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Stability Analysis for the Numerical Simulation of
Hybrid Stochastic Differential Equations*

Guangjie Li1,2 and Qigui Yang2,†

Abstract This paper is mainly concerned with the exponential stability of
a class of hybrid stochastic differential equations–stochastic differential equa-
tions with Markovian switching (SDEwMSs). It first devotes to reveal that
under the global Lipschitz condition, a SDEwMS is pth (p ∈ (0, 1)) mo-
ment exponentially stable if and only if its corresponding improved Euler-
Maruyama(IEM) method is pth moment exponentially stable for a suitable
step size. It then shows that the SDEwMS is pth(p ∈ (0, 1)) moment expo-
nentially stable or its corresponding IEM method with small enough step sizes
implies the equation is almost surely exponentially stable or the corresponding
IEM method, respectively. In that sense, one can infer that the SDEwMS is
almost surely exponentially stable and the IEM method, no matter whether
the SDEwMS is pth moment exponentially stable or the IEM method. An
example is demonstrated to illustrate the obtained results.

Keywords Moment exponential stability, almost sure exponential stability,
Markovian switching, improved Euler-Maruyama method.
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1. Introduction

Stochastic differential equations (SDEs) have been widely used in many branches
of science and industry. Stability analysis as a particular interest of SDEs has
aroused special attention of many scholars (see [2, 8, 16,17] and the literature cited
therein). In the study of stochastic stability, Lyapunov functions technique is the
classical and powerful technique. However, in general, it is not convenient for us
to use this method for there is no an universal method can guarantee to find an
appropriate Lyapunov function, which motivates us to employ numerical methods
with sufficiently small step sizes to study the stochastic stability. Hence, for SDEs,
many investigators have paid a deal of attention to stability analysis of numerical
methods (e.g. [5,7,13,14,19]). Moreover, the following two questions are concerning:

(Q1) If a SDE is stochastically stable, will the numerical method be stochastically
stable?
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(Q2) Conversely, if the numerical method is stochastically stable, will the SDE is
stochastically stable?

Two natural and important notions of stochastical stability are moment exponen-
tially stable and almost surely exponentially stable. Moment exponential stability,
also known as the pth moment exponential stability. In the case of p = 2, mo-
ment exponential stability means exponential stability in mean square. When the
stochastic stability is understood as the mean square exponential stability, answers
to (Q1) and (Q2) can be found in [3, 13]. Higham et al. [4] showed that under the
global Lipscitz condition, mean square exponential stability of SDEs and that of
the numerical method with sufficiently small step sizes are equivalent, implying that
answers to (Q1) and (Q2) are positive. For the stochastic stability means the almost
sure exponential stability, there are a lot of results for (Q1), but few answers to (Q2).
Higham et al. [5] is the first paper that discussed both (Q1) and (Q2) for a reasoned
class of SDEs. For the linear scalar SDEs, they presented positive answers to (Q1)
and (Q2) by the Euler-Maruyama (EM) method. For the nonlinear SDEs with the
linear growth condition and some additional conditions, they also answered (Q1)
using the EM method. For the nonlinear SDEs without the linear growth condition,
but required the drift coefficient obeys the one-sided Lipschitz condition, the answer
to (Q1) alone is positive through the backward Euler-Maruyama (BEM) method.
Recently, Mao [9] proved that under the global Lipschitz condition, the almost sure
exponential stability of the SDEs is shared with that the stochastic theta method,
and therefore presented positive answers to (Q1) and (Q2).

As is known, hybrid stochastic differential equations have increasingly gained
attention in biological systems, financial engineering, wireless communications and
so forth (see [18, 20]). One of the important classes of the hybrid stochastic dif-
ferential equations is the SDEwMSs. Generally, most of SDEwMSs can rarely be
solved explicitly and hence numerical approximation becomes an important tool in
studying them. When the SDEwMS is considered in the (Q1) and (Q2), Pang et
al. [12] proved that under appropriate conditions, the EM method with sufficiently
small step sizes can capture the almost sure and the pth moment exponential stabil-
ity of the linear scalar SDEwMS, they therefore gave the positive answer to (Q1),
but not to (Q2). For the nonlinear SDEwMSs, the authors in [10] showed that
without the global Lipschitz condition, the BEM method may capture the almost
sure exponential stability, they also positively answered (Q1) but did not address
(Q2).

Although a lot of results on addressing (Q1) and (Q2) for SDEs have been ob-
tained (see [6, 19] and the references therein), unfortunately, there are almost no
answers to (Q1) and (Q2) for SDEwMSs due to the difficulty in dealing with the
Markovian switching. Therefore, it is significant to investigate (Q1) and (Q2) for
SDEwMSs. Motivated by Mao [9], this paper first shows that under the global
Lipschitz condition, the SDEwMS is pth (p ∈ (0, 1)) moment exponentially stable
if and only if the IEM method with a sufficiently small step size is pth moment
exponentially stable. Based on such result, we can positively answer both (Q1) and
(Q2) for the SDEwMS when the stochastic stability means exponential stability in
the sense of pth (p ∈ (0, 1)) moment. This paper then proves that the SDEwMS
is pth(p ∈ (0, 1)) moment exponentially stable or the IEM method implies the
SDEwMS is almost surely exponentially stable or the IEM method, respectively.
Moreover, the obtained theory ensures that either the SDEwMS is pth moment
exponentially stable or the IEM method, one can assert that the almost sure expo-
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nential stability of the SDEwMS and the IEM method. It is therefore that one can
study the almost sure exponential stability by the IEM method without resort to
using the Lyapunov function technique for the SDEwMSs.

