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1. Introduction

In this paper, we deal with the initial-boundary value problem

ut −∆u = f(u), (xxx, t) ∈ Ω× (0, t∗),

u = 0, (xxx, t) ∈ Γ0 × (0, t∗),

∂u

∂nnn
= g(u), (xxx, t) ∈ Γ1 × (0, t∗),

u(xxx, 0) = u0(xxx) ≥ 0, xxx ∈ Ω,

(1.1)

where Ω is a bounded domain of RN (N ≥ 2) with smooth boundary Γ := ∂Ω, Γ =
Γ0∪Γ1, meas (Γ0 ∩ Γ1) = 0, meas (Γ0) ≥ 0, meas (Γ1) > 0 and nnn = (n1, n2, · · · , nN )
is the unit outward normal vector on Γ1, u0 ∈ C1

(
Ω
)
, u0(xxx) ≥ 0, u0 6≡ 0, and t∗

is the blow-up time if blow-up occurs. From the physical standpoint, f is the heat
source function and g is the heat conduction function transmitting into interior of
Ω from the boundary Γ1.

The blow-up phenomena of solutions to evolution partial differential equations
has received considerable attentions in recent years. For the work in this area, the
reader can refer to the book Quittner [9] and papers [1, 4]. Many methods have
been used to determine the blow-up of solutions and to indicate an upper bound
of the blow-up time. To our knowledge, the first work on lower bound of t∗ was
given by Weissler [10,11]. Recently, a number of papers deriving lower bound of t∗

in various problems have appeared (see [2,3,6–8,12,13] and the references therein).
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The blow-up for nonlinear equations with Neumann boundary conditions has
received considerable attentions. Payne and Schaefer [6] considered homogeneous
equation without heat source term

ut = ∆u, (xxx, t) ∈ Ω× (0, t∗).

Under suitable nonlinear conditions, they deduced a lower bound of the blow-up
time when blow-up occurs only in three-dimensional space. Mizoguchi [5] studied
the semilinear heat equation with a power function heat source term

ut = ∆u+ up, (xxx, t) ∈ Ω× (0, T ),

and showed that if u blows up at t = T , then |u(t)|∞ ≤ C(T − t)−
1
p−1 for some

C > 0. Payne etc [8] considered heat equation with general heat source term

ut = ∆u− f(u) xxx ∈ Ω, t ∈ (0, t∗),

and established conditions on nonlinearities to guarantee that u(xxx, t) blows up at
some finite time t∗. Moreover, an upper bound for t∗ was derived. Under some more
restrictive conditions, a lower bound for t∗ was derived only in three-dimensional
space. Li and Li [2] investigated nonhomogeneous divergence form parabolic equa-
tion

ut =

N∑
i=1

(aij(xxx)uxi)xj − f(u), t ∈ (0, t∗), xxx = (x1, x2, · · · , xN ) ∈ Ω,

and gave the conditions on nonlinearities to guarantee that u(xxx, t) exists globally or
blows up at some finite time respectively. If blow-up occurs, they obtained upper
and lower bounds of the blow-up time, but the lower bound of t∗ was valid only in
three-dimensional space.

Motivated by the above work, we intend to study the blow-up phenomena for
problem (1.1). It is well known that the data f and g may greatly affect the behavior
of u(xxx, t) with the development of time. The larger the heat source function f and
conduction function g are, the greater possibility the blow-up will occur, and the
earlier blow-up time will be. The main contributions of this paper are: (i) the
conditions of blow-up are derived naturally by means of calculation process, and
some examples satisfying the conditions are given; (ii) the lower bound of blow-up
time is given under the conditions that ensure occurrence of blow-up phenomena;
(iii) the lower bound of blow-up time is obtained in multi-dimensional space which
improves the situation discussed in three-dimensional space.

The present work is organized as follows. In Section 2, we derive the conditions
on f, g to ensure that the solutions blow up at finite time and obtain an upper
bound of the blow-up time. In Section 3, under the conditions on f and g that
guarantee the occurrence of blow-up, we get a lower bound of blow-up time t∗ in
multi-dimensional space.

2. Blow-up and upper bound estimation of t∗

In order to derive the sufficient conditions for blow-up phenomena and the upper
bound of blow-up time, we first give the following calculation. From the physical
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background and characteristics of the equation, we know that if the functions f, g
are nonnegative, then the solution to (1.1) is nonnegative and smooth.

