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Modeling of Lone Star Ticks with Deer Migration
to Canada∗

Jemisa Sadiku1, Zilong Song1,† and Jianhong Wu1

Abstract Due to climate change and an increase of favourable habitat, ticks
and tick-borne diseases are reported to expand to northern areas in north
America. One main factor for lone star ticks to be established in Canada is
due to the migration of white-tailed deers from US. In this work, we formulate
a compartmental model to study the dynamics of lone star ticks and white-
tailed deers, with a focus on migration effect of white-tailed deers. The tick-
host interaction and the effect of deer migration are explored analytically and
numerically. The positivity of the populations in the model is proved, and
the unique positive equilibrium is proved to be asymptotically stable. We
conduct sensitivity analysis on a set of parameters, revealing the correlation
between the parameters and equilibrium populations. Numerical results show
that migration rate of white-tailed deer is one crucial parameter that increases
the populations of (infected) ticks and (infected) hosts.

Keywords Lone star tick, deer migration, disease modeling, asymptotic sta-
bility, sensitivity analysis.
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1. Introduction

Lone star tick (Amblyomma americanum) is recognized for the first time by Lin-
naeus in 1758 [19]. It prefers damp forests and humid soil environment [30, 36].
Similar to other ticks, it has four life stages: egg, larvae, nymph and adult, and
the transition from one stage to the next is done through questing, feeding and
molting [3, 28,33].

The associated tick-borne diseases and the allergic reaction have aroused increas-
ing attention on lone star tick in recent years. Lone star tick is a vector that can
carry pathogens and transmit tick-borne diseases such as STARI (Southern tick-
associated rash illness) [10,13] and Human Monocytic Ehrlichiosis (HME) [1,19,28]
(CDC website). The preferred host (here white-tailed deer) also plays an important
role in disease transmission, as they serve as reservoir for the pathogens. Unlike
other species of ticks, lone star tick exhibits aggressive and indiscriminate quest-
ing behavior [13, 36], which makes bites to humans more likely. In addition, lone
star tick causes red meat allergy (delayed-onset allergy) [22, 37], first discovered in
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2009 [8]. The allergic reaction could be fatal [7,21,28], and is due to immunoglobu-
lin E (IgE) antibody which is specific for galactose-α-1,3-galactose (alpha-gal). It is
claimed that the cause of IgE antibodies is primary from bites of lone star tick [7].

The lone star tick is mostly found in the eastern, southeastern and south-central
states of US [32]. However, its distribution and abundance have increased over the
past decades, and according to CDC map it expands to more northern and western
areas in North America where it was absent in previous years [32]. In particular,
it has migrated from endemic areas in the US to new regions in Southern Canada,
such as British Columbia, Ontario, south-eastern Manitoba [6, 28,29].

Two main factors responsible for the range expansion of lone star ticks are the
climate change and the migration of white-tailed deer [32]. Due to climate change,
more regions become inhabitable for lone star ticks. Since ticks are small species,
they will spread to new regions mainly by migration of their host mammals. White-
tailed deer is the main host for lone star tick of all life stages to get the majority
of their blood meals, and their populations are positively correlated [3, 6, 18, 28].
The deer migration depends on the deer habitat suitability of the region, which is
influenced by two factors: the need for food, shelter and water, and the disturbances
from human activities (such as hunting) [6]. In order to better understand or predict
the outbreaks of tick-borne diseases, there is need to include the migration effect
into the tick-host dynamics.

Various models have been proposed to investigate tick-host dynamics and to
address a variety of issues on the tick-borne diseases [25, 38]. Specifically for Lone
star ticks, there have been computer simulations based on age-structured differ-
ence equations [15,27], agent-based models [34], predicative statistical models [20].
Recently, a metapopulation model with migration effect among patches and logistic-
type birth term is adopted in [11,12] to study the HME transmission and investigate
various tick-control strategies. For another tick-borne disease (Lyme disease) [25],
the range expansion of ticks and pathogens has been widely studied by various
migration effects including movements of rodents and deer [5] as well as bird mi-
gration [16]. The migration of white-tailed deer has also been included in a single
patch model with distributed delay (integral) term [2], which models that the deer
travels out and then back in the patch. Since the logistic-type birth term may cause
negative birth rate at high population density (which could occur with migration
effect), other positive density-dependent birth rates have been adopted in modeling
of ticks [33,39].

