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The Formats of Julia Sets for Complex Dynamic
Systems
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Abstract In this paper, the formats of Julia sets for a class of nonlinear
complex dynamic systems with variable coefficients were studied under certain
conditions. For the complex dynamic systems in piecewise cases, we proposed
some methods to control the forms of their Julia sets and stable domains
analytically. What’s more, we illustrated that our methods worked well by
computational simulations. Our work provides a better understanding about
how to control the Julia sets of certain complex dynamic systems.
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1. Introduction

People began to learn the complex dynamic systems during World War I. Inspired
by the method of Newton iterative operations and the ultimate sets of Mobius trans-
form group, French mathematicians P. Fatou and G. Julia found some interesting
results on Riemman sphere [8,12]. From 1918 to 1920, they applied the new theories
of normal train ( such as Montel theorem ) on dynamic systems to prove a series
of valuable results, which completing the fundamental work of complex dynamic
systems, defined the famous fractal set-Julia set, and forming the classical Fatou-
Julia theory. The Mandelbrot set [13] is highly related to the Julia set, which was
defined in 1980 by Benoit B. Mandelbrot. It is the result of iterating the dynamic
systems. Though the systems and the iterative operations are simple, the shapes
and the fine structures of the results are shocking.

At present, the research of complex dynamic systems is still the focus, involving
its qualitative theory [27] and the control of bounded domains for the fractal sets
[26, 28]. In addition, it provides novel methods for studying all kinds of complex
shapes and structures in the nature. So it is widely applied in astronomy [6, 24],
geography [16,18,19,23], physics [3,10,20,22], chemistry [5,11], biology [1,9,15,17],
materials [2, 14,21,25], sociology [4] and so on.

In particular, lots of problems involve the stability of systems in engineering and
technology. The stability of systems relate to their stable domains, or the shapes
and sizes of the stable areas. Julia sets and Mandelbrot sets can describe the the
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shapes of the stable fields for the systems. Here, we give the definition of the formats
of complex dynamic systems and introduce Julia set as follows.

Definition 1.1. For the nonlinear time delay complex dynamic system:

zn+1 = f(an, cn, zn, zn−k) , (1.1)

where an and cn are known sequences of complex numbers, k is a quantity of time
delay and a nonnegative integer. The formats of complex dynamic systems are the
process which makes the stable domain of system (1.1) to achieve some enacted
aims by adjusting an, cn and k.

Especially, when analyzing system (1.1) through the definition of Julia sets, the
stable domains are the formats of Julia set of system (1.1).

For (1.1), let C is a set of all complex numbers, and we call ∂(C) the boundary
of C. The definition of Julia sets is as follows [7].

Definition 1.2. For complex polynomial f , let

K(f) = { z ∈ C : fk(z) 9∞, k →∞ } ,

J (f) , ∂(K(f)). We call J (f) the Julia set of system (1.1).

In this paper, firstly, we will study the formats of Julia sets for above system in
general conditions. Then we analyze the formats of Julia sets of special conditions
of the system above, which are generated through modifying the complex sequences
an and cn. At last, we study the formats of Julia sets for the system above in the
piecewise cases. We will illustrate our results through simulations.

For (1.1), we consider that

f(·) = a(z + b)2 − c .

For the complex dynamic system:

zn+1 = an(zn + cn)2 − cn+1 , (1.2)

it becomes to the well-known classical system

zn+1 = z2n + c, (1.3)

when an ≡ 1, cn ≡ 0 and cn+1 ≡ −c, which was used to study its Julia set originally.
Setting c = −0.5(1 + i), the Julia set of system (1.3) has the form showed in

Figure 1.
We can see that this form of the Julia set of system (1.3) is irregular, which

implies that its stable domain is also irregular. What’s more, we should note that
system (1.3) is a special form of system (1.2).

For achieving certain requirements of stability for the systems, we need to obtain
the regular domains of their Julia sets. As a result, we will focus on studying the
regular formats of Julia sets for system (1.2) in this article.

2. The formats of Julia sets for system (1.2)

We will focus on the formats of Julia sets for system (1.2). Here we use the symbol
J (1.2) to denote the Julia sets of system (1.2).
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Figure 1. The Julia set of system (1.3) when c = −0.5(1 + i).

