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Threshold Dynamics of a Time-periodic
Reaction-Diffusion Malaria Model with

Distributed Latencies∗

Haoyu Wang1, A-yun Zhang2,3 and Zhicheng Wang2,†

Abstract It is well-known that the transmission of malaria is caused by the
bites of mosquitoes. Since the life habit of mosquitoes is influenced by seasonal
factors such as temperature, humidity and rainfall, the transmission of malaria
presents clear seasonable changes. In this paper, in order to take into account
the incubation periods in humans and mosquitoes, we study the threshold
dynamics of two periodic reaction-diffusion malaria models with distributed
delay in terms of the basic reproduction number. Firstly, the basic repro-
duction number R0 is introduced by virtue of the next generation operator
method and the Poincaré mapping of a linear system. Secondly, the threshold
dynamics is established in terms of R0. It is proved that if R0 < 1, then the
disease-free periodic solution of the model is globally asymptotically stable;
and if R0 > 1, then the disease is persistent.

Keywords Incubation period, the basic reproduction number, periodic solu-
tion, distributed latency, uniform persistence.
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1. Introduction

Malaria is a serious infectious disease with a long history of development. It is widely
believed in biology that malaria originates in Africa from a parasite commonly
known as Plasmodium, which was first found in chimpanzees. Malaria is spread
widely among the population through female adult mosquitoes and poses a great
threat to human health. According to the latest WHO malaria report, there are
more than 200 million people suffering from malaria in the world. The data shows
that 90% of malaria cases occur in African countries. In addition, India is also the
main country of malaria infection. According to statistics, the number of cases in
malaria-prone countries increased by nearly 3.6 million in 2018, with 40% of the
deaths due to the illness. In China, malaria often occurs in Sichuan, Yunnan and
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Guangxi. Due to the different sources of infection, temperature, humidity and so
on, it is very difficult to control and eradicate malaria. Based on the latest news,
there are about 2600 cases of malaria in China, and the proportion of deaths has
increased. This shows that malaria still has a huge hidden danger to human life
and there is a long way to go to achieve the goal of malaria-free.

Mathematical model is a basic and effective tool for studying the mechanism of
disease transmission. A reasonable mathematical model reflects the law of disease
development and predict its changing trend. It can provide good suggestions and
guides for people to prevent,control and eradicate disease. Therefore, many sci-
entists begin to study the dynamics of disease transmission through mathematical
model.

The first mathematical model for malaria transmission was introduced by Ross
[37] in 1911. Ross proposed a system of ordinary differential equations which studys
the malaria transmission between humans and mosquitoes. It proved that the
prevalence of diseases would be controlled when the number of mosquitoes was
less than the threshold value. Subsequent contributions have been made by Mac-
donald [32, 33] to the generalization of the classical Ross-Macdonald model, that
is, {

dh(t)
dt = abH−h(t)

H v(t)− rh(t),
dv(t)
dt = ach(t)

H (V − v(t))− dv(t).

Here H and V are the total populations of humans and mosquitoes, respectively.
h(t) and v(t) are the numbers of infected humans and mosquitoes at time t, a is
the rate of biting on humans by a single mosquito, b and c are the transmission
probabilities from infected mosquitoes to susceptible humans and from infected
humans to susceptible mosquitoes, respectively, 1

r is the duration of the disease in
humans and d is the mortality rate of mosquitoes.

Macdonald obtained several interesting conclusions through researching the Ross-
Macdonald model. Firstly, the result states that malaria can persist in a population
only if the number of mosquitoes is greater than a given threshold. Secondly, the
prevalence of infection in the human and the mosquito hosts depends directly on the
basic reproduction number and the relationship is nonlinear. Thirdly, the model
has a stable positive equilibrium when the basic reproduction number is greater
than 1. This means that temporary intervention can lead to a temporary reduction
of prevalence, when the intervention is relaxed prevalence again increased to the
original values. Moreover, Macdonald performed a sensitivity analysis of the basic
reproduction number. He found that halving the mosquito population reduces R0

by a factor of two, meanwhile halving biting rate reduces R0 by a factor of four.
The largest reduction of R0 is expected for increase in adult mosquito mortality.
The work of Macdonald had a very beneficial impact on the collection, analysis,
and interpretation of epidemic data on malaria infection and guided the enormous
global malaria-eradication campaign of his era.