In this paper, we formulate a compartment model, where the hosts and ticks
have been divided into susceptible and infected compartments. Our model adopts
the Ricker function as the birth term to ensure positivity, which was used in a
stage-structured model [39]. It also includes a simple migration term in the dynam-
ics of hosts, with a focus to study the migration effects of white-tailed deer from US
to Canada. The positivity of the populations in the model is proved with natural
biologically meaningful parameters. With migration effect as a source term, there
exists a unique positive equilibrium, which is asymptotically stable. Our numeri-
cal results confirms these features and sensitivity analysis is carried out to reveal
the effects of parameters. Migration rate is found to be a crucial parameter that
increases the populations of (infected) ticks and (infected) hosts.

The rest of the manuscript is arranged as follows. The mathematical model is
proposed in Section 2. After non-dimensionalization, Section 3 proves the positivity
of the solutions and the stability of the unique positive equilibrium. In Section 4,
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numerical results and sensitivity analysis are carried out, and the effects of parame-
ters including migration rate are studied. Finally, conclusions and future extensions
are provided in Section 5.

2. The mathematical model

Given that lone star tick prefers white-tailed deer as the main host for all life
stages [12], we formulate a mathematical model with a single host. We neglect
the life stages of tick, and restrict ourselves to a single life stage, although the
stage structure will be included in a later study. For simplicity, seasonality [23] has
been ignored in the model, but it can be reflected by varying the parameters in the
model. We concentrate on a single patch (region in Canada), and there is migration
of host from the outside environment (US) where the host population is assumed
as a constant.

Table 1. Definition and values of parameters

Symbol Meaning Value and Reference
b Birth rate of host 0.2/month [12,35]
q Strength of density dependence for host birth 1/100 [est]
β Transmission rate from infected tick to susceptible host 0.02/month [11,12]
µ Death rate of host 0.01/month [12,35]
m Migration rate from outside region to current region 0.01/month [11]

b̂ Birth rate of ticks 0.75/month [12]
q̂ Strength of density dependence for tick birth 1/20000 [11]
µ̂ Death rate of ticks 0.1/month [12]

β̂ Transmission rate from infected host to susceptible tick 0.07/month [11,12]
Na Average number of ticks per host 100 [11,12]
rs Ratio of infected ticks over all ticks on susceptible host 0.05 [est]
rI Ratio of infected ticks over all ticks on infected host 0.1 [est]
Ho
s Population of susceptible host in the outside region 800 [est]

Ho
I Population of infected host in the outside region 200 [est]

The susceptible host and susceptible tick are denoted by Hs and Ts, and the
infected host and infected tick are denoted by HI and TI . A flow chart is depicted
in Figure 1. Correspondingly, the model is given by

dHs

dt
=b(Hs +HI)e

−q(Hs+HI) − µHs − β
Hs

Hs +HI
TI +mHo

s , (2.1a)

dHI

dt
=β

Hs

Hs +HI
TI − µHI +mHo

I , (2.1b)

dTs
dt

=b̂(Ts + TI)e
−q̂(Ts+TI) − µ̂Ts − β̂Na

Ts
Ts + TI

HI (2.1c)

+ (1− rs)NamHo
s + (1− rI)NamHo

I

dTI
dt

=β̂Na
Ts

Ts + TI
HI − µ̂TI + rsNamH

o
s + rINamH

o
I , (2.1d)

where the physical meanings of the parameters are given in Table 2, with typical
values based on other works in the literature. The Ricker function [39] is used for
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Figure 1. Flow chart for the compartmental model.

the birth term of both tick and host. The death rate for infected and susceptible
hosts are assumed to be a common constant µ, and that for all ticks are assumed
to be µ̂. Hereafter, a parameter with a hat symbol is associated with ticks. We
assume that the transmission of disease occurs only from ticks to host or from host
to tick, but not from tick to tick (such as cofeeding [24, 40]) or from host to host.
The migration of host to the concerned region (Canada) is proportional to the host
population in the outside region (US) with a migration rate m, since the outside
region is assumed to have a much larger population size for host. The ratio of
infected ticks over all ticks on susceptible host is rs and that on infected hosts is
rI . The value of rI could be greater than rs since the host is more likely to be in
the infected state if there are more infected ticks feeding on it.