Theorem 2.1. For the complex dynamic system (1.2), assume that ||an|| ≤ a and
||cn|| ≤ c for ∀n, then zn will be bounded when ||z0 + c0|| ≤ 1

a in the case of n→∞,
and

J (1.2) = ∂{ z0 : ||z0 + c0|| ≤ r, r ≥ 1

a
} .

Proof. For system (1.2), we note that

zn = an−1(zn−1 + cn−1)2 − cn ,
zn−1 = an−2(zn−2 + cn−2)2 − cn−1 ,

...
z1 = a0(z0 + c0)2 − c1 .

Through iterating in sequence, we obtain

zn+1 = an[an−1(zn−1 + cn−1)2 − cn + cn]2 − cn+1

= ana
2
n−1(zn−1 + cn−1)4 − cn+1

= ana
2
n−1[an−2(zn−2 + cn−2)2 − cn−1 + cn−1]4 − cn+1

= ana
2
n−1a

4
n−2(zn−2 + cn−2)8 − cn+1

...

= ana
2
n−1 · · · a2

n−1

1 a2
n

0 (z0 + c0)2
n+1

− cn+1 .

Then we have

||zn+1|| = ||ana2n−1 · · · a2
n−1

1 a2
n

0 (z0 + c0)2
n+1

− cn+1||

≤ ||an|| · ||an−1||2 · · · ||a1||2
n−1

· ||a0||2
n

· ||z0 + c0||2
n+1

+ ||cn+1|| .

For ||an|| ≤ a and ||cn|| ≤ c for ∀n, we have

||zn+1|| ≤ a · a2 · a4 · · · a2
n−1

· a2
n

· ||z0 + c0||2
n+1

+ c
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= a(2
0+21+···+2n−1+2n) · ||z0 + c0||2

n+1

+ c

= a
1−2n+1

1−2 · ||z0 + c0||2
n+1

+ c

= a2
n+1−1 · ||z0 + c0||2

n+1

+ c

= ||z0 + c0|| · (a||z0 + c0||)2
n+1−1 + c .

According to the proof above, we obtain that ||zn+1|| ≤ 1
a + c when n→∞ and

||z0 + c0|| ≤ 1
a , therefore zn is bounded. So ||zn|| is bounded for ||z0 + c0|| ≤ r when

n→∞, and r ≥ 1
a .

From definition 1.2, the Julia set of system (1.2) is the boundary of all the z0
which satisfies ||z0 + c0|| ≤ r. As a result,

J (1.2) = ∂{ z0 : ||z0 + c0|| ≤ r, r ≥ 1

a
} .

This implies that it is a circle with the center of −c0 and the radius of some
value equal to or greater than 1

a .

Remark 2.1. According to the appearance of a in the proof above, we can make
sure that zn is bounded in the case of n→∞ if we choose ||z0 + c0|| ≤ 1

a .

Example 2.1. In system (1.2), let cn ≡ 0 for ∀n, a0 = 4 and an ≡ 1 when n ≥ 1.
Then it becomes to

zn+1 =

4z2n , n = 0 ;

z2n , n ≥ 1 .
(2.1)

Note that ||an|| ≤ ||a0|| = 4 and cn ≡ 0 for ∀n, from theorem 2.1, we have

J (2.1) = ∂{ z0 : ||z0|| ≤ r, r ≥ 1

4
} .

This implies that its Julia set is a circle with the center of −c0 = 0 and the radius
of some value equal to or greater than 1

4 .
We can proof it from the following analysis. Note that

zn+1 = ana
2
n−1 · · · a2

n−1

1 a2
n

0 z2
n+1

0

= 42n · z2
n+1

0

= (4z20)2n ,

then

||zn+1|| = (4||z0||2)2n .

So in the case of n → ∞, zn+1 is bounded if and only if 4||z0||2 ≤ 1. It implies
||zn|| is bounded if and only if ||z0|| ≤ 0.5. According to definition 1.2, its Julia set
is the boundary of ||z0|| ≤ 0.5. This means that its Julia set is a circle with the
center of origin and the radius of 0.5, which satisfies the theorem 2.1. Its Julia set
is demonstrated in Figure 2.

