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Traveling Wave Solutions of a Fourth-order
Generalized Dispersive and Dissipative Equation*

Xiaofeng Li1,2, Fanchao Meng1 and Zengji Du2,†

Abstract In this paper, we consider a generalized nonlinear forth-order dis-
persive-dissipative equation with a nonlocal strong generic delay kernel, which
describes wave propagation in generalized nonlinear dispersive, dissipation and
quadratic diffusion media. By using geometric singular perturbation theory
and Fredholm alternative theory, we get a locally invariant manifold and use
fast-slow system to construct the desire heteroclinic orbit. Furthermore we
construct a traveling wave solution for the nonlinear equation. Some known
results in the literature are generalized.
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1. Introduction

In this paper, we are concerned with the existence of traveling wave solution for the
generalized fourth-order dispersive and dissipative equation

∂u

∂t
+ αun(f ∗ u)

∂u

∂x
+ β

∂2u

∂x2
+ γ

∂3u

∂x3
+ s(

∂

∂x
(u
∂u

∂x
)) + δ

∂4u

∂x4
= 0, (1.1)

where n ≥ 1, α, β, γ, s and δ are constant coefficients. u is a function of space x
and time t, α is the nonlinear convective coefficient, β is the diffusion coefficient,
γ is the dispersion coefficient, s is the backward quadratic diffusion coefficient and

δ is the stable coefficient. Here, partial derivatives
∂u

∂x
and

∂u

∂t
indicate the corre-

sponding partial differentiation with respect to spatial variable x and time variable

t, respectively.
∂3u

∂x3
,
∂

∂x
(u
∂u

∂x
) and

∂4u

∂x4
represent to dispersion effect term, back-

ward quadratic diffusion term and the stable term, respectively. We take f ∗ u to
be the following spatial-temporal convolution

(f ∗ u)(x, t) =

∫ t

−∞

∫ +∞

−∞
f(x− y, t− s)u(y, s)dyds,
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here the function f satisfies the normalization conditions

f(t) ≥ 0 for t ≥ 0, and

∫ t

−∞

∫ −∞
+∞

f(x, t)dxdt = 1,

such that the kernel f doesn’t affect the spatial-temporal uniform steady states.
The Eq.(1.1) describes wave propagation in generalized nonlinear dispersive,

dissipation and quadratic diffusion media. It can be discovered in the context of
Benard-Marangoni convection in shallow layers, thin liquid films, and so on [7].
Eq.(1.1) has many applications, for example, is governing evolution equation for
the propagation of weak nonlinear waves in fluid-filled thick viscoelastic tubes for
arterial blood flow. We point out that, if the parameters are chosen as different
values, some famous equations can be derived from Eq.(1.1). For instance, if n = 0,
f ∗ u = u, β = s = δ = 0, Eq.(1.1) becomes the Korteweg-de Vries (KdV, for short)
equation [8]. As is known to that the KdV equation has been widely studied due
to its significance in stratified internal wave, physical contexts, plasma physics and
its applications in weakly nonlinear dispersive physical system [2,5,9,15,16]. When
n = 0, f ∗ u = u, s = ε = 0, Eq.(1.1) becomes the Burgers-KdV equation, which
was first proposed the standard form by Feudel and Steudel [4] when they proved
that the equation has no prolongation structure.

Mansour [11] considered a fourth order Burgers-KdV equation and proved the
existence of traveling wave solutions. By using the dynamical systems theory, es-
pecially based upon the geometric singular perturbation theory and invariant man-
ifold theorem, Mansour [12] constructed the traveling wave solutions of a nonlinear
dispersive-dissipative equation. In many cases, differential equations with time de-
lay can reflect the real natural phenomena. The delay is an significant factor that
can not be ignored, which can make the steady state of the system change. Shang
and Du [14] discussed the existence of traveling wave solutions to a nonlinear dis-
persive and dissipative equation

∂u

∂t
+ αun(f ∗ u)

