New Proofs of Monotonicity of Period Function for Cubic Elliptic Hamiltonian*

Chenguang Li^1 and Chengzhi $\mathrm{Li}^{2,\dagger}$

Abstract In [1] S.-N. Chow and J. A. Sanders proved that the period function is monotone for elliptic Hamiltonian of degree 3. In this paper we significantly simplify their proof, and give a new way to prove this fact, which may be used in other problems.

Keywords Periodic function, elliptic Hamiltonian, Abelian integrals.

MSC(2010) 34C07, 34C08, 37G15.

1. Introduction

Consider the cubic elliptic Hamiltonian function $H(x, y) = \frac{y^2}{2} + P_3(x)$, there P_3 is a polynomial of degree 3, the corresponding quadratic Hamiltonian system is

$$\frac{\mathrm{d}x}{\mathrm{d}t} = y, \quad \frac{\mathrm{d}y}{\mathrm{d}t} = -P_3'(x).$$

Suppose that the origin is a non-degenerate center, so we can write $P_3(x) = \frac{1}{2}x^2 - \frac{a}{3}x^3$, where $a \neq 0$. If we write the closed orbit, surrounding the origin, by

$$\gamma_h \subset H^{-1}(h) = \{(x, y) | H(x, y) = h\},\$$

then, from the first equation of the system, we can write the period function by

$$T(h) = \oint_{\gamma_h} \frac{1}{y} \,\mathrm{d}x,\tag{1.1}$$

where y = y(x,h) is defined by H(x,y) = h. Note that by the scaling $(x,y) \mapsto (\frac{x}{a}, \frac{y}{a})$, the period function does not change, hence without loss of generality we can suppose that γ_h is defined by

$$H(x,y) = \frac{y^2}{2} + A(x) = h, \quad A(x) = \frac{x^2}{2} - \frac{x^3}{3}, \tag{1.2}$$

and the corresponding Hamiltonian system is

$$\frac{dx}{dt} = y,$$
(1.3)
$$\frac{dy}{dt} = -x + x^2 = x(x-1).$$

[†]the corresponding author.

Email address: 826996526@qq.com(C.G. Li), licz@math.pku.edu.cn(C.Z. Li) ¹School of Mathematics and Statistics, Xi'an Jiaotong University, Xi'an,

Shaanxi 710049, China

 $^{^2}$ School of Mathematical Sciences, Peking University, Beijing 100871, China * The second author was supported by National Natural Science Foundation of

China (11771282).

The continuous family of ovals is $\{\gamma_h \subset H^{-1}(h), 0 < h < \frac{1}{6}\}, \gamma_h$ shrinks to the center at (x, y) = (0, 0) when $h \to 0^+$, and γ_h expand to the homoclinic loop Γ related to the saddle at (x, y) = (1, 0) when $h \to \frac{1}{6}^-$.

Theorem 1.1 (Theorem 3.8 of [1]). The period function T(h) is monotone for $0 < h < \frac{1}{6}$.

For more information about the study of period functions, see Section 2.4 of [2], for example.

2. A simple proof of Theorem 1.1

We first give a very simple proof of Theorem 1.1 by using Picard-Fuchs equation. Let

$$I_k(h) = \oint_{\gamma_h} x^k y \, \mathrm{d}x, \quad k = 0, 1, 2, \cdots,$$
 (2.1)

then by using $yy_h = 1$ and (2.1) we have

$$I'_k(h) = \oint_{\gamma_h} \frac{x^k}{y} \, \mathrm{d}x, \quad k = 0, 1, 2, \cdots.$$
 (2.2)

Lemma 2.1. The following equalities hold:

$$5I_0 = 6hI'_0 - I'_1,$$

$$7I_1 = I_0 + (6h - 1)I'_1,$$
(2.3)

where $I_k = I_k(h), I'_k = I'_k(h).$

Proof. From (2.1), (1.2) and (2.2) we have

$$I_k = \oint_{\gamma_h} \frac{x^k y^2}{y} \, \mathrm{d}x = \oint_{\gamma_h} \frac{x^k (2h - x^2 + \frac{2}{3}x^3)}{y} \, \mathrm{d}x = 2hI'_k - I'_{k+2} + \frac{2}{3}I'_{k+3}$$

On the other hand, by using integration by parts and the fact that $dy = \frac{x^2 - x}{y} dx$ we have

$$I_{k} = \oint_{\gamma_{h}} x^{k} y \mathrm{d}x = -\frac{1}{k+1} \oint_{\gamma_{h}} x^{k+1} \mathrm{d}y = \frac{1}{k+1} \oint_{\gamma_{h}} \frac{x^{k+1} (x-x^{2})}{y} \mathrm{d}x = \frac{I'_{k+2} - I'_{k+3}}{k+1}.$$
(2.4)