The rest of the paper is organized as follows. Section 2 illustrates that the
SDEwMS is pth (p ∈ (0, 1)) moment exponentially stable if and only if the numer-
ical method is pth moment exponentially stable for a sufficiently small step size.
Section 3 presents positive answers to (Q1) and (Q2) when the stochastic stability
is understood as the pth (p ∈ (0, 1)) moment exponential stability. Section 4 reveals
that if a SDEwMS or the IEM method is pth (p ∈ (0, 1)) moment exponentially
stable, then it is also almost surely exponentially stable. Section 5 provides a nu-
merical example to illustrate the obtained results. Finally, this paper ends with
brief conclusions.

2. P th moment exponential stability

Throughout this paper, let (Ω,F , {Ft}t≥0,P) be a complete probability space with
a filtration {Ft}t≥0 satisfying the usual conditions (i.e. its right continuous and
F0 contains all P -null sets). Let ω(t) = (ω1(t), ω2(t), . . . , ωd(t)) be a d-dimensional
Brownian motion. Let {r(t)}t≥0 be a right-continuous time-homogeneous Markov
chain (independent of the Brownian motion ω(t)) on the probability space taking
values in a finite state space S = {1, 2, · · · , N} with the generator Γ = (γij)N×N
given by

P{r(t+ ∆) = j|r(t) = i} =

{
γij∆ + o(∆), if i 6= j,

1 + γii∆ + o(∆), if i = j,

where ∆ > 0, lim
∆→0

o(∆)/∆ = 0, γij ≥ 0 is the transition rate from i to j, if i 6= j,

while γii = −
∑
j 6=i

γij . It is well known that almost every sample path of r(·) is

a right-continuous step function with finite number of simple jumps in any finite
subinterval of R+ = [0,+∞) ( [1]). Denote by R = (−∞,+∞), let |x| =

√
xTx,

x ∈ Rn be the Euclidean vector norm. For a, b ∈ R, a ∨ b and a ∧ b represent
max{a, b} and min{a, b}, respectively.

In this paper, we consider the following nonlinear SDEwMS

dx(t) = f(x(t), r(t))dt+ g(x(t), r(t))dω(t), t ≥ 0, (2.1)

with initial values x(0) = x0 ∈ Rn and r(0) = i0 ∈ S, where f : Rn × S → Rn and
g : Rn × S → Rn×d.

Throughout this paper, we impose the following well known condition–the global
Lipschitz condition holds.

(H0) For all x, y ∈ Rn and i ∈ S, there is a constant L > 0 such that f, g satisfy

|f(x, i)− f(y, i)| ∨ |g(x, i)− g(y, i)| ≤ L|x− y|. (2.2)

Moreover, for the aim of stability to the trivial solution x(t;x0, i0) ≡ 0 of Eq.
(2.1), we also assume that f(0, i) = 0 and g(0, i) = 0 for ∀i ∈ S. For convenience,
denote x(t) = x(t;x0, i0). It is obvious that (H0) implies the linear growth condition

|f(x, i)| ∨ |g(x, i)| ≤ L|x|, ∀(x, i) ∈ Rn × S. (2.3)
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Under (H0), one can get the unique global solution x(t) (t ≥ 0) of SDEwMS
(2.1) and the solution satisfies

E|x(t)|p ≤ H(t, p, L)|x0|p, ∀t ≥ 0, 0 < p < 1 (2.4)

with
H(t, p, L) = 3

p
2 e1.5pL2t(t+1). (2.5)

In the following we will show that (2.4) hold. From Eq. (2.1), it is easy to see
that

x(t) = x(0) +

∫ t

0

f(x(s), r(s))ds+

∫ t

0

g(x(s), r(s))dω(s).

By the linear growth condition (2.3), one obtains

E|x(t)|2 ≤3

(
|x0|2 + E

∣∣∣∣∫ t

0

f(x(s), r(s))ds

∣∣∣∣2 + E

∣∣∣∣∫ t

0

g(x(s), r(s))dω(s)

∣∣∣∣2
)

≤3|x0|2 + 3L2t

∫ t

0

E|x(s)|2ds+ 3E

(∫ t

0

|g(x(s), r(s))|2ds
)

≤3|x0|2 + 3L2(t+ 1)

∫ t

0

E|x(s)|2ds.

Applying the Gronwall inequality, one yields

E|x(t)|2 ≤ 3|x0|2e3L2t(t+1), (2.6)

which together with Hölder inequality, it follows from p ∈ (0, 1) that

E|x(t)|p ≤ H(t, p, L)|x0|p.

Remark 2.1. When the initial value x0 is an F0-measurable Rn-valued random
variable such that E|x0|p < ∞(∀p > 0), then by the property of the condition
expectation, one obtains that

E|x(t)|p = E(E(|x(t)|p|F0)) ≤ E(H(t, p, L)|x0|p) = H(t, p, L)E|x0|p, t ≥ 0. (2.7)

Therefore, in the sequel, we can only consider x0 ∈ Rn for convenience, that is, we
only need to consider the case of x0 is deterministic.

We state the definition of pth(p > 0) moment exponential stability of the trivial
solution to Eq. (2.1) as follows.