We can see that the result of the simulation matches the theorem 2.1 well from
above figure.
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Figure 2. The Julia set of system (2.1).

Example 2.2. In system (1.2), let an = 1
2(n+1) +

√
3

2(n+1) i and cn = − 2
(n+1)2 + 3

n+2 i

for ∀n, then it leads to

zn+1 = [
1

2(n + 1)
+

√
3

2(n + 1)
i][zn + (− 2

(n + 1)2
+

3

n + 2
i)]2

−(− 2

(n + 2)2
+

3

n + 3
i) . (2.2)

Because ||an|| ≤ ||a0|| = 1 and ||cn|| ≤ ||c0|| = 2.5 for ∀n, according to theorem 2.1,
we have

J (2.2) = ∂{ z0 : ||z0 − 2 + 1.5i|| ≤ r, r ≥ 1 } .

This implies that its Julia set is a circle with the center of −c0 = 2− 1.5i and the
radius of 1. Its Julia set is demonstrated in Figure 3.

We can see that the result of the simulation matches theorem 2.1 well from
Figure 3.

3. The formats of Julia sets for system (1.2) when
an is a constant

For system (1.2), let an ≡ a0 6= 0, then it becomes to the following system

zn+1 = a0(zn + cn)2 − cn+1 . (3.1)

We will analyze the formats of Julia sets for system (3.1).

Theorem 3.1. For the complex dynamic system (3.1), assume that ||cn|| ≤ c for
∀n, then zn is bounded if and only if ||z0 + c0|| ≤ 1

||a0|| in the case of n → ∞.

Moreover,

J (3.1) = ∂{ z0 : ||z0 + c0|| ≤
1

||a0||
} .
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Figure 3. The Julia set of system (2.2).

Proof. According to the proof of theorem 3.1, we have

zn+1 = (z0 + c0)[a0(z0 + c0)]2
n+1−1 − cn+1 ,

||zn+1|| ≤ ||z0 + c0||(||a0|| · ||z0 + c0||)2
n+1−1 + ||cn+1|| .

Because ||cn|| ≤ c for ∀n, we have

||zn+1|| ≤ ||z0 + c0||(||a0|| · ||z0 + c0||)2
n+1−1 + c .

Then ||zn+1|| ≤ 1
||a0|| + c if and only if ||a0|| · ||z0 + c0|| ≤ 1 in the case of n → ∞.

This implies zn is bounded if and only if ||z0 + c0|| ≤ 1
||a0|| in the case of n→∞.

From definition 1.2, we have

J (3.1) = ∂{ z0 : ||z0 + c0|| ≤
1

||a0||
} ,

which means the Julia set of system (3.1) is a circle with the center of −c0 and the
radius of 1

||a0|| .

Example 3.1. In system (3.1), let an ≡ 2i and cn = − 0.5+i
n+1 for ∀n, then it becomes

to

zn+1 = 2i(zn −
0.5 + i

n + 1
)2 +

0.5 + i

n + 2
. (3.2)

Because ||cn|| ≤ ||c0|| =
√

1.25 for ∀n, from theorem 3.1, we have

J (3.2) = ∂{ z0 : ||z0 − 0.5− i|| ≤ 0.5 } .

This means that its Julia set is a circle with the center of −c0 = 0.5 + i and the
radius of 1

||a0|| = 0.5. Its Julia set is illustrated in figure 4.

We can see that the result of the simulation matches theorem 3.1 well from the
Figure 4.
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Figure 4. The Julia set of system (3.2).

Remark 3.1. The reason of studying the particular case of system (1.2) is that,
from system (3.1) and theorem 3.1, we can construct a specific system that its Julia
set is a circle with the center and the radius of any given value on the complex
plane.

We will use the following example to illustrate it.

Example 3.2. Finding out a system that its Julia set is a circle with the center of
5 + 6

√
2i and the radius of 10 on the complex plane.