∂u

∂x
+ β

∂2u

∂x2
+ γ

∂3u

∂x3
+ s

∂

∂x
(u
∂u

∂x
) = 0, (1.2)

where n ≥ 1, α, β, γ, and s are constant coefficients.
If the time delay disappears in Eq.(1.1), i.e., f ∗ u = u, Mansour [12] found the

existence of homolinic orbit of Eq.(1.1) by applying the method of the Melnikov
function. We will get the existence of the heteroclinic orbit by using the invariant
manifold on the phase plane. In the later part of the article, we also discuss the
Eq.(1.1) with spatial-temporal delay, which describes the state that the system
variables depend on the system at a certain time or in a certain historical period.
If we choose δ = 0, Eq.(1.1) becomes the Eq.(1.2) discussed by Shang and Du [14].
Our results agree well with the corresponding ones in [14]. In the case that Eq.(1.1)
without delay, Shang and Du [14] obtained the existence of the heteroclnic orbit
by constructing the triangular invariant set. However, our approach overcomes
the difficulties that Eq.(1.1) adds the fourth order term by constructing the three
pyramid invariant to get the heteroclinic orbit.

The remaining part of this article is organized as following. In section 2, we
will construct the existence of traveling wave solutions of Eq.(1.1) without delay.
In section 3, we will investigate Eq.(1.1) with a nonlocal delay. Using geometric
singular perturbation theory [3,6] and Fredholm theorem, we get a locally invariant
manifold and seek the heteroclinic orbit in this slow manifold. Furthermore we
construct a traveling wave solution of Eq.(1.1). In section 4, we give a conclusion.
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2. The existence of traveling waves for Eq.(1.1) with-
out delay

In this section, we establish the existence result of traveling waves solutions for the
Eq.(1.1) without delay, that is,

ut + αun+1ux + βuxx + γuxxx + s(uux)x + δuxxxx = 0, (2.1)

discussed by the Mansour [12]. He established the existence of the homoclinic orbit
to the equilibrium (0, 0) by using the Melnikov function method. We will construct
the three pyramid invariant to obtain the heteroclinic orbit connecting two equilibria

E1(0, 0, 0) and E2(
n+1

√
−(n+ 2)c

α
, 0, 0).

In traveling wave transform, let u(x, t) = φ(z), z = x+ ct, then Eq.(2.1) can be
reduced to the following traveling wave equation

cφ′ + αφn+1φ′ + βφ′′ + γφ′′′ + s(φφ′)′ + δφ′′′′ = 0, (2.2)

where ′ =
d

dz
. By integrating once, without loss of generality, we set the integration

constant equal to zero, then Eq.(2.3) becomes

cφ+
αφn+2

n+ 2
+ βφ′ + γφ′′ + sφφ′ + δφ′′′ = 0. (2.3)

Eq.(2.3) can be rewrite as a three dimensional system consisting three first-order
equations 

φ′ = ϕ1,

ϕ′1 = ϕ2,

ϕ′2 = 1
δ (−cφ− α

n+2φ
n+2 − βϕ1 − γϕ2 − sφϕ1),

(2.4)

which has two equilibria E1(0, 0, 0) and E2(
n+1

√
−(n+ 2)c

α
, 0, 0).

Theorem 2.1. If α < 0, s < 0 and (β+1)2−4δc > 0 holds, then there exists a het-

eroclinic orbit connecting the critical point E1(0, 0, 0) and E2(
n+1

√
−(n+ 2)c

α
, 0, 0)

in the (φ, ϕ1, ϕ2) phase plane of system (2.4).

Proof. By linearizing (2.4), we prove that the equilibrium E1 is a saddle and the
equilibrium E2 is a unstable node. In order to show the existence of heteroclinic
orbit connecting the two equilibria E1 and E2, we will prove that for a suitable
value λ > 0, the three pyramid

M = {(φ, ϕ1, ϕ2) : 0 ≤ φ ≤ n+1

√
−(n+ 2)c

α
, 0 ≤ ϕ1 ≤ λφ, 0 ≤ ϕ2 ≤ λφ},

is negative invariant (See the Figure 1).
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Figure 1. The three pyramid is negative invariant.