Definition 2.1. The Eq. (2.1) with initial values x(0) = x0 ∈ Rn and r(0) = i0 ∈ S
is said to be pth moment exponentially stable if there is a pair of positive constants
λ and M such that

E|x(t)|p ≤M |x0|pe−λt, t ≥ 0. (2.8)

Remark 2.2. For any t0 ≥ 0, we can consider x(t) (t ≥ t0) as the solution of the
SDEwMS (2.1) with initial values x(t0) = x0 ∈ Rn and r(t0) = i0 ∈ S at t = t0. It
is easy to see from the time-homogeneity of the (2.1) and Remark 2.1 that (2.4) is
equivalent to the following more general form

E|x(t)|p ≤ H(t− t0, p, L)E|x(t0)|p, t ≥ t0, 0 < p < 1 (2.9)

and (2.8) is equivalent to the

E|x(t)|p ≤ME|x(t0)|pe−λ(t−t0), t ≥ t0, p > 0. (2.10)
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Next, we will introduce the numerical solutions generated by a numerical method
and give a key lemma which shows that the Eq. (2.1) is pth moment exponentially
stable if and only if the corresponding numerical method with a sufficiently small
step size ∆ is pth moment exponentially stable.

A numerical method is assumed to be available, given a step size ∆ > 0, discrete
approximations yk ≈ x(k∆) for k ∈ Z+ with initial values y0 = x0 ∈ Rn and i0 ∈ S.
The process defined by the numerical method is required to have the property
of Markov, that is, given yk̄(k̄ ∈ Z+), the process {yk}k≥k̄ can be seen as the
process which is produced by the numerical method applied to the SDEwMS (2.1)
on t ≥ k̄∆ with initial values x(k̄∆) = yk̄ and r(k̄∆) = r∆

k̄
. Hence, if yk̄ is given,

the process {yk}k≥k̄ are fully determined, but how the process has reached yk̄ is of
no further use. Moreover, {yk}k∈Z+ is time-homogeneous for the time-homogeneity
of SDEwMS (2.1). Such a process will be illustrated by the IEM method, which
is introduced in the next section. Following Definition 2.1, we now define the pth
moment exponential stability for the numerical solutions {yk}k∈Z+ .

Definition 2.2. For a given step size ∆ > 0, a numerical method is said to be pth
moment exponentially stable on Eq. (2.1) with initial values x(0) = x0 ∈ Rn and
r(0) = i0 ∈ S if there is a pair of positive constants γ and N such that

E|yk|p ≤ N |x0|pe−γk∆, ∀k ∈ Z+. (2.11)

By the time-homogeneous Markov property and Remark 2.1, it is easy to see
that (2.11) is equivalent to the following more general form:

E|yk|p ≤ NE|yk̄|pe−γ(k−k̄)∆, ∀k ≥ k̄ ≥ 0. (2.12)

From here we will let p ∈ (0, 1). We wish to answer both (Q1) and (Q2) in
the sense of pth moment exponential stability for the SDEwMS (2.1). In order
to achieve this goal, a finite pth moment condition is assumed on the numerical
methods.

Assumption 1. For all sufficiently small step sizes ∆, the numerical method ap-
plied to Eq. (2.1) with initial values x(0) = x0 ∈ Rn and r(0) = i0 ∈ S has the
property

sup
0≤k∆≤T

E|yk|p ≤ H̄(T, p, L)|x0|p, ∀T ≥ 0, (2.13)

where H̄(T, p, L) is positive and only depended on T, p, L, but independent of
(x0, i0) ∈ Rn × S and ∆.

It follows from the time-homogeneous Markov property of the numerical method
and Remark 2.1 that (2.13) implies

E|yk|p ≤ H̄(k − k̄, p, L)E|yk̄|p, k ≥ k̄ ≥ 0. (2.14)

A finite-time convergence condition is also assumed on the numerical methods.

Assumption 2. For all sufficiently small step sizes ∆, the numerical method ap-
plied to Eq. (2.1) with initial values x(0) = x0 ∈ Rn and r(0) = i0 ∈ S has the
property

sup
0≤k∆≤T

E|yk − x(k∆)|p ≤ CT |x0|pu(∆), ∀T ≥ 0, (2.15)

where CT depends on T but is independent of (x0, i0) ∈ Rn × S and ∆, and
u : R+ → R+ is a strictly increasing continuous function with u(0) = 0.
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Denote CT related to T for this notation is important in the subsequent analysis.
Meanwhile, for any k̄ ∈ Z+, let x̂(t) be the solution of SDEwMS (2.1) on t ≥ k̄∆
with initial values x̂(k̄∆) = yk̄ and r(k̄∆) = r∆

k̄
. Then, it follows from the time-

homogeneity of SDEwMS (2.1) and Remark 2.1 that (2.15) implies

sup
k̄∆≤k∆≤k̄∆+T

E|yk − x̂(t)|p ≤ CTE|yk̄|pu(∆). (2.16)

Similar to the proof of the Theorem 2.8 in [9], one can obtain the following
important lemma, which will be illustrated by the IEM method in the next section.

Lemma 2.1. Suppose that a numerical method satisfies Assumptions 1 and 2, then
the SDEwMS (2.1) with initial values x(0) = x0 ∈ Rn and r(0) = i0 ∈ S is pth
moment exponentially stable if and only if there exists a step size ∆ > 0 such that the
numerical method is pth moment exponentially stable with rate constant γ, growth
constant N , and global error constant CT satisfying

2pCTu(∆) + e−
3
4γT ≤ e− 1

2γT ,

where T = k̄∆ and k̄ is the smallest integer with k̄ ≥ 4 log(2pN)/(γ∆).