However, the Ross-Macdonald model ignores many ecological and epidemiolog-
ical factors, such as the age structure, acquired immunity in humans, spatial het-
erogeneity, temperature, climate and latency and so on. But these factors play a
great influence on the dynamics of malaria transmission. So a number of researchers
begin to focus on this important aspect by including these factors. For example,
Forouzannia and Gumel [14] take into account the age structure. An important con-
clusion is that the disease-free equilibrium is locally asymptotically stable if R0 < 1,
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and the disease-free equilibrium in case of neglecting the disease-induced mortality
rate is globally asymptotically stable if R0 < 1. Dietz et al. [12], Bailey [6], Aron [3]
and Aron and May [4] presented many malaria models with acquired immunity
in humans. In order to consider spatially heterogeneous environments, Gao and
Ruan [16] provided malaria models with spatial effects and investigated the spatial
spread of malaria between humans and mosquitoes. In 2010s, Lou and Zhao [29]
proposed a climate-based malaria transmission model with structured vector pop-
ulation. They incorporated the seasonality into Ross-Macdonald model. Due to
the effects of latencies of parasites in humans and mosquitoes populations, Ruan
et al. [38] established the delayed Ross-Macdonald model for malaria transmission.
In the paper, the sensibility of the basic reproduction number was analyzed by
authors. They concluded that the basic reproduction number is a decreasing func-
tion of both time delays. Lou and Zhao [30] derived a reaction-diffusion epidemic
model with time-delay and non-locality and investigated the threshold dynamics of
the epidemic model by means of the basic reproduction number R0. Bai et al. [5]
considered a time-periodic model with seasonality and incubation period. It shows
that the symbol of R0 − 1 determines whether malaria is dead or not. Numerical
simulations indicate that prolonging the extrinsic incubation period may be helpful
in the disease control. In addition, there have been other papers studying epidemic
models, see [2, 13,17,22,31,42,47,48] and the references therein.

In the classical Ross-Macdonald model, mosquitoes bite preferences is not taken
into account. But malaria patients are more attractive to mosquitoes in real life.
In the year of 1987, Kingsolver [24] firstly proposed a vector-bias malaria model,
which is extended from the Ross-Macdonald model, and accounted for the greater
attractiveness of infectious humans to mosquitoes. Following Kingsolver,s work,
Hosack et al.(2008) introduced an extrinsic incubation time in mosquitoes to study
the transmission of the disease. Chamchod and Britton [10] redefined the attrac-
tiveness and interpreted the spread of malaria in term of a reproduction number.
Then, Buonomo and Vargas-De-León [8] expanded the modeling in [10]. The clas-
sical threshold for the basic reproductive number, R0, is obtained. the occurrence
of a backward bifurcation at R0 = 1 is shown possible. Besides, great progress has
been made in vector-bias modeling in malaria, see, e.g., [23, 25,30,43,45].

As we all known, it is common that the length of the latent period is different
for various diseases. For example, the latent period for dengue is about 13 days.
The viral hepatitis type A exposures after 45 days. And the latent period of AIDS
has nearly several years. Smilarly, for the same disease, the incubation period of the
disease is different for different individuals due to the physical differences among
individuals. It is longer in some people and shorter in others. Based on this case,
the dynamics of a model with discrete time delay is not longer convincing, and more
scholars use distributed delay to describe the changes of the density of the infected
population.

In 2001s, a SIR model with distributed delay was first introduced by Beretta et
al. in [7]. The authors studyed the global attractivity of the disease-free state E0

and the endemic state E+. Subsequent McCluskey [36] proved the complete global
stability for a SIR epidemic model with delay-distributed or discrete by means of
Lyapunov function. The result shows that if R0 > 1, the endemic equilibrium is
globally asymptotically stable whatever distributed delay or discrete delay. Given
the effect of distributed latency, Zhao et al. [46] analyzed a time-periodic and two-
group reaction-diffusion epidemic model with distributed delay. The threshold dy-
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namics of this model is investigated by deriving the basic reproduction number R0.
The other papers related to distributed delay are in [9, 21,26,41].