For convenience, we denote total populations of ticks and hosts as

T = Ts + TI , H = Hs +HI , Ho = Ho
s +Ho

I , (2.2)

where superscript o means the outside region. By (2.1), the equivalent system for
(H,T,HI , TI) is given by

dH

dt
=bHe−qH − µH +mHo, (2.3a)

dT

dt
=b̂T e−q̂T − µ̂T +NamH

o, (2.3b)

dHI

dt
=β

H −HI

H
TI − µHI +mHo

I , (2.3c)

dTI
dt

=β̂Na
T − TI
T

HI − µ̂TI + (rsH
o
s + rIH

o
I )Nam. (2.3d)

Based on the physical meaning of the parameters (see Table 2), we naturally
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have the following restrictions

b > 0, µ > 0, b̂ > 0, µ̂ > 0, β > 0, β̂ > 0,

q > 0, q̂ > 0, Na > 0, 0 < rs < 1, 0 < rI < 1,

m > 0, Ho > Ho
I > 0, Ho > Ho

s > 0.

(2.4)

3. Positivity and equilibrium analysis

In this section, we first do the non-dimensionalization to identify the effective com-
bination of parameters. Then, we show the positivity of solutions, which is a crucial
property of a biological system. Finally, we analyze the equilibrium of the system
and its stability.

3.1. Non-dimensionlization

Now we simplify the system in (2.3) by using the scales

H̃ = qH, H̃I = qHI , T̃ = q̂T, T̃I = q̂TI , t̃ = bt. (3.1)

Then we can get the dimensionless system for H̃, T̃ , H̃I , T̃I . To make the system
easier to read we drop the tilde, and the dimensionless system is

dH

dt
=He−H − s1H + s2, (3.2a)

dT

dt
=s3Te

−T − s4T + s5, (3.2b)

dHI

dt
=s6(1− HI

H
)TI − s1HI + s7, (3.2c)

dTI
dt

=s8(1− TI
T

)HI − s4TI + s9, (3.2d)

where the dimensionless parameters are given by

s1 =
µ

b
, s2 =

qmHo

b
, s3 =

b̂

b
, s4 =

µ̂

b
, s5 =

q̂NamH
o

b
,

s6 =
βq

bq̂
, s7 =

qmHo
I

b
, s8 =

Naβ̂q̂

bq
, s9 =

q̂Nam(rsH
o
s + rIH

o
I )

b
.

(3.3)

Then by (3.2) and definition of Hs and Ts, the corresponding equation for Hs and
Ts will be

dHs

dt
=He−H − s6

Hs

H
(T − Ts)− s1Hs + s2 − s7,

dTs
dt

=s3Te
−T − s8

Ts
T

(H −Hs)− s4Ts + s5 − s9.

(3.4)

From the conditions of parameters in (2.4), we have the natural restrictions for
the dimensionless parameters

si > 0, (i = 1, .., 9), s2 > s7, s5 > s9. (3.5)
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3.2. Positivity of Solutions

In this subsection, we show the positivity of the solutions with initial positive data.
To this end, we define the two sets:

S = {(T,H, TI , HI)|T > 0, H > 0, TI > 0, HI > 0},
Ŝ = {(Ts, Hs, TI , HI)|Ts > 0, Hs > 0, TI > 0, HI > 0}.

(3.6)

The aim is to show the two sets are invariant. The invariance of Ŝ implies the
invariance of S, but the reverse is not true, e.g., positive H and HI can not imply
positive Hs = H −HI .

Theorem 3.1. With the natural restrictions of parameters in (3.5) for the systems
in (3.2) and (3.4), or equivalently with conditions (2.4) for the original systems in
(2.3) and (2.1), the two sets S and Ŝ are invariant.