Lemma 2.1 shows that under Assumptions 1 and 2, the numerical method for
the sufficiently small step sizes ∆ is pth moment exponentially stable if and only if
the SDEwMS (2.1) is pth moment exponentially stable.

3. The improved Euler-Maruyama method

If Lemma 2.1 holds for any numerical solutions, it must need that the numerical so-
lutions have the Markov property and satisfy Assumptions 1 and 2. However, which
numerical method can produce such numerical solutions? The IEM method intro-
duced in this section will give a positive answer. Based on this, when the stochastic
stability is understood as the pth (p ∈ (0, 1)) moment exponential stability, one can
give positive answers to (Q1) and (Q2).

In order to analyze the IEM method and simulate the approximate solutions of
Eq. (2.1), the following lemma is useful ( [15]).

Lemma 3.1. Given ∆ > 0, let r∆
k = r(k∆) for k ≥ 0. Then {r∆

k , k = 0, 1, 2, . . .}
is a discrete Markov chain with one-step transition probability matrix.

p(∆) = (pij(∆))N×N = e∆Γ. (3.1)

Given a step size ∆ > 0, the discrete Markov chain {r∆
k , k = 0, 1, 2, . . .} can be

simulated as follows: Compute the one-step transition probability matrix by (3.1).
Let r∆

0 = i0 and generate a random number ξ1 which is uniformly distributed in
[0, 1]. Define

r∆
1 =


i1, if i1 ∈ S − {N} such that

i1−1∑
j=1

pi0,j(∆) ≤ ξ1 <
i1∑
j=1

pi0,j(∆),

N, if
N−1∑
j=1

pi0,j(∆) ≤ ξ1,
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where we set
0∑
i=1

pi0,j(∆) = 0 as usual. Generate independently a new random

number ξ2 which is again uniformly distributed in [0, 1] and then define

r∆
2 =


i2, if i2 ∈ S − {N} such that

i2−1∑
j=1

pr∆
1 ,j

(∆) ≤ ξ2 <
i2∑
j=1

pr∆
1 ,j

(∆),

N, if
N−1∑
j=1

pr∆
1 ,j

(∆) ≤ ξ2.

Repeating this procedure, a trajectory of {r∆
k , k = 0, 1, 2, . . .} can be generated.

This procedure can be carried out independently to obtain more trajectories. After
explaining how to simulate the discrete Markov chain {r∆

k , k = 0, 1, 2, . . .}, one can
now give the IEM numerical solutions of SDEwMS (2.1).

Let tk = k∆ for k ∈ Z+, the numerical solutions produced by the IEM method
are defined by{

y∗k = yk + f(yk, r
∆
k )∆ + g(yk, r

∆
k )∆ωk,

yk+1 = yk + 1
2 [f(yk, r

∆
k ) + f(y∗k, r

∆
k )]∆ + g(yk, r

∆
k )∆ωk.

(3.2)

with initial values x(0) = x0 ∈ Rn and r(0) = i0 ∈ S, where yk ≈ x(tk), ∆ωk =
ω(tk+1)− ω(tk) and r∆

k = r(tk).
Given yk̄(k̄ ∈ Z+), the process {yk}k≥k̄ can be fully determined by (3.2), but

how the process researches yk̄ has no further use, therefore, the discrete process
{yk}k∈Z+ is a time-homogeneous Markov process, that is, the IEM method (3.2)
has the Markov property.

The main result is stated in the following.

Theorem 3.1. Let (H0) hold. Then the SDEwMS (2.1) with initial values x(0) =
x0 ∈ Rn and r(0) = i0 ∈ S is pth moment exponentially stable if and only if there
exists a step size ∆ > 0 satisfying (1 ∨ 2L2)∆ < 1 such that the IEM method is pth
moment exponentially stable with rate constant γ, growth constant N , and global
error constant CT satisfying

2pCT (∆)
p
2 + e−

3
4γT ≤ e− 1

2γT ,

where T = k̄∆ and k̄ is the smallest integer with k̄ ≥ 4 log(2pN)/(γ∆).

Remark 3.1. If this theorem holds, one can positively answer both (Q1) and (Q2)
when the stochastic stability means the pth moment exponential stability.

In fact, as the IEM method (3.2) has the Markov property, if it also satisfies
Assumptions 1–2, then from Lemma 2.1, one can get the conclusion in Theorem 3.1.
Therefore, we just need to show that the IEM method (3.2) satisfies Assumptions
1–2. We shall prove Theorem 3.1 by several lemmas.

The following lemma is useful for proving that the IEM method satisfies As-
sumptions 1 and 2.

Lemma 3.2. Let (H0) hold. Let ∆ be sufficiently small for ∆ < 1, then the discrete
process {yk}k∈Z+ and {y∗k}k∈Z+ defined by the IEM method (3.2) satisfy

E|y∗k| ≤ KE|yk|, (3.3)

where K = 3(1 + 2L2).
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Proof. From (3.2), one can get

|y∗k|2 ≤ 3|yk|2 + 3|f(yk, r
∆
k )∆|2 + 3|g(yk, r

∆
k )∆ωk|2. (3.4)

By the linear growth condition (2.3), it follows

E|y∗k|2≤3E|yk|2 + 3E|f(yk, r
∆
k )∆|2 + 3E|g(yk, r

∆
k )∆ωk|2

≤3E|yk|2+3E|f(yk, r
∆
k )∆|2+3E|g(yk, r

∆
k )|2∆+3E

[
|g(yk, r

∆
k )|2(|∆ωk|2−∆)

]
≤3(1 + L2∆2 + L2∆)E|yk|2,

this and ∆ < 1 yield
E|y∗k| ≤ 3(1 + 2L2)E|yk|2. (3.5)

Hence, (3.3) holds. The proof is complete.