In this paper, since different individuals have different immune cycles, it is as-
sumed that malaria patients can obtain permanent immunity after recovery in order
to reduce the complexity. The rest of the paper is organized as follows. In the next
section, we formulate a periodic vector-bias malaria model with diffusion and dis-
tributed delay. And the well-posedness of the solution for the system is studyed. In
section 3 and 4, we introduce the basic reproduction number R0 for the model via
the next generation operator method and establish the threshold dynamics of the
transmission model in term of R0. Namely, the disease eventually die out if R0 < 1,
while the disease is persistent if R0 > 1.

2. Model formulation

Assume that the habitate Ω ∈ Rn is a bounded domain with smooth boundary ∂Ω.
We divide each population into third epidemiological classes: susceptible, latent and
infectious. Denote the densities of three classes at time t and location x by Si(t, x),
Li(t, x) and Ii(t, x) respectively, where i = 1, 2 and (t, x) ∈ R+ × Ω̄. The symbol
with the subscript 1(2) indicates the distribution density of the human(mosquitoes)
population in each class. Meanwhile, we assume that the total number of humans
stabilizes at H(x).

To incorporate a vector-bias term into the model, we introduce the parameters
p and l to describe the probabilities that a mosquito arrives at a human at random
and picks the human if he is infectious and susceptible, respectively. Since infectious
humans are more attractive to mosquitoes, we suppose that p ≥ l ≥ 0. The biting
rate β(t, x) of mosquitoes is the number of bites per mosquito per unit time at time
t and location x. We suppose that the total number of bites made by mosquitoes is
same as the number of bites received by humans. We also suppose that a mosquito
will not bite the same person more than once. Then β(t, x)I2(t, x) indicates the
number of humans who are bittten by infectious mosquitoes per unit time at time
t and location x. Assume the infected people can obtain permanent immunity
after recovery. Thus, only those originally susceptible may give rise to increase of
infectious humans I1. Hence, we derive that the probability of a mosquito picking

a susceptible human equals lS1(t,x)
pI1(t,x)+l[H(x)−I1(t,x)] . Similarly, pI1(t,x)

pI1(t,x)+l[H(x)−I1(t,x)]

is the probability of a mosquito picking a infectious human. Then the number of
newly infectious humans and newly infectious mosquitoes per unit time at time t
and location x is respectively

cβ(t, x)
lS1(t, x)

pI1(t, x) + l[H(x)− I1(t, x)]
I2(t, x),

and

bβ(t, x)
pI1(t, x)

pI1(t, x) + l[H(x)− I1(t, x)]
S2(t, x),

where c(b) is the transmission probability per bite from an infectious mosquito
(human) to a susceptible human (mosquito).



Time-periodic reaction-diffusion malaria model with distributed latencies 495

Let yi(t, a, x) be the density of a population at time t ≥ 0, infectious age variable
a ≥ 0 and location x ∈ Ω̄. Then yi(t, a, x)(i = 1, 2) satisfy

∂y1(t, a, x)

∂t
+
∂y1(t, a, x)

∂a
= D1 4 y1(t, a, x)− (d1(t, x) + ρ)y1(t, a, x),

and
∂y2(t, a, x)

∂t
+
∂y2(t, a, x)

∂a
= D2 4 y2(t, a, x)− d2(t, x)y2(t, a, x).

Here, Di represents the diffusion rate of the population. di(t, x) is the natural death
rate of the population. We assume it is ω-periodic in t for every i. ρ > 0 means the
recovery rate of the humans. For a convenience, we write M1(t, x) = d1(t, x) + ρ
and M2(t, x) = d2(t, x). Then the above formulas can be rewritten as

∂yi(t, a, x)

∂t
+
∂yi(t, a, x)

∂a
= Di 4 yi(t, a, x)−Mi(t, x)yi(t, a, x), (2.1)

t, a ≥ 0, x ∈ Ω, i = 1, 2.

On account of the different length of incubation periods in humans and mosquito-
es, we suppose that the infected individuals have capable of infecting others when
their infection age a > τ1(τ1 ∈ R+) for human population. And the infected indi-
viduals can infect others effectively when a > τ2(τ2 ∈ R+) for mosquito population.
But, if a < τi(i = 1, 2), the infected individuals may or may not have an infection
ability. Further, we assume that fi(r)dr represents the probability of infected of in-
dividuals between the infection age r and r+dr and Fi(a) :=

∫ a
0
fi(r)dr denotes the

probability of turning into the individuals with infecting others before the infection
age a. Then we have

Li(t, x) =

∫ τi

0

(1− Fi(a))yi(t, a, x)da, i = 1, 2,

and

Ii(t, x) =

∫ τi

0

Fi(a)yi(t, a, x)da+

∫ +∞

τi

yi(t, a, x)da, i = 1, 2.