Multiplying the equation of (1.1) by u and integrating on Ω, we obtain∫
Ω

uutdxxx =

∫
Ω

u∆udxxx+

∫
Ω

uf(u)dxxx,

that is

1

2

d

dt

∫
Ω

u2dxxx =

∫
Γ1

u
∂u

∂nnn
dS −

∫
Ω

|∇u|2dxxx+

∫
Ω

uf(u)dxxx. (2.1)

These calculations inspire us to define

Φ(t) :=
1

2

∫
Ω

u2dxxx.

If

ug(u) ≥ γG(u), uf(u) ≥ γF (u), (2.2)

where

G(ξ) =

∫ ξ

0

g(s)ds, F (ξ) =

∫ ξ

0

f(s)ds, γ ≥ 2, (2.3)

then, from (2.1), we have

Φ′(t) =

∫
Γ1

ug(u)dS −
∫

Ω

|∇u|2dxxx+

∫
Ω

uf(u)dxxx

≥ γ
[∫

Γ1

G(u)dS − 1

2

∫
Ω

|∇u|2dxxx+

∫
Ω

F (u)dxxx

]
. (2.4)

Denote

Θ(t) :=

∫
Γ1

G(u)dS − 1

2

∫
Ω

|∇u|2dxxx+

∫
Ω

F (u)dxxx,

then with (2.4) we see

Φ′(t) ≥ γΘ(t). (2.5)

Since

Θ′(t) =

∫
Γ1

g(u)utdS −
1

2

∫
Ω

(|∇u|2)tdxxx+

∫
Ω

f(u)utdxxx, (2.6)

and noting

1

2

(
|∇u|2

)
t

= div(ut∇u)− ut∆u,

by using divergence theorem, we get that

1

2

∫
Ω

(
|∇u|2

)
t
dxxx =

∫
Ω

[div(ut∇u)− ut∆u] dxxx
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=

∫
Γ1

ut
∂u

∂nnn
dS −

∫
Ω

ut∆udxxx

=

∫
Γ1

utg(u)dS −
∫

Ω

ut∆udxxx. (2.7)

Substituting (2.7) into (2.6), we have

Θ′(t) =

∫
Ω

ut [∆u+ f(u)] dxxx =

∫
Ω

u2
tdxxx ≥ 0. (2.8)

Assuming

Θ(0) =

∫
Γ1

G(u0)dS − 1

2

∫
Ω

|∇u0|2dxxx+

∫
Ω

F (u0) > 0, (2.9)

we have Θ(t) > 0 for any t ∈ (0, t∗). Using the definition of Φ(t), (2.8) and Hölder’s
inequality, we have

(Φ′(t))
2

=

(∫
Ω

uutdxxx

)2

≤
(∫

Ω

u2dxxx

)(∫
Ω

u2
tdxxx

)
= 2Φ(t)Θ′(t). (2.10)

Combining (2.10) and (2.5), we obtain

Φ(t)Θ′(t) ≥ 1

2
(Φ′(t))2 ≥ γ

2
Φ′(t)Θ(t),

that is

Φ(t)Θ′(t) ≥ γ

2
Φ′(t)Θ(t). (2.11)

Multiplying the both sides of (2.11) by Φ−( γ2 +1), we deduce(
Θ(t)Φ−

γ
2 (t)

)′
= Φ−( γ2 +1)(t)

(
Φ(t)Θ′(t)− γ

2
Φ′(t)Θ(t)

)
≥ 0. (2.12)

Integrating (2.12) over [0, t] yields

Θ(t)Φ−
γ
2 (t) ≥ Θ(0)Φ−

γ
2 (0) =: M,

that is

Θ(t) ≥MΦ
γ
2 (t). (2.13)

By (2.5) and (2.13), we get

Φ′(t) ≥ γΘ(t) ≥ γMΦ
γ
2 (t), (2.14)

which implies (if γ > 2) that

Φ−
γ
2 (t)Φ′(t) ≥ γM ⇒ 2

2− γ

(
Φ−

γ
2 +1(t)

)′
≥ γM

⇒
(

Φ−
γ
2 +1(t)

)′
≤ 2− γ

2
γM
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⇒ Φ−
γ
2 +1(t) ≤ Φ−

γ
2 +1(0) +

2− γ
2

γMt

⇒ Φ
γ
2−1(t) ≥ 1

Φ−
γ
2 +1(0)− γ−2

2 γMt

⇒ Φ(t) ≥ 1[
Φ−

γ
2 +1(0)− γ−2

2 γMt
] 2
γ−2

. (2.15)

Therefore,

lim
t→t∗

Φ(t) = +∞, (2.16)

where t∗ ≤ T = 2Φ(0)
γ(γ−2)Θ(0) (by the definition of M).