The following lemma shows that the IEM method satisfies Assumption 1.

Lemma 3.3. Let (H0) hold. Let ∆ be sufficiently small for ∆ < 1, then the discrete
process {yk}k∈Z+ defined by the IEM method (3.2) satisfies

sup
0≤tk≤T

E|yk|p ≤ H̄(T, p, L)|x0|p, ∀T ≥ 0, (3.6)

where H̄(T, p, L) = 2pe
p
2L

2[(K+1)T+4]T .

Proof. Let z1(t) =
∞∑
k=0

yk1[tk,tk+1)(t), z2(t) =
∞∑
k=0

y∗k1[tk,tk+1)(t), where 1G is the

indicator function for the set G. It is easy to see from (3.2) that

yk+1 =x0 +
1

2

∫ tk+1

0

f(z1(s), r̄(s))ds+
1

2

∫ tk+1

0

f(z2(s), r̄(s))ds

+

∫ tk+1

0

g(z1(s), r̄(s))dω(s),

where z1(t) = yk, z2(t) = y∗k and r̄(t) = r∆
k for t ∈ [tk, tk+1). Applying the Hölder

inequality, for 0 ≤ tk+1 ≤ T (∀k ∈ Z+), one can show that

|yk+1|2 ≤4

(
|x0|2 +

1

4

∣∣∣∣∫ tk+1

0

f(z1(s), r̄(s))ds

∣∣∣∣2 +
1

4

∣∣∣∣∫ tk+1

0

f(z2(s), r̄(s))ds

∣∣∣∣2

+

∣∣∣∣∫ tk+1

0

g(z1(s), r̄(s))dω(s)

∣∣∣∣2
)

≤4|x0|2 + T

∫ tk+1

0

|f(z1(s), r̄(s))|2ds+ T

∫ tk+1

0

|f(z2(s), r̄(s))|2ds

+ 4

∣∣∣∣∫ tk+1

0

g(z1(s), r̄(s))dω(s)

∣∣∣∣2 .
According to the linear growth condition (2.3), it follows

E|yk+1|2≤4|x0|2 + L2T

∫ tk+1

0

E|z1(s)|2ds+L2T

∫ tk+1

0

E|z2(s)|2ds+4L2

∫ tk+1

0

E|z1(s)|2ds
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=4|x0|2 + L2(T + 4)∆

k∑
j=0

E|yj |2 + L2T∆

k∑
j=0

E|y∗j |2.

By employing (3.3), one can obtain

E|yk+1|2 ≤ 4|x0|2 + L2[(K + 1)T + 4]∆

k∑
j=0

E|yj |2.

By the discrete Gronwall inequality (see Theorem 2.5 of [11]), one obtains

E|yk+1|2 ≤ 4eL
2[(K+1)T+4]T |x0|2,

implies

sup
0≤tk+1≤T

E|yk+1|2 ≤ 4eL
2[(K+1)T+4]T |x0|2. (3.7)

For p ∈ (0, 1), by the Hölder inequality, it is easy to see

sup
0≤tk+1≤T

E|yk+1|p ≤

(
sup

0≤tk+1≤T
E|yk+1|2

) p
2

≤ 2pe
p
2L

2[(K+1)T+4]T |x0|p. (3.8)

Therefore, (3.6) holds. The proof is complete.

In order to prove that the IEM method satisfies Assumption 2, we need the
following lemma.

Lemma 3.4. Let (H0) hold. Let ∆ be sufficiently small for 2L2∆ < 1, then the
solution of SDEwMS (2.1) has the property

E|x(t)− x(tk)|2 ≤ C̄T∆|x0|2, 0 ≤ tk ≤ t ≤ tk+1 ≤ T (3.9)

where C̄T = 3(1 + 2L2)e3L2T (T+1).

Proof. It follows from Eq. (2.1) that

x(t)− x(tk) =

∫ t

tk

f(x(s), r(s))ds+

∫ t

tk

g(x(s), r(s))dω(s),

one can show that

E|x(t)− x(tk)|2 ≤ 2L2(∆ + 1)

∫ t

tk

E|x(s)|2ds ≤ (1 + 2L2)

∫ t

tk

E|x(s)|2ds.

From (2.6), one gains

E|x(t)− x(tk)|2 ≤ 3(1 + 2L2)e3L2T (T+1)∆|x0|2,

which implies (3.9) holds. The proof is complete.

Lemma 3.5. Let (H0) hold. Let p ∈ (0, 1) and ∆ be sufficiently small for (1 ∨
2L2)∆ < 1, then the IEM numerical solution (3.2) and the true solution of SDEwMS
(2.1) satisfy

sup
0≤k∆≤T

E|yk − x(tk)|p ≤ CT (∆)
p
2 |x0|p, ∀T > 0, (3.10)
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where
CT = B

p
2 e6pL2(T+1)T ,

here

B = 6C1 +
3

2
TC1(1 +K) + 6L2TC̄T (T + 2) + 72L4T 2eL

2[(K+1)T+4]

with
C1 = 16L2TeL

2[(K+1)T+4]T max
1≤i≤N

(−γii),

and C̄T is defined in Lemma 3.4.