In fact, fi(a) ≥ 0 for a ∈ [0, τi) and Fi(a) ≡ 1 for a ∈ [τi,+∞) for i = 1, 2.
Differentiating the above formulas with respect to t and using (2.1) respectively, we
get

∂Li(t, x)

∂t
= Di4Li(t, x)−Mi(t, x)Li(t, x)−

∫ τi

0

fi(a)yi(t, a, x)da+ yi(t, 0, x)

(2.2)

and

∂Ii(t, x)

∂t
= Di4Ii(t, x)−Mi(t, x)Ii(t, x) +

∫ τi

0

fi(a)yi(t, a, x)da− yi(t,+∞, x),

(2.3)

where i = 1, 2. Biologically, we assume that yi(t,+∞, x) = 0 (i = 1, 2). As the
new infection individuals come from the contact of the infectious and susceptible
individuals, it follows that

y1(t, 0, x) = cβ(t, x)
lS1(t, x)

pI1(t, x) + l[H(x)− I1(t, x)]
I2(t, x) =

clβ(t, x)S1(t, x)I2(t, x)

(p− l)I1(t, x) + lH(x)
,
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and

y2(t, 0, x) = bβ(t, x)
pI1(t, x)

pI1(t, x) + l[H(x)− I1(t, x)]
S2(t, x) =

bpβ(t, x)S2(t, x)I1(t, x)

(p− l)I1(t, x) + lH(x)
.

Now we derive function yi(t, a, x) by the method of characteristics. For any
ξ ≥ 0, consider the solution of (2.1) along the characteristic line t = a+ ξ by letting
vi(ξ, a, x) = yi(a+ ξ, a, x)(i = 1, 2). Then for a ∈ [0, τi), we have



∂vi(ξ, a, x)

∂a
=

[
∂yi(t, a, x)

∂t
+
∂yi(t, a, x)

∂a

]
t=a+ξ

= Di 4 yi(a+ ξ, a, x)−Mi(t, x)yi(a+ ξ, a, x)

= Di 4 vi(ξ, a, x)−Mi(t, x)vi(ξ, a, x), x ∈ Ω, i = 1, 2,

vi(ξ, 0, x) = yi(ξ, 0, x), x ∈ Ω, i = 1, 2,
∂vi(ξ,a,x)

∂n = 0, x ∈ ∂Ω, i = 1, 2.

Here, n is the outward unit normal vector on ∂Ω. By [15], we obtain the solution
of the above formula, that is,

vi(ξ, a, x) =

∫
Ω

Γi(ξ + a, ξ, x, y)yi(ξ, 0, y)dy, (2.4)

where Γi(t, s, x, y) with t ≥ s and x, y ∈ Ω is the fundamental solution of the
operator ∂t −Di4+Mi(t, ·) associated with the Neumann boundary condition for
i = 1, 2. Note that Γi(t, s, x, y) = Γi(t+ω, s+ω, x, y) for all t > s ≥ 0 and x, y ∈ Ω.
Since yi(t, a, x) = vi(t− a, a, x)(t ≥ a ≥ 0), it follows that

y1(t, a, x) =

∫
Ω

Γ1(t, t− a, x, y)
clβ(t− a, y)S1(t− a, y)I2(t− a, y)

(p− l)I1(t− a, y) + lH(y)
dy,

and

y2(t, a, x) =

∫
Ω

Γ2(t, t− a, x, y)
bpβ(t− a, y)S2(t− a, y)I1(t− a, y)

(p− l)I1(t− a, y) + lH(y)
dy.