Proof. First, we show that the set S is invariant. As Eq. (3.2a) is decoupled
from the system, the positivity of H can be analyzed separately. We denote the
right-hand side as

f(H) := He−H − s1H + s2, (3.7)

and get
dH

dt
= f(H)→ s2 > 0, as H → 0. (3.8)

Thus, the quantity H remains positive. In fact, even for the case s2 = 0 (or m = 0),
one can show the positivity of H, by using the equivalent equation

d(Hes1t)

dt
= He−H+s1t > 0, for H > 0. (3.9)

Similarly, T remains positive by Eq. (3.2b). We further show that the H and T
are bounded, before proving the positivity of HI and TI . Clearly by (3.8), H is
bounded from below, say H ≥ Hmin > 0. Note that

f(H)→ −∞, as H →∞, (3.10)

then there exists a Hmax ≥ H(0) > 0 such that

dH

dt
= f(H) < 0, for H ≥ Hmax. (3.11)

Therefore, we obtain H ∈ [Hmin, Hmax], where in some cases Hmin or Hmax could
be H(0). Similarly T is bounded. With the boundedness, we get

HI/H → 0, as HI → 0,

TI/T → 0, as TI → 0.
(3.12)

Subsequently in the first quadrant of the plane of (HI , TI), we obtain

dHI

dt
→ s6TI + s7 > 0, as HI → 0,

dTI
dt
→ s8HI + s9 > 0, as TI → 0.

(3.13)
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So, the two quantities HI and TI will remain positive.
Next, we prove the positivity of Hs and Ts, or equivalently the invariance of Ŝ.

We note that H and T are positive and bounded, independent of dynamics of Hs

and Ts in (3.4). Each of the terms He−H and Te−T has a minimum positive value.
Then, we have

dHs

dt
≥ He−H + s2 − s7 > 0, as Hs → 0,

dTs
dt
≥ s3Te

−T + s5 − s9 > 0, as Ts → 0,

(3.14)

which implies positivity of Hs and Ts and hence the invariance of Ŝ.

Remark 3.1. In the current model, we have used the Ricker’s function He−H for
the birth term to ensure its positivity, which is essential for the positivity of Hs.
A logistic-type birth term H(1−H) (after non-dimensionlization) often appears in
other tick models [11,12], but with current migration effect such a term may give a
negative birth rate, since H > 1 is possible with certain parameters.

3.3. Equilibrium analysis

Theorem 3.2. With the natural conditions (3.5) for the system in (3.2), there
exists a unique positive equilibrium (H∗, T ∗, H∗I , T

∗
I ), which is asymptotically stable.

Proof. (1) As the equations for H and T are decoupled from the system, we first
show the equilibrium of H and T . We take Eq. (3.5a) for example. With the
definition (3.7), we see that

f(0) = s2 > 0, f(∞) = −∞, (3.15)

thus there exists at least one positive root (equilibrium). Taking the derivative gives

f ′(H) = (1−H)e−H − s1, f ′(0) = 1− s1. (3.16)

There are two cases: s1 ≥ 1 and 0 < s1 < 1. When s1 ≥ 1, we always have

f ′(H) < e−H − s1 < 0, for H > 0. (3.17)

This implies f(H) is monotone decreasing, and by (3.15) there exists a unique
positive root. For the case 0 < s1 < 1, the f ′(H) is positive for small H by (3.16).
Note that

f ′(1) = −s1 < 0, (3.18)

so there exists a critical value 0 < Hc < 1 such that

f ′(Hc) = (1−Hc)e
−Hc − s1 = 0,

f ′(H) > 0, for 0 < H < Hc.
(3.19)

Taking the second derivative gives

f ′′(H) = (H − 2)e−H < 0, for Hc < H < 1, (3.20)

which implies f ′(H) is decreasing in the above interval and

f ′(H) < 0, for Hc < H < 1. (3.21)
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It is clear from (3.16) that

f ′(H) = (1−H)e−H − s1 < 0, for H ≥ 1. (3.22)

Combining (3.19,3.21,3.24), we conclude that f(H) is increasing in [0, Hc) and is
decreasing in (Hc,∞). Therefore, f(H) has a unique positive root in (Hc,∞). We
denote the root (equilibrium) by H∗, then based on the above analysis, in either
case we always have

f(H) > 0 for 0 < H < H∗,

f(H) < 0 for H > H∗.
(3.23)

Therefore, the equilibrium H∗ is (globally) asymptotically stable.
Similar arguments apply to the function for T , by defining

g(T ) = Te−T − s4

s3
T +

s5

s3
, (3.24)

where s1 and s2 are replaced by the two fractions s4/s3 and s5/s3. Therefore the
unique equilibrium, denoted by T ∗, is (globally) asymptotically stable.