Let f is a vector which is defined by the right sides of system (2.4) and n is a
normal vector on the surface of M . So we just prove f · n ≤ 0 on the four faces of
the three pyramid and obtain

f · −→n =


ϕ1

ϕ2

1

δ
(−cφ− α

n+ 2
φn+2 − βϕ1 − ϕ2 − sφϕ1)


(
λ, −1, −1

) ∣∣
(φ,λφ,λφ)

= λϕ1 − ϕ2 +
1

δ
(cφ+

α

n+ 2
φn+2 + βϕ1 + ϕ2 + sφϕ1)

∣∣
(φ,λφ,λφ)

= λ2φ− λφ+
1

δ
(cφ+

α

n+ 2
φn+2 + βλφ+ λφ+ sλφ2)

= λ2φ+ (−φ+
βφ

δ
+
φ

δ
+
sφ2

δ
)λ+

1

δ
(cφ+

α

n+ 2
φn+2)

≤ λ2φ+ (−φ+
βφ

δ
+
φ

δ
)λ+

1

δ
cφ

≤ (λ2 + (
β

δ
+

1

δ
)λ+

c

δ
)φ.

(2.5)
According to the condition (β + 1)2 − 4δc > 0, we show

λ2 + (
β

δ
+

1

δ
)λ+

c

δ
= 0

has two real positive roots with 0 < λ1 ≤ λ2. Under the conditions 0 < λ1 ≤ λ ≤ λ2,
δ > 0 and (β + 1) < 0, one has

f · −→n ≤ (λ2 + (
β

δ
+

1

δ
)λ+

c

δ
)φ ≤ 0.

Hence, one branch of the unstable manifold of E2 always stay in the set M and con-
nect the equilibrium point E1. Then we get the existence of the desired heteroclinic
orbit.



Traveling waves of a dispersive and dissipative equation 311

3. The existence of traveling wave solutions to Eq.(1.1)
with a nonlocal kernel

In this section, we will prove the existence of traveling waves for Eq.(1.1) with a
nonlocal strong generic delay kernel [1, 10,13,14]

f(x, t) =
1√
4πt

e−
x2

4t
t

τ2
e−

t
τ , (3.1)

where the τ > 0 represents the average time delay.
We define that

v(x, t) = (f ∗ u)(x, t) =

∫ t

−∞

∫ +∞

−∞

1√
4π(t− s)

e−
(x−y)2
4(t−s)

t− s
τ2

e−
t−s
τ u(y, s)dyds,

(3.2)
then we get through the directly computation and obtain

∂v

∂t
− ∂2v

∂x2
=

1

τ
W − 1

τ
v, (3.3)

where

W (x, t) =

∫ t

−∞

∫ +∞

−∞

1√
4π(t− s)

e−
(x−y)2
4(t−s)

1

τ
e−

t−s
τ u(y, s)dyds. (3.4)

Then we can obtain ∂W

∂t
=
∂2W

∂x2
+

1

τ
(u−W ). (3.5)

Substituting (3.3) into (3.5), we obtain

∂2v

∂t2
= 2

∂3v

∂t∂x2
− ∂4v

∂x4
+

2

τ
(
∂2v

∂x2
− ∂v

∂t
) +

1

τ2
(u− v). (3.6)

Thus the equation (1.1) is reformulated as the following system{
ut + αunvux + βuxx + γuxxx + s(uux)x + δuxxxx = 0,

vtt = 2vtxx − vxxxx +
2

τ
(vxx − vt) +

1

τ2
(u− v).

(3.7)

Now the parameter τ is considered as the delay in the original system. Seeking
the existence of traveling waves in Eq.(1.1) is changed into finding the existence of
traveling waves in system (3.7).

However,we note that the Eq.(1.1) is an infinite dimensional dynamic system and
the phase space for the traveling wave equations of system (3.7) is finite dimensional.
So we tackle the traveling wave for the system (3.7) by employing the geometric
singular perturbation theory. Since the delay τ → 0, v(x, t) → u(x, t). Then the
system (3.7) becomes to the nonlocal model. The proof have already discussed in
section 2, so we omit it here.