Summarizing the above conditions and processes, we can get the following the-
orem.

Theorem 2.1. Supposed that Ω ⊂ RN (N ≥ 2) is a bounded domain, and the
nonnegative integrable functions f and g satisfy the conditions for some constant
γ > 2:

ξf(ξ) ≥ γF (ξ), ξg(ξ) ≥ γG(ξ), ∀ξ ≥ 0,

with

F (ξ) :=

∫ ξ

0

f(s)ds, G(ξ) :=

∫ ξ

0

g(s)ds.

Moreover, we assume Θ(0) > 0 with

Θ(t) =

∫
Γ1

G(u)dS − 1

2

∫
Ω

|∇u|2dxxx+

∫
Ω

F (u)dxxx.

Then the nonnegative classical solution u(xxx, t) of problem (1.1) blows up at time
t∗ ≤ T with

T =
2Φ(0)

γ(γ − 2)Θ(0)
,

where Φ(t) = 1
2

∫
Ω
u2dxxx.

Remark 2.1. (1) If we choose f(u) = uα, g(u) = uβ , (α, β > 1), u0(x) = constant >
0, then all the conditions in the theorem are satisfied.

(2) When the equation has no heat source, that is f ≡ 0, we can choose g(u) =
uβ , (β > 1), u0(x) = constant > 0, then all the conditions in the theorem are
also satisfied. This situation shows that blow-up phenomena only depending on
boundary heat conduction may also occur, but the blow-up time will be delayed.

(3) When the boundary is adiabatic, that is g ≡ 0, we can choose f(u) =
uα, (α > 1), u0(x) = constant > 0, then all the conditions in the theorem are also
satisfied. This situation shows that blow-up phenomena only depending on heat
source may also occur, but the blow-up time will be delayed.

(4) When the equation has no heat source and the boundary is adiabatic, that is
f ≡ 0 and g ≡ 0, from (2.1), we know that the energy functional Φ(t) is decreasing,
so blow-up phenomena will not occur.
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Remark 2.2. Our theorem can be used to explain the results for some problems
in literatures. For example, in [12,13], the authors dealt with a heat equation with
a local nonlinear Neumann boundary conditions:

ut = ∆u, in Ω× (0, t∗),

∂u

∂nnn
= uq, on Γ1 × (0, t∗),

∂u

∂nnn
= 0, on Γ2 × (0, t∗),

u(xxx, 0) = u0(xxx), in Ω,

where q > 1, u0 ∈ C1(Ω), u0(xxx) ≥ 0, and u0(xxx) 6≡ 0.
In fact, for q > 1, there exists a constant γ > 2 such that γ

1+q ≤ 1, that is

ug(u) = uq+1 ≥ γ
∫ u

0

sqds =
γ

1 + q
uq+1.

One can choose a suitable u0(xxx) such that all the conditions in the Theorem 2.1 are
satisfied. Consequently, the blow-up phenomena occurs.

3. Lower bound estimation of t∗

Lemma 3.1. Let Ω ⊂ RN (N ≥ 2) be a bounded star-shaped domain assumed to
be convex in N − 1 orthogonal directions. Then for any nonnegative increasing C1

function P (w), we have∫
∂Ω

P (w)dS ≤ N

ρ0

∫
Ω

P (w)dxxx+
d

ρ0

∫
Ω

P ′(w)|∇w|dxxx,

where

ρ0 := min
xxx∈∂Ω

(xxx ·nnn), d := max
xxx∈∂Ω

|xxx|.

Proof. Since Ω is a bounded star-shaped domain, we have ρ0 > 0. Integrating the
identity

div(P (w)xxx) = NP (w) + P ′(w)(xxx · ∇w)

over Ω, and using the divergence theorem, we get∫
∂Ω

P (w)(xxx ·nnn)dS = N

∫
Ω

P (w)dxxx+

∫
Ω

P ′(w)(xxx · ∇w)dxxx.