From theorem 3.1, the system we want is one of specific cases of system (3.1). It
requires cn is bounded, c0 = −5− 6

√
2i and 1

||a0|| = 10 in system (6). So a specific

case of system (6) which satisfies these three conditions is just the system we need.
Let cn ≡ c0 = −5− 6

√
2i and a0 = 0.1, system (3.1) becomes to the specific case

zn+1 = 0.1(zn − 5− 6
√

2i)2 + 5 + 6
√

2i .

It is one case of the system we want.

For system (3.1), let cn ≡ c0, it becomes to a special system

zn+1 = a0(zn + c0)2 − c0 . (3.3)

From theorem 3.1, we have the following corollary.

Corollary 3.1. For the complex dynamic system (3.3), zn is bounded in the case
of n→∞ if and only if ||z0 + c0|| ≤ 1

||a0|| . What’s more,

J (3.3) = ∂{ z0 : ||z0 + c0|| ≤
1

||a0||
} .
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4. The formats of Julia sets of piecewise cases for
system (1.2)

In this section, we will study the formats of Julia sets of piecewise cases for system
(1.2):

zn+1 =



a1n(zn + c1n)2 − c1(n+1) : ||z0 + c|| < r1 ;

a2n(zn + c2n)2 − c2(n+1) : r1 ≤ ||z0 + c|| < r2 ;

· · · , · · · · · ·

asn(zn + csn)2 − cs(n+1) : rs ≤ ||z0 + c|| .
Firstly, we give the following theorem.

Theorem 4.1. For the complex dynamic system (1.2), assume that 0 < a′ ≤
||an|| ≤ a and ||cn|| ≤ c for ∀n, then zn is bounded when ||z0 + c0|| ≤ 1

a in the
case of n→∞. Moreover,

J (1.2) = ∂{ z0 : ||z0 + c0|| ≤ r,
1

a
≤ r ≤ 1

a′
} .

Proof. We have proved that zn was bounded when ||z0 + c0|| ≤ 1
a in the case of

n→∞ and r ≥ 1
a . Here, we deal with r ≤ 1

a′ .
According to the proof of theorem 2.1,

||zn+1|| = ||ana2n−1 · · · a2
n−1

1 a2
n

0 (z0 + c0)2
n+1

− cn+1|| ,

we have

||zn+1|| ≥ ||an|| · ||an−1||2 · · · ||a1||2
n−1

· ||a0||2
n

· ||z0 + c0||2
n+1

− ||cn+1|| .

Because ||an|| ≥ a′ > 0 and ||cn|| ≤ c for ∀n, we can get

||zn+1|| ≥ a′ · (a′)2 · (a′)4 · · · (a′)2
n−1

· (a′)2
n

· ||z0 + c0||2
n+1

− c

= (a′)(2
0+21+···+2n−1+2n) · ||z0 + c0||2

n+1

− c

= (a′)
1−2n+1

1−2 · ||z0 + c0||2
n+1

− c

= (a′)2
n+1−1 · ||z0 + c0||2

n+1

− c

= ||z0 + c0|| · (a′||z0 + c0||)2
n+1−1 − c .

Then we have that ||zn+1|| ≥ 1
a′ − c when a′||z0 + c0|| ≤ 1 in the case of n → ∞.

This implies that zn may be bounded only when ||z0 + c0|| ≤ 1
a′ in the case of

n→∞. As a result, ||zn|| is bounded when n→∞ if ||z0 + c0|| ≤ r and r ≤ 1
a′ .

From definition 1.2, the Julia set of system (1.2) is the boundary of all the z0
which satisfies ||z0 + c0|| ≤ r. According to theorem 2.1 and the proof above, we
have

J (1.2) = ∂{ z0 : ||z0 + c0|| ≤ r,
1

a
≤ r ≤ 1

a′
} .

This means that it is a circle with the center of −c0 and the radius of some value
between 1

a and 1
a′ .

Remark 4.1. According to the appearance of a′ in the proof above, we can make
sure that zn is bounded in the case of n→∞ if we choose ||z0 + c0|| ≤ 1

a′ .
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4.1. The cases that Julia sets are concentric circles

Let system (1.2) be the following system

zn+1 =

a1n(zn + c1n)2 − c1(n+1) : ||z0 + c|| < a ;

a2n(zn + c2n)2 − c2(n+1) : ||z0 + c|| ≥ a .
(4.1)

In system (4.1), a1n, a2n, c1n, c2n, c ∈ C 6= ∅, and a > 0, n = 0, 1, 2, · · · .