Let u(x, t) = φ(z), v(x, t) = ϕ(z), z = x+ ct. Since delay τ is not zero, then φ,
ϕ satisfy the traveling wave system cφ′ + αφnϕφ′ + βφ′′ + γφ′′′ + s(φφ′)′ + δφ′′′′ = 0,

ϕ4 − 2cϕ′′′ + c2ϕ′′ − 2

τ
(ϕ′′ − cϕ′)− 1

τ2
(φ− ϕ) = 0,

(3.8)

with the bounding value conditions satisfying

lim
z→−∞

(φ(z), ϕ(z)) = (0, 0),
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lim
z→+∞

(φ(z), ϕ(z)) =

(
n+1

√
−(n+ 2)c

α
,
n+1

√
−(n+ 2)c

α

)
.

Integrating the first equation of the system (3.8), we obtain the differential systems


cφ+

α

n+ 2
φn+1ϕ+ βφ′ + γφ′′ + sφφ′ + δφ′′′ = 0,

ϕ′′′′ − 2cϕ′′′ + c2ϕ′′ − 2

τ
(ϕ′′ − cϕ′)− 1

τ2
(φ− ϕ) = 0.

(3.9)

Now we define some new variables φ′ = φ1, ϕ′ = ϕ1, ϕ′1 = ϕ2, ϕ′2 = ϕ3, then system
(3.9) can be transformed into a seven-dimensional system



φ′ = φ1,

φ′1 = φ2,

φ′2 =
1

δ
(−cφ− α

n+ 2
φn+1ϕ− βφ1 − γφ2 − sφφ1),

ϕ′ = ϕ1,

ϕ′1 = ϕ2,

ϕ′2 = ϕ3,

ϕ′3 = 2cϕ3 − c2ϕ2 +
2

τ
(ϕ2 − cϕ1) +

1

τ2
(φ− ϕ).

(3.10)

We introduce the small parameter ε =
√
τ and redefine new variables

u1 = φ, u2 = φ1, u3 = φ2, v1 = ϕ, v2 = εϕ1, v3 = ε2ϕ2, v4 = ε3ϕ3,

thus the system (3.10) can be changed into a standard singularly perturbed problem



u′1 = u2,

u′2 = u3,

u′3 =
1

δ
(−cu1 −

α

n+ 2
un+1
1 v1 − βu2 − γu3 − su1u2),

εv′1 = v2,

εv′2 = v3,

εv′3 = v4,

εv′4 = 2cεv4 − c2ε2v3 + 2(v3 − cεv2) + u1 − v1.

(3.11)

If we choose ε = 0, system (3.11) could be reduced into the third order differential
equations (2.4). According to Theorem 2.1, we know that system (3.11) with ε = 0
has traveling wave solutions. When ε > 0 is a sufficiently small parameter, then it
isn’t a dynamic in R7. This problem may be solved by using the transformation
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z = εη, and the system (3.11) translates into the following system

u̇1 = εu2,

u̇2 = εu3,

u̇3 =
ε

δ
(−cu1 −

α

n+ 2
un+1
1 v1 − βu2 − γu3 − su1u2),

v̇1 = v2,

v̇2 = v3,

v̇3 = v4,

v̇4 = 2cεv4 − c2ε2v3 + 2(v3 − cεv2) + u1 − v1,

(3.12)

where dots denote differentiation with respect to η. These systems (3.11) and (3.12)
are equivalent when ε > 0 [6]. The different time scales cause two different limiting
systems. Let ε = 0, then the flow of the slow system (3.11) is confined to the set

M0 = {(u1, u2, u3, v1, v2, v3, v4) ∈ R7 : v2 = 0, v3 = 0, v4 = 0 and u1 = v1},

which is a three-dimensional invariant manifold of (3.11) when ε = 0 and its dynam-
ics are just determined by the first three equations only. Generally, system (3.11)
is known as the slow system, since the time scale z is slow and the system (3.12) is
called the fast system, since the time scale η is fast. M0 is slow manifold.

