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Dynamics of the Stochastic Chemostat Model with
Monod-Haldane Response Function*
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Abstract This paper is devoted to the asymptotic dynamics of stochastic
chemostat model with Monod-Haldane response function. We first prove the
existence of random attractors by means of the conjugacy method and further
construct a general condition for internal structure of the random attractor,
implying extinction of the species even with small noise. Moreover, we show
that the attractors of Wong-Zakai approximations converges to the attractor
of the stochastic chemostat model in an appropriate sense.
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1. Introduction

Chemostat refers to a basic piece of laboratory apparatus used for the continuous
culture of microorganisms. It occupies a central place in mathematical ecology and
has played an important role in many fields [4, 12, 16, 22, 30–32, 34]. It can also
model waste water treatment [13,26] or study recombinant problems in genetically
altered microorganisms [17, 18]. Derivation and analysis of chemostat models are
well documented in [9, 29,33] and references therein.

The classic chemostat model with single species and single limiting substrate
takes the form

dS(t)

dt
= (S0 − S(t))D − µ(S(t))x(t), (1.1)

dx(t)

dt
= −Dx(t) + µ(S(t))x(t), (1.2)

where S(t) and x(t) denote concentrations of the nutrient and the microbial biomass,
respectively; S0 denotes the volumetric dilution rate and D is the dilution rate. The
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growth rate of the microbial population is represented by the function µ(S), which
is generally assumed to be non-negative.

However, there are very strong restrictions as the real world is non-autonomous
and stochastic, and this justifies the analysis of stochastic chemostat model. In
general, there exist several alternatives to model randomness and stochasticity. For
example, one can replace the dilution rate D by D + αẆ (t) and thus the origi-
nal system (1.1)-(1.2) is replaced by the following stochastic differential equations
understood in the Itô sense

dS(t) = [(S0 − S(t))D − µ(S(t))x(t)]dt+ α(S0 − S(t))dW (t), (1.3)

dx(t) = [−Dx(t) + µ(S(t))x(t)]dt− αx(t)dW (t), (1.4)

where W (t) is a standard Brownian motion defined in a complete probability space
(Ω,F , {Ft}t≥0, P ), and α > 0 is its intensity. Biologically the model does not seem
completely realistic due to the fact that the substrate S(t) in the corresponding
stochastic chemostat model (1.3)-(1.4) can take negative. Alternatively, following
the idea in [15,19], one can obtain the stochastic chemostat model

dS(t) = [(S0 − S(t))D − µ(S(t))x(t)]dt− αS(t)dW (t), (1.5)

dx(t) = [−Dx(t) + µ(S(t))x(t)]dt− αx(t)dW (t). (1.6)

Recently, the existence of the random attractor associated to the random dynam-
ical system generated by the solution of system (1.3)-(1.4) (or (1.5)-(1.6)) was stud-
ied in [5–7] by using a function Holling type-II, µ(S(t)) = mS(t)/(a+S(t)), where a
is the half-saturation constant and m is the maximal consumption rate of the nutri-
ent and also the maximal specific growth rate of microorganisms. In particular, au-
thors in [6] proved the existence of the global random attractor of system (1.5)-(1.6)
with Holling type-II respond function, and further shown that the internal structure
of the attractor consists of singleton subsets as long as D̄ = D + α2/2 > m, which
means that the microorganisms become extinct. In fact, one can choose α, large
enough, such that D̄ > m (see Figure 2 in [6]). In case D̄ < m, one cannot ensure
the persistence of the microorganism (see Figure 1 in [6]).

As far as we know, no report has been found on the existence of random at-
tractors of stochastic chemostat model under small noise. This fact inspires us to
further explore relevant dynamics of system (1.5)-(1.6) in this respect. Besides,
some experiments and observations indicate that not only insufficient nutrient but
also excessive nutrient may inhibit the growth of a microbial population in the
chemostat [1, 3, 20]. This situation suggested a non-monotonic response function,
so-called Monod-Haldane function, to model such growth. Thus system (1.5)-(1.6)
becomes the following specified form

dS(t) = [(S0 − S(t))D − mS(t)x(t)

a+ S(t) +KS2(t)
]dt− αS(t)dW (t), (1.7)

dx(t) = [−Dx(t) +
mS(t)x(t)

a+ S(t) +KS2(t)
]dt− αx(t)dW (t), (1.8)

where the term KS2(t) describes the inhibitory effect of the substrate at high con-
centrations. By using the well-known conversion between Itô and Stratonovich
senses, we obtain the following stochastic chemostat with Monod-Haldane function

dS(t) = [−D̄S(t)− mS(t)x(t)

a+ S(t) +KS2(t)
+ S0D]dt− αS(t) ◦ dW (t), (1.9)
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dx(t) = [−D̄x(t) +
mS(t)x(t)

a+ S(t) +KS2(t)
]dt− αx(t) ◦ dW (t), (1.10)

where D̄ = D + α2/2.
By the numerical scheme [21], we present the numerical simulation for the small

noise situation, say, α = 0.1. At this point, it follows that

D̄ = 2 + 0.12/2 = 2.005 < 5 = m.

Then we first display the phase plane (S, x) of the dynamics of our chemostat model,
where the blue dashed lines represent the solutions of the deterministic (i.e., with
α = 0) and the other ones are different realizations for the stochastic chemostat
model (1.9)-(1.10). In addition, we set the parameters S0 = 1, D = 2, a = 0.6,
m = 5, α = 0.1 and initial conditions S0 = 5, x0 = 10, and consider K = 0.1 (the
persistence case) and K = 1 (the extinction case), shown in Figure 1.

Figure 1. Stochastic chemostat system (1.9)-(1.10) with parameters S0 = 1, D = 2, a = 0.6, m = 5,
S0 = 5, x0 = 10, α = 0.1, K = 0.1 (up) and K = 1 (down).

The novelty of this paper is to establish the existence of the random attractor
associated to the random dynamical system generated by the solution to system
(1.9)-(1.10) for both large and small α, which extends and improves some known
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results. In particular, we obtain the extinction conditions

D̄ ≥ m or D̄ < m < (1 + 2
√
aK)D̄,

which extend and improve the results in [5–7]. The (α,K) plane can be used to
display the above inequalities, shown in Figure 2.
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Figure 2. Extinction conditions for system (1.9)-(1.10) with parameters D = 2, a = 0.6, m = 5.