(2) Next we show the equilibrium of (HI , TI) and its local stability. The theory of
asymptotically autonomous systems [9] implies that one can substitute the equilibria
H∗, T ∗ into the system for TI , HI for the equilibrium analysis. By coupling the two
equations (3.2c) and (3.2d), the equilibrium of HI is determined by

AH2
I +BHI + C = 0,

A = −s6s8

H∗
− s1s8

T ∗
< 0,

B = B1 +B2 =
(s7s8

T ∗
− s6s9

H∗

)
+ (s6s8 − s1s4) ,

C = s4s7 + s6s9 > 0,

(3.25)

where B1 and B2 are defined in the two brackets. Then, there exist two roots,

one positive and one negative, denoted by H
(1)
I > 0 and H

(2)
I < 0. Similarly, the

equilibrium of TI is given by

ÂT 2
I + B̂TI + Ĉ = 0,

Â = −s6s8

T ∗
− s4s6

H∗
< 0,

B̂ = −B1 +B2,

Ĉ = s7s8 + s1s9 > 0.

(3.26)

The two roots (equilibria) are denoted by T
(1)
I > 0 and T

(2)
I < 0. Furthermore,

by equations (3.2c) and (3.2d), the two variables HI and TI at equilibrium are
connected by a linear equation

B1 +AHI − ÂTI = 0, (3.27)

with the same parameters B1, A, Â as above. Then, the two roots T
(1)
I , T

(2)
I and

those H
(1)
I , H

(2)
I are related by this linear relation, so they form two pairs. Since

A < 0 and Â < 0, the larger solution of HI corresponds to the larger solution of
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TI and hence the positive T
(1)
I (or negative T

(2)
I ) corresponds to the positive H

(1)
I

(or negative H
(2)
I ). Therefore, we conclude that there is a unique pair of positive

equilibria, denoted by T ∗I = T
(1)
I and H∗I = H

(1)
I .

For the system of (3.2c) and (3.2d), the local stability of the equilibrium (H∗I , T
∗
I )

is determined by the eigenvalues of the matrix

DI =

−s1 − s6
T∗
I

H∗ , s6(1− H∗
I

H∗ )

s8(1− T∗
I

T∗ ), −s4 − s8
H∗

I

T∗

 . (3.28)

By the conditions (3.5) and positivity of equilibrium, we easily get

Tr(DI) = −s1 − s6
T ∗I
H∗
− s4 − s8

H∗I
T ∗

< 0. (3.29)

Then, the equilibrium is asymptotically stable if Det(DI) > 0, which can be ex-
pressed by

−B2 −AH∗I − ÂT ∗I > 0. (3.30)

By (3.27), it is equivalent to

B + 2AH∗I < 0, (or B̂ + 2ÂT ∗I < 0). (3.31)

Since H∗I is the positive root (the larger one) of quadratic equation in (3.25), we
get

B + 2AH∗I = −
√
B2 − 4AC < 0. (3.32)

This means the condition (3.30) automatically holds, and hence the equilibrium
(H∗, T ∗) is asymptotically stable.

Remark 3.2. Theorems 3.1 and 3.2 imply that there exists a unique positive equi-
librium (H∗s , H

∗
I , T

∗
s , T

∗
I ) for the original system (2.1), where H∗s = H∗ −H∗I , T ∗s =

T ∗ − T ∗I .