If the manifold M0 is normally hyperbolic, for efficiently small ε > 0, by apply-
ing the geometric singular perturbation theory of Fenichel [3], we obtain a three-
dimensional invariant manifold Mε of system (3.11) when τ > 0, which is close to
M0 and deduces the existence of the slow manifold as well as the stable and unstable
foliations. Therefore, we just need to research the flow of the slow system (3.11)
restricted to Mε and show that the three-dimensional reduced the existence of a
heteroclinic orbit.

We call that M0 is said to be a normally hyperbolic if the linearization of the
fast system, restricted to M0, has exactly dimM0 eigenvalues on the imaginary axis
R(λ) = 0 [3, 6, 13]. It is easy to see that he linearized matrix of system (3.12)
restricted to M0 is 

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 1 0

0 0 0 0 0 0 1

1 0 0 −1 0 2 0


.

The matrix has seven eigenvalues: 0, 0, 0, 1, 1, −1, −1, we have the correct num-
ber of eigenvalues on the imaginary axis and the other eigenvalues are hyperbolic.
According to definition, we could obtain the invariant manifold M0 is normally
hyperbolic.

We need the following results on the invariant manifolds, which is established
by Fenichel [3]. We use a form of this theorem due to Jones [6].



314 X. Li, F. Meng & Z. Du

Lemma 3.1 (geometric singular perturbation theorem, [6]). For the system x′(t) = f(x, y, ε),

y′(t) = εg(x, y, ε),
(3.13)

where ′ =
d

dt
, x ∈ Rn, y ∈ Rl with n, l ≥ 1 in general and ε is a real parameter. f ,

g are C∞ on the set V × I where V ∈ Rn+l and I is an open interval containing 0.
If when ε = 0, the system has a compact, normally hyperbolic manifold of critical
points M0, which is contained in the set {f(x, y, 0) = 0}. Then for any 0 < r < +∞,
if ε > 0, but sufficiently small, there exists a manifold Mε, satisfying

(I) which is locally invariant under the flow of (3.13);
(II) which is Cr in x, y and ε;
(III) Mε = {(x, y) : x = hε(y)} for some Cr function hε(y) and y in some

compact K;
(IV) there exist locally invariant stable and unstable manifolds W s(Mε) and

Wu(Mε) that lie within o(ε), and are diffeomorphic to W s(M0) and Wu(M0).

From geometric singular perturbation theorem, for sufficiently small ε > 0, we
known that there exists a sub-manifold Mε of the perturbed system (3.11), which
can be written as

Mε = {(u1, u2, u3, v1, v2, v3, v4) ∈ R7 : v1 = g(u1, u2, u3, ε)+u1, v2 = h(u1, u2, u3, ε),

v3 = k(u1, u2, u3, ε), v4 = r(u1, u2, u3, ε)},
where g, h, k and r depend smoothly on ε, are to be determined and satisfy

g(u1, u2, u3, 0) = h(u1, u2, u3, 0) = k(u1, u2, u3, 0) = r(u1, u2, u3, 0) = 0. (3.14)

Since the functions g, h, k and r are zero, when ε = 0, thus these functions could
be expanded into the form of a Taylor series about the delay ε

g(u1, u2, u3, ε) = εg1 + ε2g2 + · · · ,

h(u1, u2, u3, ε) = εh1 + ε2h2 + · · · ,

k(u1, u2, u3, ε) = εk1 + ε2k2 + · · · ,

r(u1, u2, u3, ε) = εr1 + ε2r2 + · · · .

(3.15)

Substituting v1 = g + u1, v2 = h, v3 = k and v4 = r into the slow system (3.11),
we obtain

ε[
∂g

∂u1
u2+

∂g

∂u2
u3+

∂g

∂u3

1

δ
(−cu1 −

α

n+ 2
un+1
1 (g + u1)−βu2−γu3 − su1u2)+u2]=h,

ε[
∂h

∂u1
u2+

∂h

∂u2
u3+

∂h

∂u3

1

δ
(−cu1 −

α

n+ 2
un+1
1 (g + u1)−βu2−γu3 − su1u2)] = k,

ε[
∂k

∂u1
u2+

∂k

∂u2
u3+

∂k

∂u3

1

δ
(−cu1 −

α

n+ 2
un+1
1 (g + u1)−βu2−γu3 − su1u2)] = r,

ε[
∂r

∂u1
u2+

∂r

∂u2
u3+

∂r

∂u3

1

δ
(−cu1 −

α

n+ 2
un+1
1 (g + u1)−βu2−γu3 − su1u2)]