The rest of the paper is organized as follows. In Section 2 we recall some basic
results on random dynamical systems, random attractors, Ornstein-Uhlenbeck (O-
U) process and Wong-Zakai approximation. In Section 3 we prove the existence of
the random attractors of the solutions and its internal structure explicitly. Finally,
in Section 4 we prove the convergence of solutions of Wong-Zakai approximations
and the upper semicontinuity of random attractors of the approximate random
system as the size of approximation approaches zero.

2. Preliminaries

In this section, we recall some basic results [2] on random dynamical systems
(RDSs), random attractors and Ornstein-Uhlenbeck (O-U) process in order to make
our presentation as much self-contained as possible.

2.1. Random dynamical systems

We first recall some basic definitions on random dynamical system (RDS), two
necessary lemmas on random attractors, and refer to the monograph [2] for more
detailed information.

Let (X; ‖ · ‖X) be a separable Banach space.

Definition 2.1. A RDS on X consists of two ingredients: (a) a metric dynamical
system (Ω,F ,P, {θ}t∈R) where (Ω,F ,P) is a probability space and the family of
mappings θt : Ω→ Ω satisfies

(1) θ0 = IdΩ,
(2) θs ◦ θt = θs+t for all s, t ∈ R,
(3) the mapping (t, ω) 7→ θtω is measurable,
(4) the probability measure P is preserved by θt, i.e., θtP = P,

and (b) a mapping ϕ : [0,∞)× Ω×X → X which is (B[0,∞)×F × B(X),B(X))-
measurable, such that for each ω ∈ Ω,
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(i) the mapping ϕ(t, ω) : X → X, x 7→ ϕ(t, ω)x is continuous for every t ≥ 0,
(ii) ϕ(0, ω) is the identity operator on X,
(iii) ϕ(t+ s, ω) = ϕ(t, θsω)ϕ(s, ω) for all s, t ≥ 0.

Definition 2.2. Let (Ω,F ,P) be a probability space. A random set K is a mea-
surable subset of X×Ω with respect to the product σ-algebra B(X)×F . Moreover
K will be said a closed or a compact random set if K(ω) = {x : (x, ω) ∈ K}, ω ∈ Ω,
is closed or compact for P-almost all ω ∈ Ω, respectively.

Definition 2.3. A bounded random set K(ω) ⊂ X is said to be tempered with
respect to {θt}t∈R if for a.e. ω ∈ Ω,

lim
t→∞

e−βt sup
x∈K(θ−tω)

‖x‖X = 0, for all β > 0;

a random variable ω 7→ r(ω) ∈ R is said to be tempered with respect to {θt}t∈R if
for a.e. ω ∈ Ω,

lim
t→∞

e−βt sup
t∈R
|r(θ−tω)| = 0, for all β > 0;

Definition 2.4. A random set B(ω) ⊂ X is called a random absorbing set in E(X)
if for any E ∈ E(X) and a.e. ω ∈ Ω, there exists TE(ω) > 0 such that

ϕ(t, θ−tω)E(θ−tω) ⊂ B(ω), for all t ≥ TE(ω).

Definition 2.5. Let {ϕ(t, ω)}t≥0,ω∈Ω be an RDS over (Ω,F ,P, {θ}t∈R) with state
space X and let A(ω)(⊂ X) be a random set. Then A = {A(ω)}ω∈Ω is called a
global random E-attractor (or pullback E-attractor) for {ϕ(t, ω)}t≥0,ω∈Ω if

(i) (compactness) A(ω) is a compact set of X for any ω ∈ Ω,
(ii) (invariance) for any ω ∈ Ω and all t ≥ 0, it holds

ϕ(t, ω)A(ω) = A(θtω),

(iii) (attracting property) for any E ∈ E(X) and a.e. ω ∈ Ω,

lim
t→∞

distX(ϕ(t, θ−tω)E(θ−tω), A(ω)) = 0,

where distX(G,H) = supg∈G infh∈H ‖g − h‖X is the Hausdorff semi-metric for
G,H ⊆ X.

Lemma 2.1 ( [11,14]). Let B ∈ E(X) be a closed absorbing set for the continuous
RDS {ϕ(t, ω)}t≥0,ω∈Ω that satisfies the asymptotic compactness condition for a.e.
ω ∈ Ω, i.e., each sequence xn ∈ ϕ(tn, θ−tnω)B(θ−tnω) has a convergent subsequence
in X when tn →∞. Then ϕ has a unique global random attractor A = {A(ω)}ω∈Ω

with component subsets

A(ω) = ∩τ≥TB(ω)∪t≥τϕ(tn, θ−tnω)B(θ−tnω).

Lemma 2.2 ( [8, 10]). Let ϕu be an RDS on X. Suppose that the mapping T :
Ω×X → X possesses the following properties: for fixed ω ∈ Ω, T (ω, ·) is a home-
omorphism on X, and for x ∈ X, the mappings T (·, x), T −1(·, x) are measurable.
Then the mapping

(t, ω, x)→ ϕv(t, ω)x := T −1(θtω, ϕu(t, ω)T (ω, x))

is a (conjugated) RDS.
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2.2. Ornstein-Uhlenbeck process

Let W be a two sided Wiener process. Kolmogorov’s theorem [25] ensures that W
has a continuous version, that we will denote by ω, whose canonical interpretation
is as follows: let Ω be defined by

Ω = {ω ∈ C(R,R) : ω(0) = 0} = C0(R,R),

F the Borel σ-algebra on Ω generated by the compact open topology and P the
corresponding Wiener measure on F . We consider the Wiener shift flow given by

θtω(·) = ω(·+ t)− ω(t), t ∈ R,

then (Ω,F ,P, {θt}t∈R) is a metric dynamical system.
Now we introduce the following Ornstein-Uhlenbeck process on (Ω,F ,P, {θt}t∈R)

z∗(θtω) = −
∫ 0

−∞
esθtω(s)ds, t ∈ R, ω ∈ Ω,

which solves the following Langevin equation

dz + zdt = dω(t), t ∈ R. (2.1)

Lemma 2.3 ( [2,10]). There exists a θt-invariant set Ω̃ ∈ F of Ω of full P measure
such that for ω ∈ Ω̃, we have

(i) the random variable |z∗(ω)| is tempered;
(ii) the mapping

(t, ω)→ z∗(θtω) = −
∫ 0

−∞
esω(t+ s)ds+ ω(t)

is a stationary solution of (2.1) with continuous trajectories;
(iii) in addition, for any ω ∈ Ω̃:

lim
t→±∞

|z∗(θtω)|
t

= 0;

lim
t→±∞

1

t

∫ t

0

z∗(θsω)ds = 0;

lim
t→±∞

1

t

∫ t

0

|z∗(θsω)|ds = E[z∗] <∞.