Proof. From SDEwMS (2.1) and

yk+1 =x0+

∫ tk+1

0

[
1

2
f(z1(s), r̄(s))+

1

2
f(z2(s), r̄(s))

]
ds+

∫ tk+1

0

g(z1(s), r̄(s))dω(s),

it follows

yk+1 − x(tk+1) =

∫ tk+1

0

[
1

2
f(z1(s), r̄(s)) +

1

2
f(z2(s), r̄(s))− f(x(s), r(s))

]
ds

+

∫ tk+1

0

(g(z1(s), r̄(s))− g(x(s), r(s))) dω(s).

Using the Hölder inequality, and then taking expectation, one obtains

E|yk+1 − x(tk+1)|2 ≤3

4
T

∫ tk+1

0

E|f(z1(s), r̄(s))− f(x(s), r(s))|2ds

+
3

4
TE

∫ tk+1

0

|f(z2(s), r̄(s))− f(x(s), r(s))|2ds

+ 3

∫ tk+1

0

E|g(z1(s), r̄(s))− g(x(s), r(s))|2ds

=
3

4
TJ1

k (t) +
3

4
TJ2

k (t) + 3TJ3
k (t), (3.11)

where

J1
k (t) =

∫ tk+1

0

E|f(z1(s), r̄(s))− f(x(s), r(s))|2ds,

J2
k (t) = E

∫ tk+1

0

|f(z2(s), r̄(s))− f(x(s), r(s))|2ds,

J3
k (t) =

∫ tk+1

0

E|g(z1(s), r̄(s))− g(x(s), r(s))|2ds.

In order to get the inequality (3.10), one needs to estimate J ik(t)(i = 1, 2, 3). In the
following, we estimate J ik(t)(i = 1, 2, 3) step by step.

Step 1. Estimate J1
k (t). Let x1(t) =

∞∑
k=0

x(tk)1[tk,tk+1)(t). Then, for 0 ≤ tk+1 ≤

T , by the Hölder inequality, (H0) and Lemma 3.4, it is easy to see

J1
k (t) ≤2

∫ tk+1

0

E |f(z1(s), r̄(s))− f(z1(s), r(s))|2 ds
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+ 2

∫ tk+1

0

E |f(z1(s), r(s))− f(x(s), r(s))|2 ds

≤2

∫ tk+1

0

E |f(z1(s), r̄(s))− f(z1(s), r(s))|2 ds+ 2L2

∫ tk+1

0

E|z1(s)− x(s)|2ds

≤2

∫ tk+1

0

E |f(z1(s), r̄(s))− f(z1(s), r(s))|2 ds+ 4L2

∫ tk+1

0

E|z1(s)− x1(s)|2ds

+ 4L2

∫ tk+1

0

E|x1(s)− x(s)|2ds. (3.12)

It follows (3.9) that

J1
k (t) ≤2

∫ tk+1

0

E|f(z1(s), r̄(s))− f(z1(s), r(s))|2ds

+ 4L2

∫ tk+1

0

E|z1(s)− x1(s)|2ds+ 4L2
k∑
j=0

∫ tj+1

tj

E|x(tj)− x(s)|2ds

≤2E

∫ tk+1

0

|f(z1(s), r̄(s))− f(z1(s), r(s))|2ds

+ 4L2

∫ tk+1

0

E|z1(s)− x1(s)|2ds+ 4L2TC̄T |x0|2∆.

≤2E

∫ tk+1

0

|f(z1(s), r̄(s))− f(z1(s), r(s))|2ds

+ 4L2∆

k∑
j=0

E|yj − x(tj)|2 + 4L2TC̄T |x0|2∆. (3.13)

According to the linear growth condition (2.3) and Markov property, one gains∫ tj+1

tj

E|f(yj , r
∆
j )−f(yj , r(s))|2ds≤2

∫ tj+1

tj

E[(|f(yj , r
∆
j )|2+|f(yj , r(s))|2)1{r(s) 6=r∆

j }]ds

≤4L2

∫ tj+1

tj

E(|yj |21{r(s)6=r∆
j })ds

≤4L2

∫ tj+1

tj

E[E(|yj |21{r(s)6=r∆
j }|r

∆
j )]ds

≤4L2

∫ tj+1

tj

E
[
E(|yj |2|r∆

j )E(1{r(s)6=r∆
j }|r

∆
j )
]
ds,

(3.14)

where in the last step we use the fact that yj and 1{r(s) 6=r∆
j } are conditionally

independent with respect to the σ-algebra generated by r∆
j . Similar to estimate

(4.16) in Theorem 4.1 of [11], one can gain

E[1{r(s)6=r∆
j }|r

∆
j ] ≤ C∆ + o(∆) (3.15)

with C = max
1≤i≤N

(−γii). Substituting (3.15) into (3.14), it follows from (3.7) that∫ tj+1

tj

E
∣∣f(yj , r

∆
j )− f(yj , r(s))

∣∣2 ds ≤ 4L2(C∆ + o(∆))