Theorem 4.2. If piecewise system (4.1) satisfies the following conditions

1. 0 < a′1 ≤ ||a1n|| ≤ a1 and 0 < a′2 ≤ ||a2n|| ≤ a2 for ∀n;

2. ||c1n|| ≤ c1 and ||c2n|| ≤ c2 for ∀n;

3. c10 = c20 = c;

4. 1
a′1

< a < 1
a2

,

we define it as system (4.1.1). Then the Julia set of system (4.1.1) is

J (4.1.1)=∂{z0 : ||z0+c||≤r1,
1

a1
≤r1≤

1

a′1
}
⋃

∂{z0 :a ≤ ||z0+c||≤r2,
1

a2
≤ r2≤

1

a′2
} .

Proof. For system (4.1.1), according to theorem 4.1, we can obtain the conclusion
immediately.

It implies that its Julia set is 3 concentric circles with the center of −c and the
radiuses of r1, a and r2 respectively, where 1

a1
≤ r1 ≤ 1

a′1
, 1

a2
≤ r2 ≤ 1

a′2
.

Example 4.1. In system (4.1), let a1n =
√

3 + i
n+1 , c1n = 1 + i

n+1 , a2n =
√
2
4 +

√
2i

4(n+1) , c2n = 1
n+1 + i, c = 1 + i and a = 1, we have

zn+1 =

 (
√

3 + i
n+1 )[zn + (1 + i

n+1 )]2 − (1 + i
n+2 ) : ||z0 + (1 + i)|| < 1 ;

(
√
2
4 +

√
2

4(n+1) i)[zn + ( 1
n+1 + i)]2 − ( 1

n+2 + i) : ||z0 + (1 + i)|| ≥ 1 .

(4.2)
Because

1. 0 <
√

3 < ||a1n|| ≤ ||a10|| = 2 and 0 <
√
2
4 < ||a2n|| ≤ ||a20|| = 1

2 for ∀n;

2. ||c1n|| ≤ ||c10|| =
√

2 and ||c2n|| ≤ ||c20|| =
√

2 for ∀n;

3. c10 = c20 = c = 1 + i;

4. a = 1, 1
a′1

=
√
3
3 , 1

a2
= 2, so 1

a′1
< a < 1

a2
,

by theorem 4.2, we have

J (4.2) = ∂{ z0 : ||z0 + (1 + i)|| ≤ r1, 0.5 ≤ r1 <

√
3

3
}⋃

∂{ z0 : 1 ≤ ||z0 + (1 + i)|| ≤ r2, 2 ≤ r2 < 2
√

2 } .

This implies that the Julia set of system (4.2) is 3 concentric circles with the center

of −c = −1− i and the radiuses of r1, 1 and r2 respectively, where 0.5 ≤ r1 <
√
3
3 ,

2 ≤ r2 < 2
√

2. Its Julia set is demonstrated in Figure 5.

We can see that the simulation matches theorem 4.2 well from the Figure 5.
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Figure 5. The Julia set of system (4.2).

For system (4.1), let a1n ≡ a1 6= 0, a2n ≡ a2 6= 0, and c1n = c2n ≡ c, it becomes
to a special system

zn+1 =

a1(zn + c)2 − c : ||z0 + c|| < a ;

a2(zn + c)2 − c : ||z0 + c|| ≥ a .
(4.3)

From theorem 4.2, we can obtain the following corollary directly.

Corollary 4.1. For the complex dynamic system (11), when 1
||a1|| < a < 1

||a2|| , we

have

J (4.3) = ∂{ z0 : ||z0 + c|| ≤ 1

||a1||
}
⋃

∂{ z0 : a ≤ ||z0 + c|| ≤ 1

||a2||
} .

This implies that its Julia set is 3 concentric circles with the center of −c and the
radiuses of 1

||a1|| , a and 1
||a2|| respectively.

