc [23, 25] generalized these results
in Ω ⊂ R2. These spaces and lemmas will be recalled and used for later analysis
in this paper. Throughout the paper, C1, C2, C3, C4 and C are positive constants
independent of u and v.

Definition 2.1 (Definition 2.1, [25]). Assume α > 0, define the seminorm of left
fractional derivative space

|u|JαL (Ω) = (‖xDα
Lu‖2L2(Ω) + ‖yDα

Lu‖2L2(Ω))
1
2 ,

and the norm of left fractional derivative space ‖u‖JαL (Ω) = (‖u‖2L2(Ω) + |u|2JαL (Ω))
1
2 ,

here JαL (Ω) (JαL,0(Ω) as the closure of C∞(Ω) (C∞0 (Ω)) with respect to ‖ · ‖JαL (Ω),
and C∞0 (Ω) is the space of smooth functions with compact support in Ω.

The right fractional derivative space |u|JαR(Ω) and ‖u‖JαR(Ω) can be defined simi-
larly.

Definition 2.2 (Definition 2.3, [25]). Assume α > 0, α 6= n− 1
2 , n ∈ N , define the

seminorm of symmetric fractional derivative space

|u|JαS (Ω) = (|(xDα
Lu,xD

α
Ru)L2(Ω)|+ |(yDα

Lu,yD
α
Ru)L2(Ω)|)

1
2 ,

and the norm of symmetric fractional derivative space ‖u‖JαS (Ω) = (‖u‖2L2(Ω) +

|u|2JαS (Ω))
1
2 .

Definition 2.3 (Definition 2.4, [25]). Let α > 0, define the seminorm of fractional
Sobolve space

|u|Hα(Ω) = ‖|ω|αF(û)(ω)‖L2(R2)

and the norm of fractional Sobolve space ‖u‖Hα(Ω) = (‖u‖2L2(Ω) + |u|2Hα(Ω))
1
2 , here

F(û)(ω) is the Fourier transformation of function û, Hα(Ω) (Hα
0 (Ω)) as the closure

of C∞(Ω) (C∞0 (Ω)) with respect to ‖ · ‖Hα(Ω).

Lemma 2.1 (Fractional Poincaré-Friedrichs inequality, Lemma 2.5, [23]). If u ∈
Hα

0 (Ω) and 0 < s < α, then

‖u‖L2(Ω) ≤ C1‖xDs
Lu‖L2(Ω) ≤ C2‖xDα

Lu‖L2(Ω),

‖u‖L2(Ω) ≤ C3‖yDs
Lu‖L2(Ω) ≤ C4‖yDα

Lu‖L2(Ω),

Lemma 2.2 (Lemma 2.6, [25]). If α > 0, u ∈ JαL,0(Ω)
⋂
JαR,0(Ω), then

(xD
α
Lu(x, y),xD

α
Ru(x, y))L2(Ω) = cos(απ)‖−∞Dα

x û‖2L2(Ω) = cos(απ)‖xDα
+∞û‖2L2(Ω),

(yD
α
Lu(x, y),yD

α
Ru(x, y))L2(Ω) = cos(απ)‖−∞Dα

y û‖2L2(Ω) = cos(απ)‖yDα
+∞û‖2L2(Ω),

here û is the extension of u by zero outside Ω.

Lemma 2.3 (Lemma 2.7, [25]). Assume u ∈ JαL,0(Ω)
⋂
JαR,0(Ω)

⋂
Hα

0 (Ω), α 6=
n− 1

2 , n ∈ N , then

C1|u|Hα(Ω) ≤ max
{
|u|JαL (Ω), |u|JαR(Ω)

}
≤ C2|u|Hα(Ω).
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Remark 2.1. If α > 0, α 6= n − 1
2 , n ∈ N , the semi-norms and norms of spaces

JαL,0(Ω), JαR,0(Ω), JαS,0(Ω) and Hα
0 (Ω) are equivalent.

Lemma 2.4 (Lemma 2.8, [25]). Assume u, v ∈ Hα/2
0 (Ω)

⋂
Hα

0 (Ω)), α ∈ (1, 2), then

(xD
α
Lu, v) = (xD

α/2
L u,xD

α/2
R v), (xD

α
Ru, v) = (xD

α/2
R u,xD

α/2
L v).

3. Main results

In this section, we will consider the existence and uniqueness of weak solutions of
system (1.1).