= 2cεr − c2ε2k + 2(k − cεh)− g.
(3.16)
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Substituting (3.15) into (3.16), comparing coefficients of the parameter ε and ε2,
one has

g1(u1, u2, u3) = 0, g2(u1, u2, u3) =
1

δ
(−cu1 −

α

n+ 2
un+2
1 − βu2 − γu3 − su1u2),

h1(u1, u2, u3) = u2, h2(u1, u2, u3) = 0,
k1(u1, u2, u3) = 0, k2(u1, u2, u3) = u3,

r1(u1, u2, u3) = 0, r2(u1, u2, u3) =
1

δ
(−cu1 −

α

n+ 2
un+2
1 − βu2 − γu3 − su1u2).

Hence, we obtain

g(u1, u2, u3, ε) = g2ε
2 + o(ε3);

h(u1, u2, u3, ε) = u2ε+ o(ε3);

k(u1, u2, u3, ε) = u3ε
2 + o(ε3);

r(u1, u2, u3, ε) = r2ε
2 + o(ε3).

(3.17)

The slow system (3.11) which is restricted to Mε is given as follows
u′1 = u2,

u′2 = u3,

u′3 =
1

δ
[−cu1 −

α

n+ 2
un+1
1 (g + u1)− βu2 − γu3 − su1u2],

(3.18)

here g is given by (3.17). It is easy to show that when ε = 0, the system (3.18)
reduces to the corresponding system (2.4) for the non-delay equation. For any
sufficiently small ε > 0, then system (3.17) exists two two equilibria E1(0, 0, 0) and

E2(
n+1

√
−(n+ 2)c

α
, 0, 0). In the following theorem, we will establish the existence

result of a heteroclinic connection between these two critical points. Therefore the
Eq. (1.1) exists a travelling wave solution connecting E1 and E2.

Theorem 3.1. Suppose τ > 0 is an any sufficiently small constant, then there has

the speed c <
β2

3γ
, such that Eq.(1.1) with the strong kernel (3.1) exists a traveling

wave, u(x, t) = φ(x+ ct) which connects the two equilibria E1 and E2.

Proof. We will obtain the existence of a heteroclinic connection between these
two equilibria E1 and E2. By Theorem 2.1, for ε = 0, we see that such a connection
exists. For ∀ε > 0, we set

u1 = u0 + ε2φ+ · · · , u2 = û0 + ε2φ1 + · · · , u3 = ũ0 + ε2φ2 + · · ·

substituting into (3.18), furthermore comparing the coefficients of the parameter
ε2, then the differential system determining φ and ϕ is given

d

dz


φ(z)

φ1(z)

φ2(z)

+


0 −1 0

0 0 −1

c
δ

+ 2α
δ(n+2)

un+1
0 + sû0

δ
β
δ

γ+su0
δ



φ

φ1

φ2

=


0

0
− α
n+2

un+1
0

δ
G(u0, û0, ũ0)

 ,

(3.19)

where

G(u0, û0, ũ0) =
1

δ
(−cu0 −

α

n+ 2
un+2
0 − βû0 − γũ0 − su0û0).
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Then the system exists a solution satisfying φ(±∞) = 0, φ1(±∞) = 0, and
φ2(±∞) = 0.