4.2. The cases that Julia sets are non-concentric circles

Theorem 4.3. If the piecewise system (4.1) satisfies the following conditions

1. 0 < a′1 ≤ ||a1n|| ≤ a1 and 0 < a′2 ≤ ||a2n|| ≤ a2 for ∀n;

2. ||c1n|| ≤ c1 and ||c2n|| ≤ c2 for ∀n;

3. ||c10 − c|| ≤ a− 1
a′1

and ||c20 − c|| ≥ a + 1
a′2

,

we define it as system (4.1.2). Then the Julia set of system (4.1.2) is

J (4.1.2)=∂{z0 : ||z0+c10||≤r1,
1

a1
≤ r1≤

1

a′1
}
⋃

∂{z0 : ||z0+c20||≤ r2,
1

a2
≤r2 ≤

1

a′2
} .

Proof. For system (4.1.2), according to theorem 4.1, we can obtain the conclusion
directly.
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In addition, from the third condition of theorem 4.3, we have

||c10 − c20|| = ||c10 − c + c− c20||
= ||(c− c20)− (c− c10)||
≥ ||c− c20|| − ||c− c10||

≥ (a +
1

a′2
)− (a− 1

a′1
)

=
1

a′1
+

1

a′2
≥ r1 + r2 .

As a result, its Julia set is two circles that one with the center of −c10 and
the radius of r1 while another with the center of −c20 and the radius of r2, where
1
a1
≤ r1 ≤ 1

a′1
, 1

a2
≤ r2 ≤ 1

a′2
. What’s more, These two circles are away from

each other when ||c10 − c20|| > r1 + r2, and they are externally tangent when
||c10 − c20|| = r1 + r2.

Example 4.2. In system (4.1), let a1n =
√
3
2 + i

2(n+1) , c1n = 3
2 −

3i
2(n+1) , a2n =

1 +
√
3i

n+1 , c2n = − 3
5(n+1) + 4i

5 , c = 1.5− 1.5i and a = 1.5, then it leads to

zn+1 =

 (
√
3
2 + i

2(n+1) )[zn+(3
2−

3i
2(n+1) )]

2−( 3
2−

3i
2(n+2) ) : ||z0+(1.5−1.5i)||<1.5;

(1+
√
3i

n+1 )[zn+(− 3
5(n+1) + 4i

5 )]2−(− 3
5(n+2) + 4i

5 ) : ||z0+(1.5−1.5i)||≥1.5 .
(4.4)

Following the conditions

1. 0 <
√
3
2 < ||a1n|| ≤ ||a10|| = 1 and 0 < 1 < ||a2n|| ≤ ||a20|| = 2 for ∀n;

2. ||c1n|| ≤ ||c10|| = 3
√
2

2 and ||c2n|| ≤ ||c20|| = 1 for ∀n;

3. a = 1.5, 1
a′1

= 2
√
3

3 , 1
a′2

= 1, c10 = 1.5−1.5i, c20 = −0.6+0.8i, c = 1.5−1.5i,

so ||c10 − c|| ≤ a− 1
a′1

and ||c20 − c|| ≥ a + 1
a′2

,

applying theorem 4.3, we have

J (4.4) = ∂{ z0 : ||z0 + 1.5− 1.5i|| ≤ r1, 1 ≤ r1 <
2
√

3

3
}⋃

∂{ z0 : ||z0 − 0.6 + 0.8i|| ≤ r2, 0.5 ≤ r2 < 1 } .

Note that

||c10 − c20|| >
1

a′1
+

1

a′2
≥ r1 + r2 .

The Julia set of system (4.4) is two circles away from each other, one with the
center of −c10 = −1.5 + 1.5i and the radius of r1 while another with the center of
−c20 = 0.6− 0.8i and the radius of r2, where 1 ≤ r1 < 2

√
3

3 , 0.5 ≤ r2 < 1. Its Julia
set is demonstrated in Figure 6.



454 C. Liu & S. Liu

−3 −2 −1 0 1 2 30.60.1 1.1−1.5 −0.5−2.5
−3

−2

−1

0

1

2

3

−0.8

−0.3

−1.3

0.5

1.5

2.5

R

I

Figure 6. The Julia set of system (4.4).