By the definitions of ρ0 and d, it follows that

ρ0

∫
∂Ω

P (w)dS ≤
∫
∂Ω

P (w)(xxx ·nnn)dS

≤ N
∫

Ω

P (w)dxxx+

∫
Ω

P ′(w)|xxx||∇w|dxxx

≤ N
∫

Ω

P (w)dxxx+ d

∫
Ω

P ′(w)|∇w|dxxx,

which implies the desire conclusion.
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Lemma 3.2. Assume that Ω ⊂ RN (N ≥ 3) is a bounded star-shaped domain as-
sumed to be convex in N − 1 orthogonal directions. Let w(xxx) be a nonnegative C1

function defined in Ω. Then for any constant σ ≥ 1, the following inequality holds∫
Ω

w(1+ 1

2N−2 )σdxxx

≤(1 + 2d)N−3

[
N

2ρ0

∫
Ω

wσdxxx+
σ

2

(
1 +

d

ρ0

)∫
Ω

wσ−1|∇w|dxxx
]1+ 1

2N−2

,

where

ρ0 := min
xxx∈∂Ω

(xxx · n) > 0, d := max
xxx∈∂Ω

|xxx|.

Proof. Using mathematical induction method and iterated integral formula, we
can finish the proof.

In this section, in the multi-dimensional space, we give the lower bound of blow-
up time under the conditions that guarantee the occurrence of blow-up phenomena.
We assume that functions f and g satisfying

f(ξ) ≡ 0, γG(ξ) ≤ ξg(ξ) ≤ τξ2+ 1

2N−2 , ξ ≥ 0, γ > 2 (3.1)

for τ > 0. For

ϕ(t) :=
1

2

∫
Ω

u2dxxx, (3.2)

we can show that ϕ(t) satisfies

ϕ′(t) ≤ Ψ(ϕ) (3.3)

for some computable function Ψ. Then it follows that t∗ is bounded by

t∗ ≥
∫ ∞
ϕ(0)

dη

Ψ(η)
. (3.4)

Indeed, differentiating (3.2), we have (noting f ≡ 0)

ϕ′(t) =

∫
Ω

uutdxxx =

∫
Ω

u [∆u+ f(u)] dxxx =

∫
Γ1

ug(u)dS −
∫

Ω

|∇u|2dxxx

≤ τ
∫

Γ1

u2+ 1

2N−2 dS −
∫

Ω

|∇u|2dxxx. (3.5)

Using Lemma 3.1, we have∫
Γ1

u2+ 1

2N−2 dS ≤
∫
∂Ω

u2+ 1

2N−2 dS

≤ N

ρ0

∫
Ω

u2+ 1

2N−2 dxxx+
(2N−1 + 1)d

2N−2ρ0

∫
Ω

u1+ 1

2N−2 |∇u|dxxx. (3.6)

Using Hölder’s and Young’s inequalities, we get∫
Ω

u2+ 1

2N−2 dxxx ≤ 1

2

∫
Ω

u2+ 1

2N−3 dxxx+
1

2

∫
Ω

u2dxxx
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=
1

2

∫
Ω

u2+ 1

2N−3 dxxx+ ϕ(t), (3.7)

and ∫
Ω

u1+ 1

2N−2 |∇u|dxxx ≤ 1

2µ

∫
Ω

u2+ 1

2N−3 dxxx+
µ

2

∫
Ω

|∇u|2dxxx, (3.8)

for all µ > 0.
Inserting (3.6)-(3.8) into (3.5), we obtain

ϕ′(t) ≤ Nτ

ρ0
ϕ(t) +

τ

2ρ0

(
N +

(2N−1 + 1)d

2N−2µ

)∫
Ω

u2+ 1

2N−3 dxxx

+

(
(2N−1 + 1)µτd

2N−1ρ0
− 1

)∫
Ω

|∇u|2dxxx. (3.9)

Applying Lemma 3.2 and Hölder’s inequality, we have∫
Ω

u2+ 1

2N−3 dxxx =

∫
Ω

u(1+ 1

2N−2 )2dxxx

≤ (1 + 2d)N−3

(
N

2ρ0

∫
Ω

u2dxxx+

(
1 +

d

ρ0

)∫
Ω

u|∇u|dxxx
)1+ 1

2N−2

≤ (1 + 2d)N−3

(
N

2ρ0

∫
Ω

u2dxxx+

(
1 +

d

ρ0

)(∫
Ω

u2dxxx

∫
Ω

|∇u|2dxxx
) 1

2

)1+ 1

2N−2

≤ C(1 + 2d)N−3

[(
N

ρ0

)1+ 1

2N−2

ϕ1+ 1

2N−2 (t)