Let L2 be the space of square integrable functions, with the following inner
production ∫ +∞

−∞
(x(z), y(z))dz,

(· , ·) being the Euclidean inner product on R2. In view of Fredholm theory, we
know (3.19) has a solution if and only if

∫ +∞

−∞

x(z),


0

0

−αun+1
0

δ(n+2) G(u0, û0, ũ0)


 dz = 0,

for all functions x(z) in the kernel of the adjoint of operator L defined by left side
of (3.19). It is easy to see that the adjoint operator L∗ is as follows

L∗ = − d

dz
+


β
δ

γ+su0

δ 1

−( cδ + 2α
δ(n+2)u

n+1
0 + sû0

δ ) 0 0

0 −( cδ + 2α
δ(n+2)u

n+1
0 + sû0

δ ) 0

 . (3.20)

By computing the KerL∗, we show that all x(z) satisfies the following system

dx(z)

dz
=


β
δ

γ+su0

δ 1

−( cδ + 2α
δ(n+2)u

n+1
0 + sû0

δ ) 0 0

0 −( cδ + 2α
δ(n+2)u

n+1
0 + sû0

δ ) 0

x(z). (3.21)

Because the matrix is nonconstant, It is difficult to seek the general solution of
system (3.21). But we only need to find the solutions satisfying x(±∞) = 0. In
fact, the only such solution is a zero solution. we recall that u0(z) is the solution of
the unperturbed problem and although we have no explicit expression for it. when
z → −∞, it tends to zero. In (3.21), we let z → −∞, then the matrix turns into a
constant matrix, with the eigenvalues λ satisfying the following algebraic equation

λ3 − β

δ
λ2 +

cγ

δ2
λ+

c2

δ2
= 0.

Since c <
β2

3γ
, we show the eigenvalues are real and negative. Therefore, when

z → −∞, the solution of system (3.21), other than the zero solution, have to be
decreasing exponentially for small z. So the only solution satisfying x(±∞) = 0
is the zero solution. Using the Fredholm orthogonality condition, the solutions of
(3.20) exist which satisfy φ(±∞) = 0, φ1(±∞) = 0 and φ2(±∞) = 0. Therefore
for sufficiently small ε > 0, there has a heteroclinic orbit of (3.18) connecting

these two equilibria E1(0, 0, 0) and E2(
n+1

√
−(n+ 2)c

α
, 0, 0). Furthermore, while

τ > 0 is sufficiently small, there exists a heteroclinic orbit connecting these two
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equilibria (0, 0, 0, 0) and (
n+1

√
−(n+ 2)c

α
, 0,

n+1

√
−(n+ 2)c

α
, 0). Hence, Eq.(1.1) has

a traveling wave solution connecting these two equilibria.

Remark 3.1. If taking the local delay kernel into a weak kernel, i.e.

f1(x, t) =
1√
4πt

e−
x2

4t
1

τ
e−

t
τ ,

the existence result of traveling waves could be similarly established.

Remark 3.2. If we take f ∗ u = u in Eq.(1.1), we find the corresponding equation
is a special case of Eq.(1.1) without delay, which was discussed by Mansour in [12].
In fact, methods and results are both different from those in [12]. Mansour [12]
obtained the homoclinic orbit due to the method of dynamic systems, specifically
base upon the center manifold theorem and Melnikov function. However, we get
the existence of the heteroclinic orbit by using the invariant manifold on the phase
plane of (2.4) which is different from Masour [12].

Remark 3.3. If we choose δ = 0, then Eq.(1.1) becomes a third order dispersive-
dissipative equation, which was investigated by the Shang and Du in [14]. It is
notable that our results agree well with the corresponding ones in [14]. In the
case that Eq.(1.1) without delay, Shang and Du established the existence of the
heteroclinic orbit by constructing the triangular invariant set. However, we establish
the traveling waves by constructing the three pyramid invariant set and getting the
desired heteroclinic orbit.

4. Conclusions

In this paper, we are concerned with a fourth-order generalized nonlinear dispersive
and dissipative equation with strong generic delay kernel. We obtain the existence
of travelling wave solutions due to the geometric singular perturbation theory. In
fact, if we choose the kernel f as the weak generic delay, the method and approach
in this paper is still applicable, we omit it. We will discuss the asymptotic behavior
of traveling waves of Eq.(1.1) in the future. In the discussion of the asymptotic
behavior, since the interact term φφ′ appears in system (3.9), it is difficult to seek
the general solutions of system (3.9).
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