4.3. The cases that Julia sets are not circles

Theorem 4.4. If piecewise system (4.1) satisfies the following conditions

1. 0 < a′1 ≤ ||a1n|| ≤ a1 and 0 < a′2 ≤ ||a2n|| ≤ a2 for ∀n;

2. ||c1n|| ≤ c1 and ||c2n|| ≤ c2 for ∀n;

3. ||c10 − c|| ≥ a + 1
a′1

and a + 1
a2

> ||c20 − c||;

4. ||c20 − c|| > a− 1
a2
≥ 0 or ||c20 − c|| > 1

a′2
− a ≥ 0,

we define it as system (4.1.3). Then the Julia set of system (4.1.3) is

J (4.1.3) = ∂( { z0 : ||z0 + c20|| ≤ r2,
1

a2
≤ r2 ≤

1

a′2
}

−{ z0 : ||z0 + c20|| ≤ r2,
1

a2
≤ r2 ≤

1

a′2
}
⋂
{ z0 : ||z0 + c|| < a } ) .

Proof. For system (4.1.3), according to theorem 4.1, we can obtain the conclusion
directly.

It implies that its Julia set is formed by two intersected circles, one with the
center of −c20 and the radius of r2 while another with the center of −c and the
radius of a, where 1

a2
≤ r2 ≤ 1

a′2
.

Example 4.3. In system (4.1), let a1n = 10 + 10i
n+1 , c1n = 16

n+1 , a2n = 1
2 +

√
3i

2(n+1) , c2n = −2− 2i
n+1 , c = −2− 3i and a = 1, then it leads to

zn+1 =

 (10 + 10i
n+1 )(zn + 16

n+1 )2 − 16
n+2 : ||z0 − 2− 3i|| < 1 ;

( 1
2 +

√
3i

2(n+1) )[zn + (−2− 2i
n+1 )]2 − (−2− 2i

n+2 ) : ||z0 − 2− 3i|| ≥ 1 .
(4.5)

For system (4.5) satisfies all the conditions of theorem 4.4, we have

J (4.5) = ∂( { z0 : ||z0 − 2− 2i|| ≤ r2, 1 ≤ r2 < 2 }
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−{ z0 : ||z0 − 2− 2i|| ≤ r2, 1 ≤ r2 < 2 }
⋂
{ z0 : ||z0 − 2− 3i|| < 1 } ) .

It implies the Julia set of system (4.5), the boundary with the shape of crescent
moon, is formed by the circle with the center of −c20 = 2 + 2i and the radius of r2
removing the intersecting part of it and the circle with the center of −c = 2 + 3i
and the radius of 1, where 1 ≤ r2 < 2. Its Julia set is demonstrated in Figure 7 by
the boundary of the shadow region.

−4 −3 −2 −1 0 1 2 3 4
−4

−3
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2

3

4

I
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Figure 7. The Julia set of system (4.5).

Example 4.4. In system (4.1), let a1n = 3
n+1 + 4i, c1n = 9i

n+3 , a2n =
√
2
2 +

√
2i

2(n+1) , c2n = 1
n+1 − i, c = 0.5− 0.5i and a = 1.5, it becomes to

zn+1 =

 ( 3
n+1 + 4i)(zn + 9i

n+3 )2 − 9i
n+4 : ||z0 + 0.5− 0.5i|| < 1.5 ;

(
√
2
2 +

√
2i

2(n+1) )[zn + ( 1
n+1 − i)]2 − ( 1

n+2 − i) : ||z0 + 0.5− 0.5i|| ≥ 1.5 .
(4.6)

For system (4.6) satisfies all the conditions of theorem 4.4, we have

J (4.6) = ∂( { z0 : ||z0 + 1− i|| ≤ r2, 1 ≤ r2 <
√

2 }
−{ z0 : ||z0+1− i|| ≤ r2, 1 ≤ r2 <

√
2 }

⋂
{ z0 : ||z0+0.5− 0.5i|| < 1.5 } ) ,

It implies the Julia set of system (4.6), the boundary with the shape of crescent
moon, is formed by the circle with the center of −c20 = −1 + i and the radius of r2
removing the intersecting part of it and the circle with the center of −c = −0.5+0.5i
and the radius of 1.5, where 1 ≤ r2 <

√
2. Its Julia set is demonstrated in Figure 8

by the boundary of the shadow region.