In what follows we will consider the restriction of the Wiener shift θ to the set
Ω̃, and we restrict accordingly the metric dynamical system to this set, that is also
a metric dynamical system, see [8]. For simplicity, we will still denote the restricted
metric dynamical system by the old symbols (Ω,F ,P, {θ}t∈R). From now on, we
denote X = {(x, y) ∈ R2 : x ≥ 0, y ≥ 0}.

2.3. Wong-Zakai approximations for white noise

In this subsection, we first review the well-known Wong-Zakai approximation for
Gaussian white noise [23, 24, 27, 28]. In fact, for each δ > 0, we define the random
variable Gδ : Ω→ R by

Gδ(ω) =
1

δ
ω(δ).
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Then we have

Gδ(θtω) =
1

δ
(ω(δ + t)− ω(t)). (2.2)

It was shown that Gδ(θtω) is a stationary stochastic process with a normal distri-
bution, but it is unbounded in t for almost all ω. We next recall a useful claim that
Gδ(θtω) can be viewed as an approximation of white noise in the Wong-Zakai sense.

Lemma 2.4 ( [24, 27]). For each ω ∈ Ω, τ ∈ R, T > 0. Then for all ε > 0, there
exists a constant δ0 = δ0(ε, ω, τ, T ) > 0 such that for 0 < δ < δ0 and t ∈ [τ, τ + T ],
we have ∣∣∣∣∫ t

0

Gδ(θsω)ds− ω(t)

∣∣∣∣ < ε.

Next we consider the Wong-Zakai approximation of the Langevin equation (2.1)

żδ + zδ = Gδ(θtω) (2.3)

and present the pointwise convergence between them as follow:

Lemma 2.5 ( [28]). There exists a θt-invariant set Ω̃ ∈ F of Ω of full P measure
such that for ω ∈ Ω̃, we have

(i) the random variable

z∗δ (ω) =

∫ 0

−∞
esGδ(θsω)ds

exists and |z∗δ (ω)| is tempered;
(ii) the mapping

(t, ω)→ z∗δ (θtω) =

∫ 0

−∞
esGδ(θs+tω)ds

is a stationary solution of (2.3) with continuous trajectories;
(iii) in addition, for any ω ∈ Ω̃:

lim
t→±∞

|z∗δ (θtω)|
t

= 0;

lim
t→±∞

1

t

∫ t

0

z∗δ (θsω)ds = 0;

lim
t→±∞

1

t

∫ t

0

|z∗δ (θsω)|ds = E[z∗δ ] <∞;

(iv) in particular, for any ω ∈ Ω̃, any τ ∈ R and T > 0, we have

lim
δ→0
‖z∗δ (θtω)− z∗(θtω)‖C([τ,τ+T ]) = 0. (2.4)

3. The existence of random attractors

In this section, we will first transform our stochastic chemostat model (1.9)-(1.10)
into random one by using the Ornstein-Uhlenbeck process. After proving that this
random system possesses a unique nonnegative solution for any initial value, we
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analyze the existence of random attractors associated to the random dynamical
system generated by the solution. By means of the conjugacy, we also prove the
existence of random attractors for original stochastic model.

To do this, we introduce two new variables σ and κ as follows

σ(t) = S(t)eαz
∗(θtω), (3.1)

κ(t) = x(t)eαz
∗(θtω). (3.2)

For the sake of simplicity, we will rewrite S, x, z∗, σ, and κ instead of S(t), x(t),
z∗(θtω), σ(t), and κ(t), respectively. Hence, direct calculation implies that

dσ

dt
= −(D̄ + αz∗)σ − mσκe−αz

∗

a+ σe−αz∗ +Kσ2e−2αz∗
+ S0Deαz

∗
, (3.3)

dκ

dt
= −(D̄ + αz∗)κ+

mσκe−αz
∗

a+ σe−αz∗ +Kσ2e−2αz∗
. (3.4)

Lemma 3.1. For any ω ∈ Ω and any initial value u0 := (σ0, κ0) ∈ X , where
σ0 and κ0 stand for σ(0) and κ(0) respectively, the system (3.3)-(3.4) possesses
a unique global solution u(·;ω, u0) := (σ(·;ω, u0), κ(·;ω, u0)) ∈ C1([0,∞),X ) with
u(0;ω, u0) = u0. Moreover the solution mapping generates a RDS ϕu : R+ × Ω ×
X → X defined as ϕu(t, ω)u0 = u(t;ω, u0) for all t ∈ R+, ω ∈ Ω, u0 ∈ X .