+

(
1 +

d

ρ0

)1+ 1

2N−2

2
1
2 + 1

2N−1 ϕ
1
2 + 1

2N−1 (t)

(∫
Ω

|∇u|2dxxx
) 1

2 + 1

2N−1

]
(3.10)

for some constant C. Using Young’s inequality with ε, we have

ϕ
1
2 + 1

2N−1 (t)

(∫
Ω

|∇u|2dxxx
) 1

2 + 1

2N−1

=

(
ε

2N−2+1

2N−1

(∫
Ω

|∇u|2dxxx
) 1

2 + 1

2N−1

)(
ε−

2N−2+1

2N−1 ϕ
1
2 + 1

2N−1 (t)

)
≤2N−2 + 1

2N−1
ε

∫
Ω

|∇u|2dxxx+
2N−2 − 1

2N−1
ε
− 2N−2+1

2N−2−1ϕ
2N−2+1

2N−2−1 (t). (3.11)

Combining (3.9)-(3.11), we obtain

ϕ′(t) ≤ c1ϕ+ c2ϕ
2N−2+1

2N−2 + c3ϕ
2N−2+1

2N−2−1 + c4

∫
Ω

|∇u|2dxxx, (3.12)

where

c1 =
Nτ

ρ0
,
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c2 =
Cτ

2ρ0

(
N +

(2N−1 + 1)d

2N−2µ

)
(1 + 2d)N−3

(
N

ρ0

)1+ 1

2N−2

,

c3 =
Cτ

2ρ0

(
N +

(2N−1 + 1)d

2N−2µ

)
(1 + 2d)N−3

(
1 +

d

ρ0

)1+ 1

2N−2

2
1
2 + 1

2N−1
2N−2 − 1

2N−1

· ε−
2N−2+1

2N−2−1 ,

c4 =
Cτ

2ρ0

(
N +

(2N−1 + 1)d

2N−2µ

)
(1 + 2d)N−3

(
1 +

d

ρ0

)1+ 1

2N−2

2
1
2 + 1

2N−1
2N−2 + 1

2N−1
ε

+
(2N−1 + 1)µτd

2N−1ρ0
− 1.

Choosing ε small enough, one can get a positive µ such that c4 = 0. Therefore,

ϕ′(t) ≤ c1ϕ+ c2ϕ
2N−2+1

2N−2 + c3ϕ
2N−2+1

2N−2−1 := Ψ(ϕ). (3.13)

From (3.13), we get (∫ ϕ(t)

ϕ(0)

dη

Ψ(η)

)′
=
ϕ′(t)

Ψ(ϕ)
≤ 1. (3.14)

Integrating (3.14) over [0, t], we obtain

t ≥
∫ ϕ(t)

ϕ(0)

dη

Ψ(η)
, (3.15)

which implies

t∗ ≥
∫ ∞
ϕ(0)

dη

Ψ(η)
=

∫ ∞
ϕ(0)

dη

c1η + c2η
2N−2+1

2N−2 + c3η
2N−2+1

2N−2−1

with lim
t→t∗

ϕ(t) =∞ (by Theorem 2.1).

From the above analysis and Theorem 2.1, we can summarize the following
theorem on lower bound estimation of blow-up time t∗:

Theorem 3.1. Let Ω ⊂ RN (N ≥ 3) be a bounded star-shaped domain assumed to
be convex in N − 1 orthogonal directions, and the nonnegative f and g satisfy the
conditions

f(ξ) ≡ 0, γG(ξ) ≤ ξg(ξ) ≤ τξ2+ 1

2N−2 , ξ ≥ 0, γ > 2.

Then the nonnegative solution u(xxx, t) of problem (1.1) blows up at finite time, and
the blow-up time t∗ is bounded from below by

t∗ ≥
∫ ∞
ϕ(0)

dη

Ψ(η)
=

∫ ∞
ϕ(0)

dη

c1η + c2η
2N−2+1

2N−2 + c3η
2N−2+1

2N−2−1

.
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