Remark 3.3. The above theorem deals with the case m > 0, now we compare it
with the critical case m = 0. With m = 0, from the definitions (3.3, 3.25,3.26) we
have

s2 = s5 = s7 = s9 = 0, C = Ĉ = 0. (3.33)

With s1 < 1 (i.e., µ < b) and s3 < s4 (i.e., µ̂ < b̂), there still exists a unique positive
equilibrium (H∗, T ∗) for the system of (H,T ), which is asymptotically stable. For
the system of (TI , HI), clearly there is a disease free equilibrium, TI = 0, HI = 0.
The stability of this equilibrium (0,0) is determined by (see (3.30))

−B2 > 0, ⇔ s1s4 − s6s8 > 0, ⇔ R0 ≡
ββ̂Na
µµ̂

< 1. (3.34)

If R0 < 1, the equilibrium (0,0) is stable, and there is no positive equilibrium with
m = 0 (the other equilibrium is negative). As m increases from 0, the positive
equilibrium in the theorem is a perturbation of the disease free equilibrium. If
R0 > 1, the equilibrium (0,0) is unstable, but there is the other positive equilibrium
with m = 0, denoted by (T ∗I0, H

∗
I0), which is asymptotically stable. As m increases

from 0, the positive equilibrium in the theorem is a perturbation of (T ∗I0, H
∗
I0). If

R0 = 1, this (T ∗I0, H
∗
I0) coincides with (0,0). In brief, the positive equilibrium with

m > 0 is always a perturbation of the stable equilibrium with m = 0.
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4. Numerical results and sensitivity analysis

In this section, we present the solutions with typical parameters. Then, we conduct
the sensitivity analysis for some parameters. Finally, the effects of migration rate
and death rates are further analyzed.

4.1. Solution curves

To simulate the dynamics of the system (2.3), we adopt the initial values as in [11]

H(0) = 10, T (0) = 3000, HI(0) = 8, TI(0) = 80. (4.1)

The initial values are based on one patch of 10,000 m2 in [11], and other parameters
used in simulation are shown in table 1. In Table 1, q is estimated from the carrying
capacity of host, and we set q̂ = q/M,Na = M/2, where M = 200 is maximum
number of ticks per host in [11, 12]. Other estimated parameter are also consistent
with this setting. If we were to consider a larger region, we could multiply a factor
on these initial values and modify the estimated parameters q, q̂ and Ho

I , H
o
s .
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Figure 2. The dynamic curves for (a) host H and infected host HI , (b) tick T and infected tick TI .

Figure 2 shows the dynamics for the populations of host, tick, infected host and
infected tick, with parameters in Table 1. All the four populations quickly reach
the positive equilibrium. To see more clearly the effect of migration rate m in the
two different cases in Remark 3.3, the dynamics of the infected host and infected
ticks are shown in Figures 3 and 4 with varying parameters. With parameters in

table 1, we have R0 = ββ̂Na

µµ̂ = 140 > 1, and Figure 3 shows the dynamics of HI , TI
by varying m. Initially with m = 0, there is stable positive equilibrium, and as m
increases the positive equilibrium increases. By changing µ from 0.01 to 0.1 (due
to hunting or predators) and µ̂ from 0.1 to 0.5 (due to tick control measures) and
setting Na = 25, we get R0 = 0.7 < 1, and Figure 4 shows the dynamics of HI , TI
by varying m. Initially with m = 0, there is a stable disease free equilibrium (0,0),
but as m increases this equilibrium increases as the positive equilibrium for the case
m > 0. This verifies the analysis in Remark 3.3.

4.2. Sensitivity Analysis

The mathematical analysis about the equilibrium and its stability can answer the
questions about the long time behaviour, with fixed parameters. However, we have
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Figure 3. The dynamic curves for infected host HI and infected tick TI with varying m = 0, 0.001, 0.002
(R0 = 140 for the case m = 0).
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Figure 4. The dynamic curves for infected host HI and infected tick TI with varying m = 0, 0.001, 0.002
(R0 = 0.7 for the case m = 0)