Proof. Obviously, the system (3.3)-(3.4) is rewritten as

dσ

dt
= −(D̄ + αz∗)σ −mκ+

(ma+mKσ2e−2αz∗)κ

a+ σe−αz∗ +Kσ2e−2αz∗
+ S0Deαz

∗
, (3.5)

dκ

dt
= −(D̄ −m+ αz∗)κ− (ma+mKσ2e−2αz∗)κ

a+ σe−αz∗ +Kσ2e−2αz∗
. (3.6)

Letting

L(θtω) =

−(D̄ + αz∗) −m

0 −(D̄ −m+ αz∗)


and F : X × Ω→ R2 of form

F (η, ω) =

 (ma+mKη21e
−2αz∗(ω))η2

a+η1e−αz
∗(ω)+Kη21e

−2αz∗(ω) + S0Deαz
∗(ω)

− (ma+mKη21e
−2αz∗(ω))η2

a+η1e−αz
∗(ω)+Kη21e

−2αz∗(ω)


where η = (η1, η2) ∈ X , system (3.5)-(3.6) turns into

du

dt
= L(θtω)u+ F (u, θtω). (3.7)

On the one hand, the operator L generates an evolution system on R2 because
t→ z∗(θtω) is continuous. On the other hand, F (·, θtω) ∈ C(X × [0,∞);R2) and is
continuously differentiable with respect to the variables (η1, η2) since

∂

∂η1
[± (ma+mKη2

1e
−2αz∗)η2

a+ η1e−αz
∗ +Kη2

1e
−2αz∗

+ C̃] = ∓ (mae−αz
∗

+mKη2
1e
−3αz∗)η2

(a+ η1e−αz
∗ +Kη2

1e
−2αz∗)2
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and

∂

∂η2
[± (ma+mKη2

1e
−2αz∗)η2

a+ η1e−αz
∗ +Kη2

1e
−2αz∗

+ C̃] = ± (ma+mKη2
1e
−2αz∗)

a+ η1e−αz
∗ +Kη2

1e
−2αz∗

where C̃ is some constant which does not depend on (η1, η2) ∈ X . This further
implies that F (·, θtω) is locally Lipschitz with respect to (η1, η2) ∈ X . Therefore,
system (3.7) possesses a unique local solution according to classical results from the
theory of ordinary differential equations.

Next we show that this solution is in fact a global one. To this end, we define
V (t) = σ(t) + κ(t) and obtain that

dV

dt
= −(D̄ + αz∗)V + S0Deαz

∗
.

By variation of constants, the corresponding solution is given by

V (t) = V (0)e−(D̄t+α
∫ t
0
z∗ds) + S0D

∫ t

0

eαz
∗
e−(D̄(t−s)+α

∫ t
s
z∗dr)ds (3.8)

which is clearly bounded since D̄ > 0. Moreover, it follows from (3.3) that

dσ

dt
≤ −(D̄ + αz∗)σ + S0Deαz

∗
.

By comparison principle and variation of constants, we have

σ(t) ≤ σ(0)e−(D̄t+α
∫ t
0
z∗ds) + S0D

∫ t

0

eαz
∗
e−(D̄(t−s)+α

∫ t
s
z∗dr)ds

which ensures that σ is bounded either. Note that κ(t) = V (t) − σ(t), thus κ is
also bounded since V and σ are bounded in both cases. Therefore, the unique local
solution to system (3.7) can be extended to a unique global one.

We now turn to prove that the global solution of (3.7) belongs to the set X for
any t ∈ R2. Suppose that if σ(t) = 0 for some t = t∗ ∈ R+, it follows from (3.3)
that

dσ

dt

∣∣∣
t∗

= S0Deαz
∗
> 0.

In addition, given (σ0, 0) with σ0 > 0, there exists a unique solution of system (3.7)
satisfying σ(t0) = σ0 and κ(t0) = 0 for some initial time t0 ≥ 0. Specifically, this
unique solution is given by

σ(t) = σ(t0)e
−(D̄t+α

∫ t
t0
z∗ds)

+ S0D

∫ t

t0

eαz
∗
e−(D̄(t−s)+α

∫ t
s
z∗dr)ds, (3.9)

κ(t) ≡ 0. (3.10)

For (σ0, κ0) ∈ X , there exists a unique solution (σ(t), κ(t)) such that σ(0) = σ0 and
κ(0) = κ0. If there is some first t∗ > 0 such that κ(t∗) = 0, then we obtain that
(σ(·), κ(·)) is the unique solution of system (3.7) with σ(t∗) = σ∗ and κ(t∗) = 0.
Meanwhile, κ(t) > 0 for all 0 < t < t∗; however, we already have another solution
(σ(t), 0) given by (3.9)-(3.10) for all t ≥ t∗ − ε (for any ε > 0 small enough) for this
problem, so it leads to a contradiction. As a result, we deduce that for any initial
data u0 ∈ X the solution u(t) remains in X .
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Finally, we define the solution mapping ϕu : R× Ω×X → X of the form

ϕu(t, ω)u0 := u(t;ω, u0), for all t ≥ 0, ω ∈ Ω, u0 ∈ X .

Since the function F is continuous in (u, t), and is measurable in ω, we obtain that
the mapping ϕu is (B[0,∞)×F ×B(X ),B(X ))-measure. It then follows that (3.7)
generate the continuous RDS ϕu(t, ω)(·).

Lemma 3.2. The RDS {ϕu(t, ω)}t≥0,ω∈Ω has a tempered compact random absorb-
ing set B(ω) ∈ E(X ).

Proof. Notice that ϕu(t, θ−tω)u0 = u(t; θ−tω, u0) denotes the solution of the
random chemostat model (3.3)-(3.4), satisfying that u(0; θ−tω, u0) = u0, where
u0 = u0(θ−tω) ∈ E(θ−tω). Thus we introduce the following norm

‖ϕu(t, θ−tω)u0‖ = ‖u(t; θ−tω, u0(θ−tω))‖
= σ(t; θ−tω, u0(θ−tω)) + κ(t; θ−tω, u0(θ−tω)).

Noting that V = σ + κ and replacing ω by θ−tω in (3.8), we obtain

σ(t; θ−tω, u0(θ−tω)) + κ(t; θ−tω, u0(θ−tω))

= (σ(0) + κ(0))e−(D̄t+α
∫ t
0
z∗(θs−tω)ds)

+ S0D

∫ t

0

eαz
∗(θs−tω)e−(D̄(t−s)+α

∫ t
s
z∗(θr−tω)dr)ds

= (σ(0) + κ(0))e−(D̄t+α
∫ 0
−t z

∗(θsω)ds)

+ S0D

∫ t

0

eαz
∗(θs−tω)e−(D̄(t−s)+α

∫ 0
s−t z

∗(θrω)dr)ds

= (σ(0) + κ(0))e−(D̄t+α
∫ 0
−t z

∗(θsω)ds)

+ S0D

∫ t

0

eαz
∗(θ−τω)e−(D̄τ+α

∫ 0
−τ z

∗(θrω)dr)dτ

= (σ(0) + κ(0))e−D̄t−α
∫ 0
−t z

∗(θsω)ds

+ S0D

∫ t

0

eτ [−D̄+
αz∗(θ−τω)

τ −ατ
∫ 0
−τ z

∗(θrω)dr]dτ.