∫ tj+1

tj

E|yj |2ds
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≤ 16L2eL
2[(K+1)T+4]T (C∆ + o(∆))∆|x0|2,

then

E

∫ tk+1

0

|f(z1(s), r̄(s))−f(z1(s), r(s))|2ds=

k∑
j=0

E

∫ tj+1

tj

|f(yj , r
∆
j )−f(yj , r(s))|2ds

≤ 16L2TeL
2[(K+1)T+4]T (C∆ + o(∆))|x0|2

∆
= (C1∆ + o(∆))|x0|2. (3.16)

Applying (3.16) to (3.13), one has

J1
k (t) ≤ 2(C1 + 2L2TC̄T )∆|x0|2 + 4L2∆

k∑
j=0

E|yj − x(tj)|2. (3.17)

Step 2. Estimate J2
k (t). By the Hölder inequality, the linear growth condition

(2.3), and Lemma 3.2, similar to estimate J1
k (t), one can obtain

J2
k (t) ≤ 2(KC1 + 2L2TC̄T )∆|x0|2 + 4L2∆

k∑
j=0

E|y∗j − x(tj)|2. (3.18)

In order to estimate the J2
k (t), here we need to further simplify

k∑
j=0

E|y∗j − x(tj)|2.

Using (3.2) and the linear growth condition (2.3), one yields

k∑
j=0

E|y∗j − x(tj)|2 =

k∑
j=0

E|yj + f(yj , r
∆
j )∆ + g(yj , r

∆
j )∆ωj − x(tj)|2

≤3

k∑
j=0

E|yj − x(tj)|2 + 3(∆)2
k∑
j=0

E|f(yj , r
∆
j )|2

+ 3

k∑
j=0

E|g(yj , r
∆
j )∆ωj |2

≤3

k∑
j=0

E|yj − x(tj)|2 + 3L2(∆)2
k∑
j=0

E|yj |2 + 3L2∆

k∑
j=0

E|yj |2,

together with (3.7), for 0 ≤ k∆ ≤ T and ∆ < 1, one obtains

k∑
j=0

E|y∗j − x(tj)|2 ≤ 3

k∑
j=0

E|yj − x(tj)|2 + 24L2TeL
2[(K+1)T+4]T |x0|2, (3.19)

this and (3.18) yield

J2
k (t) ≤2(KC1 + 2L2TC̄T )∆|x0|2 + 12L2∆

k∑
j=0

E|yj − x(tj)|2

+ 96L4T∆eL
2[(K+1)T+4]T |x0|2. (3.20)
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Step 3. Estimate J3
k (t). Similar to the estimate J1

k (t), one can derive

J3
k (t) ≤ 2(C1 + 2L2TC̄T )∆E|x0|2 + 4L2∆

k∑
j=0

E|yj − x(tj)|2. (3.21)

Based on Steps 1-3, it follows from (3.17) and (3.20)–(3.21) that

E|yk+1 − x(tk+1)|2 ≤
(

3

2
TC1 + 3L2T 2C̄T

)
∆|x0|2 + 3L2T∆

k∑
j=0

E|yj − x(tj)|2

+

(
3

2
KTC1 + 3L2T 2C̄T

)
∆|x0|2 + 9L2T∆

k∑
j=0

E|yj − x(tj)|2

+ 72L4T 2eL
2[(K+1)T+4]T∆|x0|2 + (6C1 + 12L2TC̄T )∆|x0|2

+ 12L2∆
k∑
j=0

E|yj − x(tj)|2

∆
=B∆|x0|2 + 12L2(T + 1)

k∑
j=0

E|yj − x(tj)|2∆,

where B is defined as before. By discrete Gronwall inequality, it is easy to see that

E|yk+1 − x(tk+1)|2 ≤ Be12L2T (T+1)∆|x0|2.

Therefore, it follows from the Hölder inequality that for p ∈ (0, 1)

sup
0≤tk≤T

E|yk − x(tk)|p ≤ B
p
2 e6pL2T (T+1)(∆)

p
2 |x0|p = CT (∆)

p
2 |x0|p (3.22)

yields (3.10). The proof is therefore complete.

Remark 3.2. Under the global Lipschitz condition, one can see that lemmas 3.3
and 3.5 imply the IEM method (3.2) satisfies Assumptions 1 and 2 for the sufficiently
small step sizes ∆, respectively.

Proof of Theorem 3.1. It follows from Lemma 2.1, Lemma 3.3 and Lemma 3.5,
one can obtain Theorem 3.1.

4. Almost sure exponential stability

This section discusses the relationship between the pth moment exponential stability
and the almost sure exponential stability of the SDEwMS (2.1). We show that the
pth moment exponential stability of the true solution and the numerical solution
for Eq.(2.1) imply the almost sure exponential stability of the true solution and the
numerical solution, respectively.

The following theorem reveals that the pth moment exponential stability of the
true solution implies the almost sure exponential stability. Readers can refer to
Theorem 5.9 of [11].
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Theorem 4.1. Let (H0) hold. Assume that the SDEwMS (2.1) is pth moment
exponentially stable and satisfies (2.8). Then the solution x(t) of the SDEwMS
(2.1) with initial values x(0) = x0 ∈ Rn and r(0) = i0 ∈ S satisfies

lim sup
t→∞

log(|x(t)|)
t

≤ −λ
p

a.s. (4.1)

That is, SDEwMS (2.1) is almost surely exponentially stable.