Eliminating I'_{k+3} from the above two equalities, we obtain

$$(2k+5)I_k = 6hI'_k - I'_{k+2}.$$

Taking k = 0, 1, we find

$$5I_0 = 6hI'_0 - I'_2,$$

$$7I_1 = 6hI'_1 - I'_3.$$
(2.5)

By integrating $(x - x^2)y \, dx = y^2 \, dy$ along γ_h we get $I_1(h) \equiv I_2(h)$, hence the first equation of (2.5) gives the first equality of (2.3). Taking k = 0 in (2.4) we have

 $I_0 = I'_2 - I'_3 = I'_1 - I'_3$, eliminating I'_3 from this equation and the second one of (2.5) we get the second equality of (2.3).

Now it is ready to prove Theorem 1.1.

Proof. Making one more derivative on the two equations of (2.3), we have

$$6hI_0'' - I_1'' = -I_0',$$

(1 - 6h)I_1'' = I_0' - I_1'. (2.6)

Multiplying the first equation of (2.6) by (1 - 6h), then add it to the second one, and finally using the first equation of (2.3), we get

$$6h(1-6h)I_0'' = 6hI_0' - I_1' = 5I_0.$$

Hence, by using (1.1) and (2.2) (k = 0) we obtain

$$T'(h) = I_0''(h) = \frac{5}{36h(\frac{1}{6} - h)} I_0(h) > 0, \quad 0 < h < \frac{1}{6}.$$

Note that the orientation of γ_h is clockwise, $I_0(h)$ is the area surrounded by γ_h , hence $I_0(h) > 0$ for $0 < h < \frac{1}{6}$.

3. A new way of the proof of Theorem 1.1

In this section we need the following two lemmas:

Lemma 3.1 (A simplified form of Lemma 4.1 of [3]). Let γ_h be an oval inside the level curve $\{\frac{y^2}{2} + A(x) = h\}$, and we consider a function F such that $\frac{F}{A'}$ is analytic at x = 0. Then, for any positive integer k,

$$\oint_{\gamma_h} F(x) y^{k-2} \mathrm{d}x = \oint_{\gamma_h} G(x) y^k \mathrm{d}x,$$

where $G = \frac{1}{k} \left(\frac{F}{A'}\right)'(x)$.

Lemma 3.2 (A simplified form of Theorem 1 of [4]). Let γ_h be an oval inside the level curve $\{\frac{y^2}{2} + A(x) = h\}$ for $h \in (c, d)$, where A(x) is analytic, satisfying A'(x)x > 0 (or < 0) for $x \in (\alpha, 0) \cup (0, \beta)$, where $A(\alpha) = A(\beta)$. Hence for each γ_h a unique function $\tilde{x} = \tilde{x}(x)$ can be defined by $A(\tilde{x}) = A(x)$ for $\alpha < x < 0 < \tilde{x} < \beta$. Condider a ratio of two Abelian integrals

$$P(h) = \frac{\oint_{\gamma_h} f(x) y \, dx}{\oint_{\gamma_h} y \, dx},\tag{3.1}$$

where f is differentiable. Define a function

$$\xi(x) = \left. \frac{f(x)A'(\tilde{x}) - f(\tilde{x})A'(x)}{A'(\tilde{x}) - A'(x)} \right|_{\tilde{x} = \tilde{x}(x)},\tag{3.2}$$

where $x \in (\alpha, 0)$. Then $\xi'(x) < 0 \ (> 0)$ for $x \in (\alpha, 0)$ implies $P'(h) > 0 \ (< 0)$ for $h \in (c, d)$.

As we mentioned in Section 1 that the continuous family $\{\gamma_h \subset H^{-1}(h), 0 < h < \frac{1}{6}\}$ is bounded by the center (0,0) and the homoclinic loop Γ related to the saddle (1,0). Since $H(x,0) - \frac{1}{6} = -\frac{1}{6}(x-1)^2(2x+1)$, for this family we have

$$-\frac{1}{2} < x < 0 < \tilde{x} < 1, \tag{3.3}$$

where $\tilde{x} = \tilde{x}(x)$ is the unique function satisfying (3.3) and

$$H(x,y) = H(\tilde{x},y), \quad \text{i. e.} \quad A(x) = A(\tilde{x}).$$
 (3.4)

By (1.1) and (1.2) we have for h > 0

$$T(h) = \oint_{\gamma_h} \frac{\mathrm{d}x}{y} = \frac{1}{h} \oint_{\gamma_h} (A(x) + \frac{y^2}{2}) \frac{\mathrm{d}x}{y},$$

hence

$$h T(h) = \frac{1}{2} \oint_{\gamma_h} y \, \mathrm{d}x + \oint_{\gamma_h} \frac{A(x)}{y} \, \mathrm{d}x.$$