Taking the limits on the previous equation, we further have

lim
t→∞

[σ(t; θ−tω, u0(θ−tω)) + κ(t; θ−tω, u0(θ−tω))] = S0Dρ∗(ω),

where ρ∗(ω) is defined by

ρ∗(ω) =

∫ ∞
0

eτ [−D̄+
αz∗(θ−τω)

τ −ατ
∫ 0
−τ z

∗(θrω)dr]dτ.

Moreover, ρ∗(ω) has sub-exponential growth due to the fact

eτ [−D̄+
αz∗(θ−τω)

τ −ατ
∫ 0
−τ z

∗(θrω)dr] → 0 if τ →∞.

Therefore, for any given ε > 0, there exists TE(ω, ε) > 0 such that

|‖u(t; θ−tω, u0(θ−tω))‖ − S0Dρ∗(ω)| ≤ ε
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for all u0 ∈ E(θ−tω) and t ≥ TE(ω, ε). We now define the set

Bε(ω) := {(σ, κ) ∈ X : S0Dρ∗(ω)− ε ≤ σ + κ ≤ S0Dρ∗(ω) + ε},

thus Bε(ω) ∈ E is absorbing in X for any ε > 0. Hence, the proof of Lemma 3.2 is
complete.

Lemma 3.3. If one of the following conditions holds
(i) D̄ ≥ m,
(ii) D̄ < m < (1 + 2

√
aK)D̄.

Then the random attractor associated to the RDS ϕu has the following structure

A = {A(ω)}ω∈Ω, A(ω) = (S0Dρ∗(ω), 0).

Proof. According to Lemma 2.1, the RDS ϕu possesses a unique random attractor
given by A = {A(ω)}ω∈Ω ⊂ Bε(ω) for any ε > 0. Thus A = {A(ω)}ω∈Ω ⊂ B0(ω).
In other word, we have the following expression for each component of our attractor

A(ω) := (S0Dρ∗(ω)− κ(ω), κ(ω)). (3.11)

Denote by

g(ζ) =
mζ

a+ ζ +Kζ2
− D̄, ζ = σe−αz

∗
> 0.

If (i) holds, there exists c1 > 0 such that

g(ζ) =
mζ

a+ ζ +Kζ2
− D̄ =

−D̄a− (D̄ −m)ζ − D̄Kζ2

a+ ζ +Kζ2
≤ −c1 < 0.

Then it follows from (3.4) that

dκ

dt
= −(D̄ + αz∗)κ+ (g(ζ) + D̄)κ ≤ (−c1 + αz∗)κ. (3.12)

If (ii) holds, there exists c2 > 0 such that

g(ζ) ≤ sup
ζ∈(0,∞)

g(ζ) =
m− (1 + 2

√
aK)D̄

1 + 2
√
aK

≤ −c2 < 0.

Then it follows from (3.4) that

dκ

dt
= −(D̄ + αz∗)κ+ (g(ζ) + D̄)κ ≤ (−c2 + αz∗)κ. (3.13)

Thus, both solutions to (3.12) and (3.13) tend to zero after replacing ω by θ−tω
and making t→∞. Therefore, the internal structure of the attractor in both cases
consists of singleton subsets A(ω) = (S0Dρ∗(ω), 0).

We are now in position to present the main result of this section.

Theorem 3.1. If one of the following conditions holds
(i) D̄ ≥ m,
(ii) D̄ < m < (1 + 2

√
aK)D̄.

Then the random attractor associated to the RDS generated by the original system
(1.9)-(1.10) also has the structure composed of singleton subsets.
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Proof. We define a mapping T : Ω×X → X and its inverse, respectively, as

T (ω, ζ) = (ζ1e
αz∗(ω), ζ2e

αz∗(ω))

and
T −1(ω, ζ) = (ζ1e

−αz∗(ω), ζ2e
−αz∗(ω)).

Denote v(t) = (S(t), x(t)) and using (3.1)-(3.2), we have that v = ue−αz
∗(ω). Since

T is a homeomorphism, thanks to Lemma 2.2 we obtain the following conjugated
RDS

ϕv(t, ω)v0 = T −1(θtω, ϕu(t, ω)T (ω, v0))

= T −1(θtω, ϕu(t, ω)u0)

= T −1(θtω, u(t;ω, u0))

= v(t;ω, v0)

implying that ϕv is an RDS for our original stochastic system (1.9)-(1.10).
Then the global random attractor of the random chemostat system (3.3)-(3.4),

A = {A(ω)}ω∈Ω ⊂ B0(ω), becomes into AT = {AT (ω)}ω∈Ω ⊂ BT0 (ω), the global
random attractor of the stochastic chemostat system (1.9)-(1.10), where

BT0 (ω) := {(S, x) ∈ X : S + x = S0Dρ∗(ω)e−αz
∗(ω)}.

Thus each component AT (ω), ω ∈ Ω of the attractor can be written as

AT (ω) := (S0Dρ∗(ω)e−αz
∗(ω) − Se−αz

∗(ω), Se−αz
∗(ω))

Moreover, we know that the internal structure of the attractor consists of singleton
subsets

AT (ω) := (S0Dρ∗(ω)e−αz
∗(ω), 0)

as long as condition (i) or (ii) holds.