The following result shows that the pth moment exponential stability of the
numerical solution also implies the almost sure exponential stability. The proof of
this result is similar to the proof of Theorem 4.2 in [9], here we omit it.

Theorem 4.2. Assume that the numerical method is pth moment exponentially
stable and satisfies (2.11). Then the numerical solution yk of SDEwMS (2.1) with
initial values x(0) = x0 ∈ Rn and r(0) = i0 ∈ S satisfies

lim sup
k→∞

1

k∆
log(|yk|) ≤ −

γ

p
a.s. (4.2)

That is, the numerical method of SDEwMS (2.1) is also almost surely exponentially
stable.

5. Numerical simulation

This section presents a numerical example to illustrate the efficiency of the obtained
results.

Denote C2(Rn×S;R+) the family of all non-negative functions V (x, i) on (Rn×
S) that are continuously twice differentiable in x. For each V (x, i) ∈ C2(Rn×S;R+)
define an operator LV from Rn × S to R:

LV (x, i) = V Tx (x, i)f(x, i) +
1

2
trace[gT (x, i)Vxx(x, i)g(x, i)] +

∑
j∈S

γijV (x, j).

Let ω(t) be a scalar Brownian motion. Let r(t) be a right-continuous time-homogeneous
Markov chain taking values S = {1, 2} with generator

Γ = (γij)2×2=

−2 2

4 −4

 .
It is easy to see that the Markov chain has a unique stationary distribution π =
( 2

3 ,
1
3 ). We assume that ω(t) and r(t) are independent.

Example 5.1. Consider the following nonlinear scalar SDEwMS:

dx(t) = f(x(t), r(t))dt+ g(x(t), r(t))dω(t), t > 0, (5.1)

where x(0) = 1, r(0) = 1 and for ∀(x, i) ∈ R× S,

f(x, i) = sinx− 5x and g(x, i) = 2x, if i = 1,

f(x, i) = x and g(x, i) =
1

2
x, if i = 2. (5.2)
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Note that the drift coefficient f(x, i) and diffusion coefficient g(x, i) of Eq. (5.1)
satisfy (H0). One can choose V (x, i) = |x|2. It is easy to show that LV (x, 1) ≤
−4x2, and LV (x, 2) ≤ 2.25x2. We hence have λ = (−4, 2.25). By Theorem 3.1
in [20], one can obtain Eq. (5.1) is mean square exponentially stable. Applying
the Hölder inequality, it is easy to see that Eq. (5.1) is pth (p ∈ (0, 1)) moment
exponentially stable. According to the Theorems 3.1, 4.1 and 4.2, one can obtain
Eq. (4.1) is almost surely exponentially stable (Lyapunov exponent is less than
-0.1686) and the IEM method (3.2) with appropriate step sizes applied to (5.1) is
also almost surely exponentially stable.

We can rewrite Eq. (4.1) into the following two equations

dx(t) = (sin(x(t))− 5x(t))dt+ 2x(t)dω(t) (5.3)

and

dx(t) = x(t)dt+
1

2
x(t)dω(t), (5.4)

switching from one to the other according to the movement of the Markov chain
r(t). We can also prove that (5.3) is almost surely exponentially stable (Lyapunov
exponent is less than -2) and the IEM method (3.2) with appropriate step sizes
applied to (5.3) is also almost surely exponentially stable, while (5.4) is almost
surely exponentially unstable (Lyapunov exponent is greater than 0.875) and the
IEM method (3.2) with appropriate step sizes applied to (5.4) is also almost surely
exponentially stable. However, as the result of the Markovian switching, the overall
behavior of Eq. (5.1) is also almost surely exponentially stable.
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Figure 1. The sample paths of the solution to (5.1).

On the other hand, choose the step size ∆ = 10−3 and carry out the numerical
simulation of Eq. (5.1), Eq. (5.3) and Eq. (5.4) with initial values x0 = 1 and
r0 = 1 based on the IEM method (3.2). The corresponding figures are shown in
Figure 1 and Figure 2, respectively. From these figures, it can be seen that the
numerical simulation with an appropriate sufficiently small step size is consistent
with the theoretical results.

6. Conclusions

This paper investigates the exponential stability of SDEwMSs and its corresponding
IEM method with sufficiently small step sizes. It illustrates that under the global
Lipschitz condition, the SDEwMS is pth (p ∈ (0, 1)) moment exponentially stable if
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Figure 2. The sample paths of the solution to (5.3)(left panel), and the sample paths of the solution
to (5.4)(right panel).

and only if the corresponding IEM method with sufficiently small step sizes is pth
(p ∈ (0, 1)) moment exponentially stable. Based on such theory, when the stochastic
stability is understood as the pth (p ∈ (0, 1)) moment exponential stability, we can
give positive answers to (Q1) and (Q2) for the SDEwMS. It further derives that
the pth moment exponential stability of such SDEwMS or the corresponding IEM
method implies the almost sure exponential stability of the SDEwMS and the IEM
method. Lyapunov functions method is the classical yet powerful technique in the
study of stochastically stable, but in general, it is not convenient for us to use this
technique for there is no an universal method can guarantee to find an appropriate
Lyapunov function. When the Lyapunov functions approach is not available, the
theory established in this paper enables us to study the exponential stability of
SDEwMSs using the corresponding IEM method. Therefore, we can now carry out
careful numerical simulation using the IEM method with a sufficiently small step
size to simulate the solutions of SDEwMSs, so as to study the stochastic stability
of SDEwMSs.
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