By Lemma 3.1 (k = 1)

$$\oint_{\gamma_h} \frac{A(x)}{y} \, \mathrm{d}x = \oint_{\gamma_h} f(x)y \, \mathrm{d}x, \quad f(x) = \left(\frac{A(x)}{A'(x)}\right)' = \frac{2x^2 - 4x + 3}{6(1 - x)^2}$$

We obtain

$$hT(h) = \oint_{\gamma_h} \left(\frac{1}{2} + f(x)\right) y \, \mathrm{d}x = \frac{1}{2}I_0(h) + I_1(h) = I_0(h)\left(\frac{1}{2} + P(h)\right), \quad (3.5)$$

where $I_0(h) = \oint_{\gamma_h} y \, \mathrm{d}x$, $I_1(h) = \oint_{\gamma_h} f(x) y \, \mathrm{d}x$, $P(h) = \frac{I_1(h)}{I_0(h)}$.

Lemma 3.3. Let $x + \tilde{x} = u$, $x\tilde{x} = v$, where $\tilde{x} = \tilde{x}(x)$ is defined above. Then

(1) Along any
$$\gamma_h$$
 for $h \in (0, \frac{1}{6})$ we have $v = v(u) = u(u - \frac{3}{2})$

(2) $u \in (0, \frac{1}{2})$ and $u_x < 0$ for $x \in (-\frac{1}{2}, 0)$.

Proof. The statement (1) can be easily obtained by using $A(x) = A(\tilde{x})$ and $x < 0 < \tilde{x}$. Note $v = x\tilde{x} < 0$ for all possible x. When $x \sim 0$ we have $u \sim 0$, hence from statement (1) we have u > 0 for $x \sim 0$, this implies $0 < u < \frac{3}{2}$ for all possible x. Note that $A'(\tilde{x}) = \tilde{x} - (\tilde{x})^2 > 0$, and

$$u_x = 1 + \tilde{x}'(x) = 1 + \frac{A'(x)}{A'(\tilde{x})} = \frac{u - u^2 + 2v}{A'(\tilde{x})} = \frac{u(u - 2)}{A'(\tilde{x})} < 0.$$

This fact and (3.3) improve the estimation of $u \in (0, \frac{3}{2})$ to $u \in (0, \frac{1}{2})$.

Lemma 3.4. The following statements hold:

(1) $\lim_{h\to 0^+} P(h) = \frac{1}{2};$ (2) P'(h) > 0 for $h \in (0, \frac{1}{6}).$

Proof. The statement (1) can be easily obtained by using the mean-value theorem for integrations and the fact that $f(0) = \frac{1}{2}$. To prove Statement (2) we use Lemma 3.2. By using formula (3.2) and Lemma 3.3 (1) we can change $\{x, \tilde{x}\}$ to $\{u, v\}$, then use v = v(u). Computations give

$$\eta(u) = \xi(x(u)) = \frac{4u^4 - 16u^3 + 19u^2 - 9u + 3}{3(u-1)(u-2)(2u-1)^2},$$

hence

$$\eta'(u) = \frac{8u^4 - 24u^3 + 12u^2 + 20u - 15}{3(u-1)^2(u-2)^2(2u-1)^3} > 0, \quad u \in \left(0, \frac{1}{2}\right).$$

By this estimation and Lemma 3.3(2) we have $\xi'(x) = \eta'(u)u_x < 0$, hence by Lemma 3.2 we finally obtain P'(h) > 0 for $h \in (0, \frac{1}{6})$.

Now it is ready to prove Theorem 1.1.

Proof. Making derivative on both sides of (3.5) and using $I'_0(h) = T(h)$ we have

$$h T'(h) = T(h) \left(P(h) - \frac{1}{2} \right) + I_0(h) P'(h).$$

From this equality and using Lemma 3.4 we immediately get T'(h) > 0 for $h \in (0, \frac{1}{6})$, since T(h) > 0 and $I_0(h) > 0$.

References

- S.N. Chow and J.A. Sanders, On the number of critical points of the period, J. Diff. Eqns., 1986, 64, 51–66.
- [2] C. Christopher and C. Li, *Limit Cycles of Differential Equations*, Birkhäuser Verlag, Basel-Boston-Berlin, 2007.
- [3] M. Grau, F. Mañosas and J. Villadelprat, A Chebyshev criterion for Abelian integrals, Trans. A. M. S., 2011, 363, 109–129.
- [4] C. Li and Z. Zhang, A criterion for determining the monotonicity of ratio of two Abelian integrals, J. Diff. Eqns., 1996, 124, 407–424.