The bilinear operator B(u, v) is defined as follows:

B(u, v) =− (
∂αu

∂|x|α
+

∂αu

∂|y|α
, v)

=
C

2cosαπ
[(xD

α/2
L u,xD

α/2
R v) + (xD

α/2
R u,xD

α/2
L v)

+ (yD
α/2
L u,y D

α/2
R v) + (yD

α/2
R u,y D

α/2
L v)].

From Theorem 1 in [24], we know that |B(u, v)| ≤ C‖u‖
H
α
2 (Ω)
‖v‖

H
α
2 (Ω)

, i.e.,

B(·, ·) is continuous on H
α
2

0 (Ω)×H
α
2

0 (Ω). B(u, u) ≥ C
|cosαπ|‖u‖

2

H
α
2 (Ω)

, i.e., B(·, ·) is

coercive over H
α
2

0 (Ω).

Theorem 3.1. Let Ω be a bounded domain in R2 with smooth boundary ∂Ω and
the conditions (1.2) and (1.3) are satisfied. If u0, v0 ∈ L2(Ω), then there exists a
unique weak solution (u, v) of system (1.1).

Proof. Assume that {φj}j≥1 is a complete orthogonal basis in V0 = H
α
2

0 (Ω) and
let V m = span{φ1, · · · , φm} be a finite dimensional subspace of H

α
2 (Ω).

The approximate problem will be considered. For each t ∈ [0, T ], we want to
find um, vm ∈ V m such that d

dt (u
m(t), φj) + k1B(um(t), φj) = (f, φj),

d
dt (v

m(t), φj) + k2B(vm(t), φj) = (g, φj),
(3.1)

with the initial conditions

um(0) = um0 = Pm(u0) =

m∑
j=1

ρjφj , v
m(0) = vm0 = Pm(v0) =

m∑
j=1

ςjφj ,

where Pm is the orthogonal projection in L2(Ω) on V m. The orthogonality of

{φj}j≥1 leads to ρj =
(u0,φj)
φj ·φj , and that of {φj}j≥1 leads to ςj =

(v0,φj)
φj ·φj , j =

1, 2, · · · ,m.

Since um, vm ∈ V m, let um =
m∑
j=1

dmj φj and vm =
m∑
j=1

cmj φj , {dmj }mj=1 and

{cmj }mj=1 are unknown and to be determined later.
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Substituting um, vm into (3.1), then linear ordinary differential equations of
system (3.1) will be given as follows:

d
dtd

m
j (φj , φj) + k1

m∑
i=1

B(φi, φj)d
m
i = (f, φj),

d
dtc

m
j (φj , φj) + k2

m∑
i=1

B(φi, φj)c
m
i = (g, φj), j = 1, 2, · · · ,m.

Then from the standard theory of ODEs, there exists a unique solution vector
{dmj }mj=1, {cmj }mj=1 ∈ H1(0, T ). As a result, um ∈ H1(0, T ;V0). Choose test function
um, vm in (3.1), respectively, then

(
d

dt
um, um) + k1B(um, um) = (f(um, vm), um), (3.2)

(
d

dt
vm, vm) + k2B(vm, vm) = (g(um, vm), vm). (3.3)

Since B(u, u) ≥ C
|cosαπ|‖u‖

2
Hα/2(Ω)

, from the Hölder inequality and the Cauchy

inequality, then

|(f(um, vm), um)| ≤
∫

Ω
|(um, vm)| |um| dΩ

≤ 1
2 (‖um‖2L2(Ω) + ‖vm‖2L2(Ω)) + 1

2 ‖u
m‖2L2(Ω) ,

|(g(um, vm), um)| ≤
∫

Ω
|(um, vm)| |um| dΩ

≤ 1
2 (‖um‖2L2(Ω) + ‖vm‖2L2(Ω)) + 1

2 ‖u
m‖2L2(Ω) .

Note that (umt , u
m) =

∫
Ω
umt u

mdΩ = 1
2
d
dt

∫
Ω

(um)2dΩ. Therefore, there exist some
constants C1, C2 > 0, which are independent of m, such that

d
dt ‖u

m‖2L2(Ω) + C ‖um‖2
H
α
2
0 (Ω)

≤ C1 ‖um‖2L2(Ω) + C2 ‖vm‖2L2(Ω) ,

d
dt ‖v

m‖2L2(Ω) + C̄ ‖vm‖2
H
α
2
0 (Ω)

≤ C1 ‖um‖2L2(Ω) + C2 ‖vm‖2L2(Ω) .
(3.4)

Adding inequality (3.4), then one has

d
dt (‖u

m‖2L2(Ω) + ‖vm‖2L2(Ω)) + C(‖um‖2
H
α
2
0 (Ω)