4. Wong-Zakai approximations and convergency

In this section, we will first approximate the solutions of the stochastic chemostat
model (1.9)-(1.10) by its Wong-Zakai approximation:

dSδ(t)

dt
= −D̄Sδ(t)−

mSδ(t)xδ(t)

a+ Sδ(t) +KS2
δ (t)

+ S0D − αSδ(t)Gδ(θtω), (4.1)

dxδ(t)

dt
= −D̄xδ(t) +

mSδ(t)xδ(t)

a+ Sδ(t) +KS2
δ (t)
− αxδ(t)Gδ(θtω), (4.2)

where D̄ = D + α2/2.
To better compare the relations between the solutions of (1.9)-(1.10) and (4.1)-

(4.2), as we did for (1.9)-(1.10), we introduce a similar transformation for (4.1)-(4.2).
Let

σδ(t) = Sδ(t)e
αz∗δ (θtω), (4.3)

κδ(t) = xδ(t)e
αz∗δ (θtω). (4.4)
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Similarly, we will rewrite Sδ, xδ, z
∗
δ , σδ, and κδ instead of Sδ(t), xδ(t), z

∗
δ (θtω),

σδ(t), and κδ(t), respectively. Then we get that

dσδ
dt

= −(D̄ + αz∗δ )σδ −
mσδκδe

−αz∗δ

a+ σδe−αz
∗
δ +Kσ2

δe
−2αz∗δ

+ S0Deαz
∗
δ , (4.5)

dκδ
dt

= −(D̄ + αz∗δ )κδ +
mσδκδe

−αz∗δ

a+ σδe−αz
∗
δ +Kσ2

δe
−2αz∗δ

. (4.6)

We first prove that this random dynamical system possesses a unique nonnega-
tive solution for any initial value.

Lemma 4.1. For any ω ∈ Ω and any initial value uδ0 := (σδ0, κδ0) ∈ X , where
σδ0 and κδ0 stand for σδ(0) and κδ(0) respectively, the system (4.5)-(4.6) possesses
a unique global solution uδ(·;ω, uδ0) := (σδ(·;ω, uδ0), κδ(·;ω, uδ0)) ∈ C1([0,∞),X )
with uδ(0;ω, uδ0) = uδ0. Moreover the solution mapping generates a RDS ϕuδ :
R+ × Ω × X → X defined as ϕuδ(t, ω)uδ0 = uδ(t;ω, uδ0) for all t ∈ R+, ω ∈ Ω,
u0 ∈ X .

Proof. Obviously, the system (4.5)-(4.6) is rewritten as

dσδ
dt

= −(D̄ + αz∗δ )σδ −mκδ +
(ma+mKσ2

δe
−2αz∗δ )κδ

a+ σδe−αz
∗
δ +Kσ2

δe
−2αz∗δ

+ S0Deαz
∗
δ , (4.7)

dκδ
dt

= −(D̄ −m+ αz∗δ )κδ −
(ma+mKσ2

δe
−2αz∗δ )κδ

a+ σδe−αz
∗
δ +Kσ2

δe
−2αz∗δ

. (4.8)

Letting

Lδ(θtω) =

−(D̄ + αz∗δ ) −m

0 −(D̄ −m+ αz∗δ )


and Fδ : X × Ω→ R2 of form

Fδ(η, ω) =

 (ma+mKη21e
−2αz∗δ (ω))η2

a+η1e
−αz∗

δ
(ω)+Kη21e

−2αz∗
δ
(ω) + S0Deαz

∗
δ (ω)

− (ma+mKη21e
−2αz∗δ (ω))η2

a+η1e
−αz∗

δ
(ω)+Kη21e

−2αz∗
δ
(ω)


where η = (η1, η2) ∈ X , system (4.7)-(4.8) turns into

duδ
dt

= Lδ(θtω)uδ + Fδ(uδ, θtω). (4.9)

On the one hand, the operator Lδ generates an evolution system on R2 because
t → z∗δ (θtω) is continuous. On the other hand, Fδ(·, θtω) ∈ C(X × [0,∞);R2) and
is continuously differentiable with respect to the variables (η1, η2) since

∂

∂η1
[± (ma+mKη2

1e
−2αz∗δ )η2

a+ η1e−αz
∗
δ +Kη2

1e
−2αz∗δ

+ C̃] = ∓ (mae−αz
∗
δ +mKη2

1e
−3αz∗δ )η2

(a+ η1e−αz
∗
δ +Kη2

1e
−2αz∗δ )2

and

∂

∂η2
[± (ma+mKη2

1e
−2αz∗δ )η2

a+ η1e−αz
∗
δ +Kη2

1e
−2αz∗δ

+ C̃] = ± (ma+mKη2
1e
−2αz∗δ )

a+ η1e−αz
∗
δ +Kη2

1e
−2αz∗δ
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where C̃ is some constant which does not depend on (η1, η2) ∈ X . This further
implies that Fδ(·, θtω) is locally Lipschitz with respect to (η1, η2) ∈ X . Therefore,
system (4.9) possesses a unique local solution according to classical results from the
theory of ordinary differential equations.

Next we show that this solution is in fact a global one. To this end, we define
Vδ(t) = σδ(t) + κδ(t) and obtain that

dVδ
dt

= −(D̄ + αz∗δ )Vδ + S0Deαz
∗
δ .

By variation of constants, the corresponding solution is given by

Vδ(t) = Vδ(0)e−(D̄t+α
∫ t
0
z∗δds) + S0D

∫ t

0

eαz
∗
δ e−(D̄(t−s)+α

∫ t
s
z∗δdr)ds (4.10)

which is clearly bounded since D̄ > 0. Moreover, it follows from (4.5) that

dσδ
dt
≤ −(D̄ + αz∗δ )σδ + S0Deαz

∗
δ .

By comparison principle and variation of constants, we have

σδ(t) ≤ σδ(0)e−(D̄t+α
∫ t
0
z∗δds) + S0D

∫ t

0

eαz
∗
δ e−(D̄(t−s)+α

∫ t
s
z∗δdr)ds

which ensures that σδ is bounded either. Note that κδ(t) = Vδ(t) − σδ(t), thus κδ
is also bounded since Vδ and σδ are bounded in both cases. Therefore, the unique
local solution to system (4.9) can be extended to a unique global one.

We now turn to prove that the global solution of (4.9) belongs to the set X for
any t ∈ R2. Suppose that if σδ(t) = 0 for some t = t∗ ∈ R+, it follows from (4.5)
that

dσδ
dt

∣∣∣
t∗

= S0Deαz
∗
δ > 0.