0.01

m

600

700

800

900

1000

1100

1200

1300

1400

1500

H
o

s
t 

P
o

p
u

la
ti
o

n

0.01

m

3.5

4

4.5

5

5.5

6

6.5

7

T
ic

k
 P

o
p

u
la

ti
o

n

×10
4

0.01

m

500

600

700

800

900

1000

1100

1200

1300

In
fe

c
te

d
 H

o
s
t 

P
o

p
u

la
ti
o

n

0.01

m

1000

1200

1400

1600

1800

2000

2200

2400

2600

2800

3000

In
fe

c
te

d
 T

ic
k
 P

o
p

u
la

ti
o

n

(a)

0.01

µ

600

700

800

900

1000

1100

1200

1300

1400

1500

H
o

s
t 

P
o

p
u

la
ti
o

n

0.01

µ

3.5

4

4.5

5

5.5

6

6.5

7

T
ic

k
 P

o
p

u
la

ti
o

n

×10
4

0.01

µ

500

600

700

800

900

1000

1100

1200

1300

In
fe

c
te

d
 H

o
s
t 

P
o

p
u

la
ti
o

n

0.01

µ

1000

1200

1400

1600

1800

2000

2200

2400

2600

2800

3000

In
fe

c
te

d
 T

ic
k
 P

o
p

u
la

ti
o

n

(b)

Figure 5. The scatter plot between the four equilibrium populations (H∗, T∗, H∗
I , T

∗
I ) and two param-

eters m and µ by LHS.
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made assumptions about the parameters and there is always uncertainty in the es-
timation of parameters, which will result in uncertainty of the results. The Latin
Hypercube Sampling (LHS) and Partial Rank Correlation Coefficient (PRCC) pro-
vides a useful tool to analyze a range of parameters and its effects on the dynam-
ics/equilibrium of populations [4, 14,26].
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Figure 6. The PRCC results for four equilibrium populations (H∗, T∗, H∗
I , T

∗
I ) against parameters m,

µ, µ̂, q, q̂, rs and rI .

In the first step, we carry out the LHS, and verify the monotone relationship to
ensure that the selected range of parameters are suitable for the PRCC analysis. We
take m and µ for illustration, and other parameters such as rs, rI , µ̂ etc. are simi-
larly verified but omitted here for brevity. We set the range of the parameters to be
a 20% change of the value in Table 1, i.e., m ∈ [0.008, 0.012] and µ ∈ [0.008, 0.012].
Uniform distribution is used in the LHS and 10,000 parameter sets are generated.
Figure 5 shows the scatter plots for the equilibrium of four populations with respect
to the two parameters m and µ in the parameter sets. Each point in the figure is
from a simulation with one parameter set. One can see that all the subfigures show
an increasing or decreasing pattern, except the tick population in Figure 5(b), since
tick population T does not depend on µ by Eq. (2.3b). This suggests that the
selected range of parameters can be used to perform the PRCC analysis.

Next we calculate the PRCC, which determines how much each input parameter
contributes to the output variable or measure. Figure 6 shows the PRCC results be-
tween the equilibrium of four populations and seven parameters m,µ, µ̂, q, q̂, rs, rI .
The approximate p-values are shown inside the figure, and p < 0.01 means signif-
icant result. For significant result, the positive or negative PRCC value indicates
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a positive or negative correlation between the parameter and the output [26]. In
Figure 6, the migration rate m is significant for all four equilibrium populations,
and is positively correlated with them. The parameters µ (major effect) and q (mi-
nor effect) are negatively correlated with the equilibrium host population H∗, while
µ̂ and q̂ negatively affect the equilibrium tick population T ∗. Both death rates µ
and µ̂ are negatively correlated with the equilibrium infected host and infected tick
populations, as there is strong coupling in the two equations of HI and TI . The
parameters rI , rs have a major positive correlation with equilibrium infected tick
population T ∗I , as they directly appear in (2.3d), and they have a minor positive
effect on equilibrium infected host population H∗I due to the interactions of TI and
HI .

4.3. The effects of migration rate and death rates

We further analyze effects of migration rate m and death rates µ, µ̂ on the equilib-
rium populations for two reasons. First, the sensitivity analysis shows that these
parameters are significant for the equilibrium populations. Second, these are re-
lated to practical control measures [17], and can provide insights on the future
policy making. The migration rate m is affected by border control and deer habitat
suitability [6]. The death rate of host is influenced by its predators and the hunting
activities [36]. The death rate of ticks is affected by seasonality and temperature
and can also be controlled by use of acaricide [12,31].
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Figure 7. The dependence of equilibrium populations on migration rate m: (a) host H∗, (b) tick T∗,
(c) infected host H∗

I , (d) infected tick T∗
I .