+ ‖vm‖2
H
α
2
0 (Ω)

)

≤ C3(‖um‖2L2(Ω) + ‖vm‖2L2(Ω)),
(3.5)

which implies that

‖um‖2L2(Ω) + ‖vm‖2L2(Ω) ≤ e
C3t(‖um(0)‖2L2(Ω) + ‖vm(0)‖2L2(Ω)). (3.6)

Since

‖um(0)‖2L2(Ω) =

∥∥∥∥∥
m∑
k=1

(u0, φk)φk

∥∥∥∥∥
2

L2(Ω)

≤ ‖u0‖2L2(Ω) ‖φk‖
4
L2(Ω) = ‖u0‖2L2(Ω)

and

‖vm(0)‖2L2(Ω) =

∥∥∥∥∥
m∑
k=1

(v0, φk)φk

∥∥∥∥∥
2

L2(Ω)

≤ ‖v0‖2L2(Ω) ‖φk‖
4
L2(Ω) = ‖v0‖2L2(Ω) ,
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there exists a constant C4 > 0, which does not depends on m, such that

max
0≤t≤T

(
‖um(t)‖L2(Ω) + ‖vm(t)‖L2(Ω)

)
≤ C4

(
‖u0‖2L2(Ω) + ‖v0‖2L2(Ω)

)
. (3.7)

From inequality (3.5), then it follows that

C

∫ T

0

(
‖um(t)‖2

H
α
2
0 (Ω)

+ ‖vm(t)‖2
H
α
2
0 (Ω)

)
dt

≤ C3

∫ T

0

(
‖um(t)‖2L2(Ω) + ‖vm(t)‖2L2(Ω)

)
dt+ ‖u0‖2L2(Ω) + ‖v0‖2L2(Ω) . (3.8)

From the above analysis, then we have

‖um(t)‖2
L2(0,T ;H

α
2
0 (Ω))

+ ‖vm(t)‖2
L2(0,T ;H

α
2
0 (Ω))

≤ C
(
‖u0‖2L2(Ω) + ‖v0‖2L2(Ω)

)
. (3.9)

By the similar way, one can obtain that∫ T

0

(‖du
m

dt
‖2
H−

α
2

+ ‖dv
m

dt
‖2
H−

α
2

)dt ≤ C(‖u0‖2L2(Ω) + ‖v0‖2L2(Ω)), (3.10)

where H−
α
2 is the dual space of H

α
2

0 . Based on the above analysis, the sequences

{um} and {vm} are uniformly bounded in L2(0, T ;H
α
2

0 (Ω)). Consequently, there
exist two subsequences {uml}∞l=1, {vml}∞l=1 and two functions u, v, which satisfy u,v

∈ L2(0, T ;H
α
2

0 (Ω)) and u′, v′ ∈ L2(0, T ;H
−α2
0 (Ω)), such that

uml ⇀ u and vml ⇀ v weakly in L2(0, T ;H
α
2

0 (Ω)), as l→∞, (3.11)

duml

dt
⇀ u′ and

dvml

dt
⇀ v′ weakly in L2(0, T ;H

−α2
0 (Ω)), as l→∞. (3.12)

For fixed N , choose two functions ũ, ṽ ∈ C1(0, T ;H
α
2

0 (Ω)), which have the fol-
lowing expressions

ũ(t) =

N∑
k=1

dk(t)φk, ṽ(t) =

N∑
k=1

ck(t)φk, (3.13)

where the functions {dk}Nk=1 and {ck}Nk=1 are given. Multiplying the first equation
of (3.1) by dk(t) and the second equation of (3.1) by ck(t), summing k from 1 to N
and integrating with respect to the time variable t, then one gets∫ t

0

(
(du

m(t)
dt , ũ) +B(um, ũ)

)
dt =

∫ t
0
(f(um, vm), ũ)dt,∫ t

0

(
(dv

m(t)
dt , ṽ) +B(vm, ṽ)

)
dt =

∫ t
0
(g(um, vm), ṽ)dt.

(3.14)

Let m = ml and l→∞, in view of formulas (3.11), (3.12), then (3.14) becomes∫ t
0

(
(du(t)
dt , ũ) +B(u, ũ)

)
dt =

∫ t
0
(f(u, v), ũ)dt,∫ t

0

(
(dv(t)
dt , ṽ) +B(v, ṽ)

)
dt =

∫ t
0
(g(u, v), ṽ)dt.