Example 4.5. In system (4.1), let a1n = 8 + 6i
n+1 , c1n = 12

n+2 , a2n = 1
3(n+1) +

√
3i
3 , c2n = 2 + 9i

5(n+1) , c = 1 + 2i and a = 1, then it leads to

zn+1 =

 (8 + 6i
n+1 )(zn + 12

n+2 )2 − 12
n+3 : ||z0 + 1 + 2i|| < 1 ;

( 1
3(n+1) +

√
3i
3 )[zn + (2 + 9i

5(n+1) )]
2 − (2 + 9i

5(n+2) ) : ||z0 + 1 + 2i|| ≥ 1 .
(4.7)
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Figure 8. The Julia set of system (4.6).

For system (4.7) satisfies all the conditions of theorem 4.4, we have

J (4.7) = ∂( { z0 : ||z0 + 2 + 1.8i|| ≤ r2, 1.5 ≤ r2 <
√

3 }
−{ z0 : ||z0+2+1.8i|| ≤ r2, 1.5 ≤ r2 <

√
3 }

⋂
{ z0 : ||z0+1 + 2i||<1 } ) ,

It implies the Julia set of system (15), the boundary with the shape of crescent
moon, is formed by the circle with the center of −c20 = −2− 1.8i and the radius of
r2 removing the intersecting part of it and the circle with the center of −c = −1−2i
and the radius of 1, where 1.5 ≤ r2 <

√
3. Its Julia set is demonstrated in Figure 9

by the boundary of the shadow region.
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Figure 9. The Julia set of system (4.7).

Example 4.6. In system (4.1), let a1n = 2
n+1 +

√
5i, c1n = 7i

n+1 , a2n = 1 +
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√
3i

3(n+1) , c2n = − 2
n+1 + 2i, c = −1.5 + 1.5i and a = 1, then it becomes

zn+1 =

 ( 2
n+1 +

√
5i)(zn + 7i

n+1 )2 − 7i
n+2 : ||z0 − 1.5 + 1.5i|| < 1 ;

(1 +
√
3i

3(n+1) )[zn + (− 2
n+1 + 2i)]2 − (− 2

n+2 + 2i) : ||z0 − 1.5 + 1.5i|| ≥ 1 .
(4.8)

Because system (4.8) satisfies all the conditions of theorem 4.4, we have

J (4.8) = ∂( { z0 : ||z0 − 2 + 2i|| ≤ r2,

√
3

2
≤ r2 < 1 }

−{ z0 : ||z0−2+2i|| ≤ r2,

√
3

2
≤ r2 < 1 }

⋂
{ z0 : ||z0 −1.5+ 1.5i||<1 } ) ,

It implies the Julia set of system (4.8), the boundary with the shape of crescent
moon, is formed by the circle with the center of −c20 = 2− 2i and the radius of r2
removing the intersecting part of it and the circle with the center of −c = 1.5−1.5i

and the radius of 1, where
√
3
2 ≤ r2 < 1. Its Julia set is demonstrated in Figure 10

by the boundary of the shadow region.
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Figure 10. The Julia set of system (4.8).

We can see that all the simulated results match theorem 6 well from these figures
above. What’s more, here the Julia sets of these four systems are located in four
different quadrants respectively. This means that we can control the locations and
sizes of their Julia sets.

5. Conclusion

For the general complex dynamic systems with constant coefficients, the related
research is well developed and they are applied in multiple fields. However, for
the complex dynamic systems with variable coefficients, its relevant study just be-
gins. In this paper, aiming at a class of complex dynamic systems with variable
coefficients, we got some theoretical results of the stable domains and formats of
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Julia sets for their general and special cases. In addition, we simulated the related
Julia sets to illustrate our theoretical study. What’s more, we studied some piece-
wise cases to get the conditions such that their stable domains and Julia sets can
achieve certain required forms. We also used simulations to verify our results. Our
study provides some ideas about how to control the stable domains and the shapes,
sizes and locations of Julia sets for these systems. We will generalize our results
to more general complex dynamic systems with variable coefficients in further study.
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