In addition, given (σδ0, 0) with σδ0 > 0, there exists a unique solution of system
(4.9) satisfying σδ(t0) = σδ0 and κδ(t0) = 0 for some initial time t0 ≥ 0. Specifically,
this unique solution is given by

σδ(t) = σδ(t0)e
−(D̄t+α

∫ t
t0
z∗δds) + S0D

∫ t

t0

eαz
∗
δ e−(D̄(t−s)+α

∫ t
s
z∗δdr)ds, (4.11)

κδ(t) ≡ 0. (4.12)

For (σδ0, κδ0) ∈ X , there exists a unique solution (σδ(t), κδ(t)) such that σδ(0) = σδ0
and κδ(0) = κδ0. If there is some first t∗ > 0 such that κδ(t

∗) = 0, then we
obtain that (σδ(·), κδ(·)) is the unique solution of system (4.9) with σδ(t

∗) = σ∗δ
and κδ(t

∗) = 0. Meanwhile, κδ(t) > 0 for all 0 < t < t∗; however, we already have
another solution (σδ(t), 0) given by (4.11)-(4.12) for all t ≥ t∗ − ε (for any ε > 0
small enough) for this problem, so it leads to a contradiction. As a result, we deduce
that for any initial data uδ0 ∈ X the solution uδ(t) remains in X .

Finally, we define the solution mapping ϕuδ : R× Ω×X → X of the form

ϕuδ(t, ω)uδ0 := uδ(t;ω, uδ0), for all t ≥ 0, ω ∈ Ω, uδ0 ∈ X .

Since the function Fδ is continuous in (uδ, t), and is measurable in ω, we obtain
that the mapping ϕuδ is (B[0,∞)×F ×B(X ),B(X ))-measure. It then follows that
(4.9) generate the continuous RDS ϕuδ(t, ω)(·).
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Lemma 4.2. The RDS {ϕuδ(t, ω)}t≥0,ω∈Ω has a tempered compact random absorb-
ing set B(ω) ∈ E(X ).

Proof. Notice that ϕuδ(t, θ−tω)uδ0 = uδ(t; θ−tω, uδ0) denotes the solution of the
random chemostat model (4.5)-(4.6), satisfying that uδ(0; θ−tω, uδ0) = uδ0, where
uδ0 = uδ0(θ−tω) ∈ E(θ−tω). Thus we introduce the following norm

‖ϕuδ(t, θ−tω)uδ0‖ = ‖uδ(t; θ−tω, uδ0(θ−tω))‖
= σδ(t; θ−tω, uδ0(θ−tω)) + κδ(t; θ−tω, uδ0(θ−tω)).

Noting that Vδ = σδ + κδ and replacing ω by θ−tω in (4.10), we obtain

σδ(t; θ−tω, uδ0(θ−tω)) + κδ(t; θ−tω, uδ0(θ−tω))

= (σδ(0) + κδ(0))e−(D̄t+α
∫ t
0
z∗δ (θs−tω)ds)

+ S0D

∫ t

0

eαz
∗
δ (θs−tω)e−(D̄(t−s)+α

∫ t
s
z∗δ (θr−tω)dr)ds

= (σδ(0) + κδ(0))e−(D̄t+α
∫ 0
−t z

∗
δ (θsω)ds)

+ S0D

∫ t

0

eαz
∗
δ (θs−tω)e−(D̄(t−s)+α

∫ 0
s−t z

∗
δ (θrω)dr)ds

= (σδ(0) + κδ(0))e−(D̄t+α
∫ 0
−t z

∗
δ (θsω)ds)

+ S0D

∫ t

0

eαz
∗
δ (θ−τω)e−(D̄τ+α

∫ 0
−τ z

∗
δ (θrω)dr)dτ

= (σδ(0) + κδ(0))e−D̄t−α
∫ 0
−t z

∗
δ (θsω)ds

+ S0D

∫ t

0

eτ [−D̄+
αz∗δ (θ−τω)

τ −ατ
∫ 0
−τ z

∗
δ (θrω)dr]dτ.

Taking the limits on the previous equation, we further have

lim
t→∞

[σδ(t; θ−tω, uδ0(θ−tω)) + κδ(t; θ−tω, uδ0(θ−tω))] = S0Dρ∗δ(ω),

where ρ∗δ(ω) is defined by

ρ∗δ(ω) =

∫ ∞
0

eτ [−D̄+
αz∗δ (θ−τω)

τ −ατ
∫ 0
−τ z

∗
δ (θrω)dr]dτ.

Moreover, ρ∗δ(ω) has sub-exponential growth due to the fact

eτ [−D̄+
αz∗δ (θ−τω)

τ −ατ
∫ 0
−τ z

∗
δ (θrω)dr] → 0 if τ →∞.

Therefore, for any given ε > 0, there exists TE(ω, ε, δ) > 0 such that

|‖uδ(t; θ−tω, uδ0(θ−tω))‖ − S0Dρ∗δ(ω)| ≤ ε

for all uδ0 ∈ E(θ−tω) and t ≥ TE(ω, ε, δ). We now define the set

Bε(ω) := {(σδ, κδ) ∈ X : S0Dρ∗δ(ω)− ε ≤ σδ + κδ ≤ S0Dρ∗δ(ω) + ε},

thus Bε(ω) ∈ E is absorbing in X for any ε > 0. Hence, the proof of Lemma 4.2 is
complete.
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Lemma 4.3. If one of the following conditions holds
(i) D̄ ≥ m,
(ii) D̄ < m < (1 + 2

√
aK)D̄.

Then the random attractor associated to the RDS ϕuδ has the following structure

Aδ = {Aδ(ω)}ω∈Ω, Aδ(ω) = (S0Dρ∗δ(ω), 0).

Proof. According to Lemma 2.1, the RDS ϕuδ possesses a unique random attrac-
tor given by Aδ = {Aδ(ω)}ω∈Ω ⊂ Bε(ω) for any ε > 0. Thus Aδ = {Aδ(ω)}ω∈Ω ⊂
B0(ω). In other word, we have the following expression for each component of our
attractor

Aδ(ω) := (S0Dρ∗δ(ω)− κδ(ω), κδ(ω)). (4.13)

Denote by

g(ζ) =
mζ

a+ ζ +Kζ2
− D̄, ζ = σe−αz

∗
δ > 0.