(3.15)
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Since the functions of (3.13) are dense in L2(0, T ;H
α
2

0 (Ω)), then the formula (3.15)

holds for any ũ, ṽ ∈ L2(0, T ;H
α
2

0 (Ω)).
Next, we need to prove u(0) = u0, v(0) = v0. Multiplying system (1.1) by

ψ(t) ∈ C1([0, T ];V0) with ψ(T ) = 0, then we could have

−
∫ T

0

(u, ψ′)dt+ k1

∫ T

0

B(u, ψ)dt =

∫ T

0

(f(u, v), ψ)dt+ (u(0), ψ(0)), (3.16)

−
∫ T

0

(v, ψ′)dt+ k2

∫ T

0

B(v, ψ)dt =

∫ T

0

(g(u, v), ψ)dt+ (v(0), ψ(0)). (3.17)

Through integration by parts for (3.14), then we have

−
∫ T

0

(um, ψ′)dt+ k1

∫ T

0

B(um, ψ)dt =

∫ T

0

(f(um, vm), ψ)dt+ (um(0), ψ(0)),

(3.18)

−
∫ T

0

(vm, ψ′)dt+ k2

∫ T

0

B(vm, ψ)dt =

∫ T

0

(g(um, vm), ψ)dt+ (vm(0), ψ(0)).

(3.19)

Since um(0) and vm(0) converge to u0 and v0 in L2(Ω), respectively, when m→∞,
then equations (3.18) and (3.19) become

−
∫ T

0

(u, ψ′)dt+ k1

∫ T

0

B(u, ψ)dt =

∫ T

0

(f(u, v), ψ)dt+ (u0, ψ(0)), (3.20)

−
∫ T

0

(v, ψ′)dt+ k2

∫ T

0

B(v, ψ)dt =

∫ T

0

(g(u, v), ψ)dt+ (v0, ψ(0)). (3.21)

By comparing (3.20) and (3.21) with (3.16) and (3.17), respectively, we get u(0) =
u0, v(0) = v0. Therefore, from the above analysis, the weak solution of problem
(1.1) exists in L2(0, T ;V0).

Finally, the uniqueness of solution of system (1.1) will be considered. Assume
that (u1(t), v1(t)) and (u2(t), v2(t)) are two solutions of system (1.1) in V0 for a.e.
t ∈ [0, T ]. We denote u(t) := u2(t)− u1(t),v(t) := v2(t)− v1(t), then

d

dt

∫
Ω

(|u(t)|2 + |v(t)|2)dΩ + k1

∫
Ω

|∇α
2 u|2dΩ + k2

∫
Ω

|∇α
2 v|2dΩ =∫

Ω

(f(u2, v2)− f(u1, v1))udΩ +

∫
Ω

(g(u2, v2)− g(u1, v1))udΩ. (3.22)

Using the Schwarz inequality and the Cauchy inequality together with assump-
tions (1.2)-(1.3), then we have∫

Ω

(f(u2, v2)−f(u1, v1))udΩ+

∫
Ω

(g(u2, v2)−g(u1, v1))vdΩ ≤ C
∫

Ω

(|u(t)|2+|v(t)|2)dΩ.

Hence,

d

dt
(‖u(t)‖2L2(Ω) + ‖v(t)‖2L2(Ω)) + C(‖u‖

H
α
2 (Ω)

+ ‖v‖
H
α
2 (Ω)

)

≤ C(‖u(t)‖2L2(Ω) + ‖v(t)‖2L2(Ω)). (3.23)
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Then

d

dt
(‖u(t)‖2L2(Ω) + ‖v(t)‖2L2(Ω)) ≤ C(‖u(t)‖2L2(Ω) + ‖v(t)‖2L2(Ω)). (3.24)

Since u(0) = u2(0) − u1(0) = 0 and v(0) = v2(0) − v1(0) = 0, then inequality
(3.24) implies that the solution is unique by the Gronwall inequality. This completes
the proof.

Remark 3.1. Theorem 2.2 in [8] is just the case α = 2 in our result.

Remark 3.2. It is found that ∂u
∂t ,

∂v
∂t ∈ L

2(0, T ;H−
α
2 (Ω)) from the proof of Theo-

rem 3.1, so we obtain that u, v ∈ H1(0, T ;H−
α
2 (Ω)), that means u, v ∈ L2(0, T ;H

α
2

0

(Ω)) ∩H1(0, T ;H−
α
2 (Ω)), that is to say, u, v ∈ C0(0, T ;L2(Ω)), see the Theorem 2

in [24].