Figure 7 shows the dependence of the four equilibrium populations on migration
rate m, indicating a positive correlation. This is consistent with the previous anal-
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Table 2. Effect of migration rate.

Population slope at m = 0.01 change by increasing m by 10%
Host 9.92× 104 9.94%
Tick 5.04× 105 1.11%

Infected host 9.70× 104 9.86%
Infected tick 1.26× 106 4.41%

ysis and PRCC results. Table 2 presents the slope of the curve at m = 0.01 and
the relative change of population with increase of m by 10%. It shows about 10%
increase for the host populations H∗ and H∗I , which is significant. It also positively
affects tick populations T ∗ and T ∗I . The dependence on m can also be directly
obtained based on previous analysis, for example, we get

dH∗

dm
=

Ho

µ+ be−qH∗(qH∗ − 1)
,

dT ∗

dm
=

HoNa

µ̂+ b̂e−q̂T∗(q̂T ∗ − 1)
. (4.2)

With the chosen parameters and equilibrium values in Figure 2, we obtain exactly
the results in Table 2. This verifies the results in this section. The formulas for the
slopes dH∗I /dm and dT ∗I /dm are complicated and hence omitted here.
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Figure 8. The dependence of equilibrium populations on death rate of host µ: (a) host H∗, (b) infected
host H∗

I , (c) infected tick T∗
I .

Table 3. Effect of death rate of host.

Population slope at µ = 0.01 change by increasing µ by 10%
Host −9.91× 104 −8.99%
Tick 0 0%

Infected host −9.83× 104 −9.04%
Infected tick −1.07× 106 −3.71%

The dependence of the equilibrium populations on death rate of host µ is pre-
sented in Figure 8 and Table 3. The death rate µ has a negative correlation with
the three populations H∗, H∗I and T ∗I . It significantly affects H∗ and H∗I , which
decrease by 8.99% and 9.04% with an increase of µ by 10%. The T ∗-µ subfigure (a
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Figure 9. The dependence of equilibrium populations on death rate of tick µ̂: (a) tick T∗, (b) infected
host H∗

I , (c) infected tick T∗
I .

constant) is omitted in Figure 8, since there is no correlation between T ∗ and µ,
indicated by 0% in Table 3. This is because in the present model the birth term
of ticks in (2.3b) does not depend on the host population H, although H could be
included in the parameter q̂ in future work.

Table 4. Effect of death rate of tick.

Population slope at µ̂ = 0.1 change by increasing µ̂ by 10%
Host 0 0%
Tick −2.28× 105 −4.77%

Infected host −96.8 −0.1%
Infected tick −1.94× 105 −6.57%

Figure 9 and Table 4 show the effects of death rate of tick µ̂. The parameter
µ̂ has a negative correlation with the three populations T ∗, H∗I , T

∗
I , and has no

relation with H∗. It has most significant impact on T ∗I , with a 6.57% decrease with
increase of µ̂ by 10 %.

5. Conclusions

In this work, we have formulated a compartmental model for lone star ticks and
white-tailed deers, where a Ricker function is adopted for birth term and the mi-
gration effect is emphasized. The positivity of solution and the stability of the
unique positive equilibrium are proved. Numerical results confirm the theoretical
statements, and the sensitivity analysis shows the correlation between equilibrium
populations and the parameters. Finally the effects of migration rates and death
rates of hosts and ticks are explored, and migration rate has a strong positive cor-
relation with tick and host populations.

The current model can be extended to more complicated situations. For exam-
ple, the parameter q̂ can depend on the population of host, and seasonality can be
included in the birth and death rates. Comparison with real data from Canada
(such as British Columbia) and USA is ongoing, which could provide more insights
into the effects of various parameters. We are also planing to include the life stages,
age structure and multiple patches in the model in a future study.
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