If (i) holds, there exists c1 > 0 such that

g(ζ) =
mζ

a+ ζ +Kζ2
− D̄ =

−D̄a− (D̄ −m)ζ − D̄Kζ2

a+ ζ +Kζ2
≤ −c1 < 0.

Then it follows from (4.6) that

dκδ
dt

= −(D̄ + αz∗δ )κδ + (g(ζ) + D̄)κδ ≤ (−c1 + αz∗δ )κδ. (4.14)

If (ii) holds, there exists c2 > 0 such that

g(ζ) ≤ sup
ζ∈(0,∞)

g(ζ) =
m− (1 + 2

√
aK)D̄

1 + 2
√
aK

≤ −c2 < 0.

Then it follows from (4.6) that

dκδ
dt

= −(D̄ + αz∗δ )κδ + (g(ζ) + D̄)κδ ≤ (−c2 + αz∗δ )κδ. (4.15)

Thus, both solutions to (4.14) and (4.15) tend to zero after replacing ω by θ−tω
and making t→∞. Therefore, the internal structure of the attractor in both cases
consists of singleton subsets Aδ(ω) = (S0Dρ∗δ(ω), 0).

Theorem 4.1. If one of the following conditions holds
(i) D̄ ≥ m,
(ii) D̄ < m < (1 + 2

√
aK)D̄.

Then the random attractor associated to the RDS generated by the system (4.1)-
(4.2) also has the structure composed of singleton subsets.

Proof. We define a mapping Tδ : Ω×X → X and its inverse, respectively, as

Tδ(ω, ζ) = (ζ1e
αz∗δ (ω), ζ2e

αz∗δ (ω))

and

T −1
δ (ω, ζ) = (ζ1e

−αz∗δ (ω), ζ2e
−αz∗δ (ω)).
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Denote vδ(t) = (Sδ(t), xδ(t)) and using (4.3)-(4.4), we have that vδ = uδe
−αz∗δ (ω).

Since Tδ is a homeomorphism, thanks to Lemma 2.2 we obtain the following conju-
gated RDS

ϕvδ(t, ω)vδ0 = T −1
δ (θtω, ϕuδ(t, ω)Tδ(ω, vδ0))

= T −1
δ (θtω, ϕuδ(t, ω)uδ0)

= T −1
δ (θtω, uδ(t;ω, uδ0))

= vδ(t;ω, vδ0)

implying that ϕvδ is an RDS for system (4.1)-(4.2).
Then the global random attractor of the system (4.5)-(4.6), Aδ = {Aδ(ω)}ω∈Ω ⊂

B0(ω), becomes into AδTδ = {AδTδ(ω)}ω∈Ω ⊂ BTδ0 (ω), the global random attractor
of the stochastic chemostat system (4.1)-(4.2), where

BTδ0 (ω) := {(Sδ, xδ) ∈ X : Sδ + xδ = S0Dρ∗δ(ω)e−αz
∗
δ (ω)}.

Thus each component Aδ
Tδ(ω), ω ∈ Ω of the attractor can be written as

Aδ
Tδ(ω) := (S0Dρ∗δ(ω)e−αz

∗
δ (ω) − Se−αz

∗
δ (ω), Se−αz

∗
δ (ω)).

Moreover, we know that the internal structure of the attractor consists of singleton
subsets

Aδ
Tδ(ω) := (S0Dρ∗δ(ω)e−αz

∗
δ (ω), 0)

as long as condition (i) or (ii) holds.
We finally present the upper semicontinuity of random attractors as δ → 0.

Theorem 4.2. If one of the following conditions holds
(i) D̄ ≥ m,
(ii) D̄ < m < (1 + 2

√
aK)D̄.

Then for any ω ∈ Ω, we have

lim
δ→0

distX(AδTδ ,AT ) = 0. (4.16)

Proof. We first need to prove the following equation holds

lim
δ→0

ρ∗δ(ω) = ρ∗(ω). (4.17)

Let T > 0 be large enough such that∫ −T
−∞
Gδ(θsω)ds < c,

where 0 < c < D̄. For convenience, we define

µ∗δ(τ, ω) = eτ [−D̄+
αz∗δ (θ−τω)

τ −ατ
∫ 0
−τ z

∗
δ (θrω)dr],

µ∗(τ, ω) = eτ [−D̄+
αz∗(θ−τω)

τ −ατ
∫ 0
−τ z

∗(θrω)dr].

Then

ρ∗δ(ω) =

∫ T

0

µ∗δ(τ, ω)dτ +

∫ ∞
T

µ∗δ(τ, ω)dτ,
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ρ∗(ω) =

∫ T

0

µ∗(τ, ω)dτ +

∫ ∞
T

µ∗(τ, ω)dτ.

For
∫ T

0
µ∗δ(τ, ω)dτ , it follows from (2.4) that z∗δ (θtω)→ z∗(θtω) uniformly on [0, T ]

and [−T, 0] as δ → 0, therefore µ∗δ(t, ω) → µ∗(t, ω) uniformly on [0, T ] as δ → 0.
Then

lim
δ→0

∫ T

0

µ∗δ(τ, ω)dτ =

∫ T

0

µ∗(τ, ω)dτ. (4.18)

For
∫∞
T
µ∗δ(τ, ω)dτ ,

µ∗δ(τ, ω) = eτ [−D̄+
αz∗δ (θ−τω)

τ −ατ
∫ 0
−τ z

∗
δ (θrω)dr]

= eτ [−D̄+α
τ (z∗δ (θ−τω)−

∫ 0
−τ z

∗
δ (θrω)dr)]

= eτ [−D̄+α
τ (z∗δ (ω)−

∫ 0
−τ Gδ(θrω)dr)]

≤ eτ [−D̄+α
τ (

∫−τ
−∞ Gδ(θrω)dr)]

≤ eτ(−D̄+c),

then
∫∞
T
µ∗δ(τ, ω)dτ <∞. By Lebesgue dominated convergence theorem, we obtain

lim
δ→0

∫ ∞
T

µ∗δ(τ, ω)dτ =

∫ ∞
T

µ∗(τ, ω)dτ, (4.19)

together with (4.18) we get (4.17). Then through (2.4) and (4.17), we complete the
proof.
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