4. Optimal control

In this section, the existence of the optimal pair to the control system (1.4) will be
investigated.

Theorem 4.1. Under the conditions of Theorem 3.1, the problem (1.5) admits an
optimal pair (U∗, ω∗) for the control system (1.4).

Proof. From the results of Theorem 3.1, it is found that J(U, ω) is bounded
below. Hence, there exists a minimizing sequence {ωm)}m≥1 and a constant ξ =
inf
ω∈W

J(U, ω) such that

ξ = lim
m→∞

J(Um, ωm) = inf
ω∈W

J(U, ω), (4.1)

here Um = (um, vm) is the solution of the control system (1.4). From Remark 3.2
and the proof of Theorem 3.1, one can claim that Um is uniformly bounded, i.e.,
there exists a positive constant, which is independent of m, such that

‖um‖L∞(QT ) + ‖um‖
L2(0,T ;H

α
2
0 )

+ ‖∂um
∂t
‖L∞(QT ) ≤ C, ∀ t ∈ [0, T ]. (4.2)

When um changes to vm, this inequality also holds. Moreover, from (4.2), one
obtains the equicontinuity of the family {um}m≥1 and {vm}m≥1. Hence, by Ascoli-
Arzela Theorem, there exist U∗ = (u∗, v∗) ∈ C0([0, T ];L2(Ω)) and a subsequence
of {um}m≥1 and {vm}m≥1, still denoted by itself, such that

lim
m→∞

sup
t∈[0,T ]

‖um − u∗‖L2(Ω) = 0, (4.3)

lim
m→∞

sup
t∈[0,T ]

‖vm − v∗‖L2(Ω) = 0. (4.4)

Therefore, one can prove that U∗ = (u∗, v∗) is an optimal pair of control system
(1.4) by letting m → ∞. Further, since ωm is bounded in L2(QT ), there exist a
function ω∗ and a subsequence of {ωm}m≥1, still denoted by itself, such that

ωm → ω∗, weakly in L2(QT ). (4.5)
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From the property of set W and (4.5), one has that ω∗ ∈W .
In terms of the analysis in Section 3, it is not difficult to get that

∂um
∂t

⇀
∂u

∂t
,
∂vm
∂t

⇀
∂v

∂t
, weakly in L2([0, T ];L2(Ω)),

um ⇀ u∗, vm ⇀ v∗,weakly in L2([0, T ];H
α
2

0 (Ω)),

f(um, vm) ⇀ f(u∗, v∗), g(um, vm) ⇀ g(u∗, v∗) weakly in L2([0, T ];L2(Ω)).

In the following, the convergence of bilinear operator B(u, v) will be considered.
From the continuity of B(u, v), ‖um‖2V and ‖vm‖2V are uniformly integrable, then∫ t

0

|B(um, vm)|V ′ds ≤C
∫ t

0

‖um‖V ‖vm‖V ds ≤C‖um‖L2([0,T ];V )‖vm‖L2([0,T ];V ) ≤ ∞,

(4.6)

which implies that there exists θ such that

B(um, vm) ⇀ θ weakly in L2([0, T ];V ′). (4.7)

Moreover,

|(B(um, vm)−B(u∗, v∗), ζ)| ≤ |(B(um − u∗, vm), ζ)|+ |(B(u∗, vm − v∗), ζ)|
≤ C(‖um − u∗‖V ‖vm‖V + ‖vm − v∗‖V ‖u∗‖V )‖ζ‖V ,

(4.8)

for ∀ ζ ∈ V , then

B(um, vm) ⇀ B(u∗, v∗) weakly in L2([0, T ];V ′). (4.9)

Therefore, θ = B(u∗, v∗) a.e. t ∈ [0, T ].
Let m→∞, the it is clear that (um, vm, ωm) = (u∗, v∗, ω∗) is a solution, i.e., it

is an optimal pair to the control system (1.4). The proof is completed.

5. Discussions

The existence, uniqueness and optimal control problem for the 2-dimensional reac-
tion diffusion system with superdiffusion are investigated in this paper. Galerkin
approximation method and Gronwall inequality are utilized to obtain the existence
and uniqueness of weak solutions. On this basis, the existence of optimal control
strategy is established by using the minimal sequence. For the control problem of
superdiffusive systems, there are still interesting topics to work on, such as nonlocal
controllability, first order necessary condition for optimal control, and so on. How-
ever, it is necessary to find out the the property of operator ∇α, the existence of
the adjoint operator of ∇α and the expression of the adjoint operator, if it exists.
These topics will be worthy of consideration in the future.
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