Substituting y1(t, a, x) and y2(t, a, x) into (2.2) and (2.3) respectively, and dropping
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Li(t, x), we get

∂uS1
(t, x)

∂t
= D14uS1

(t, x)− d1(t, x)uS1
(t, x) + µ1(t, x)

− clβ(t, x)uS1(t, x)u2(t, x)

(p− l)u1(t, x) + lH(x)
, t > 0, x ∈ Ω,

∂uS2
(t, x)

∂t
= D24uS2(t, x)− d2(t, x)uS2(t, x) + µ2(t, x)

− bpβ(t, x)uS2(t, x)u1(t, x)

(p− l)u1(t, x) + lH(x)
, t > 0, x ∈ Ω,

∂u1(t, x)

∂t
= D14u1(t, x)− (d1(t, x) + ρ)u1(t, x) +

∫ τ1

0

f1(a)

∫
Ω

Γ1(t, t− a, x, y)

× clβ(t− a, y)uS1(t− a, y)u2(t− a, y)

(p− l)u1(t− a, y) + lH(y)
dyda, t > 0, x ∈ Ω,

∂u2(t, x)

∂t
= D24u2(t, x)− d2(t, x)u2(t, x) +

∫ τ2

0

f2(a)

∫
Ω

Γ2(t, t− a, x, y)

× bpβ(t− a, y)uS2(t− a, y)u1(t− a, y)

(p− l)u1(t− a, y) + lH(y)
dyda, t > 0, x ∈ Ω,

∂uSi (t,x)

∂n = ∂ui(t,x)
∂n = 0, t > 0, x ∈ ∂Ω, i = 1, 2,

(2.5)
where (uS1

, uS2
, u1, u2) = (S1, S2, I1, I2). µi(t, x)(i = 1, 2) is the recruitment rate.

Assume di(t, x), µi(t, x) and β(t, x) are Hölder continuous and nonnegative nontriv-
ial on R × Ω̄, and ω-periodic in t. Further, assume all of constant parameters are
positive.

Set τ = max{τ1, τ2}. Define some Banach spaces and corresponding norms as
follows

X := C(Ω̄,R4), ‖ ϕ ‖X= max
x∈Ω̄
| ϕ(x) |,∀ϕ ∈ X,

C := C([−τ, 0], X), ‖ ϕ ‖C= max
−τ≤θ≤0

‖ ϕ(θ) ‖X ,∀ϕ ∈ C.

Let X+ := C(Ω̄,R4
+) and C+ := C([−τ, 0], X+), then (X,X+) and (C,C+) are

strongly ordered spaces. Given a function u : [−τ, σ] → X for σ > 0, we define
ut ∈ C by

ut(θ) = u(t+ θ), θ ∈ [−τ, 0].

Setting Y := C(Ω̄,R) and Y + := C(Ω̄,R+), we consider the following system:{
∂wi(t,x)

∂t = Di4wi(t, x)− di(t, x)wi(t, x), t > 0, x ∈ Ω, i = 1, 2,
∂wi(t,x)
∂n = 0, t > 0, x ∈ ∂Ω, i = 1, 2,

where Di > 0 (i = 1, 2) and di(t, x) (i = 1, 2) is Hölder continuous and nonnegative
nontrivial on R × Ω̄, and ω-periodic in t. It follows from [18, Chapter 2] that the
system has an evolution operator Vi(t, s) : Y + → Y + satisfying Vi(t+ ω, s+ ω) =
Vi(t, s) for i = 1, 2. Similarly, the equation{

∂w̄(t,x)
∂t = D14w̄(t, x)− (d1(t, x) + ρ)w̄(t, x), t > 0, x ∈ Ω,

∂w̄(t,x)
∂n = 0, t > 0, x ∈ ∂Ω,

has also an evolution operator V3(t, s) : Y + → Y + and V3(t, s) is ω − periodic.
Moreover, Vi(t, s)(i = 1, 2, 3) is compact and strongly positive for t ≥ s. By [11,
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Theorem 6.6] with α = 0, we admit that there exist constants M ≥ 1 and c ∈ R
such that

‖ Vi(t, s) ‖≤Me−c(t−s), ∀t ≥ s, t, s ∈ R, i = 1, 2, 3.

Define F = (FS1
, FS2

, F1, F2)T : [0,+∞)× C+ → X by

FS1
(t, φ) := µ1(t, ·)− clβ(t, ·)φS1

(0, ·)φ2(0, ·)
(p− l)φ1(0, ·) + lH(·)

,

FS2
(t, φ) := µ2(t, ·)− bpβ(t, ·)φS2(0, ·)φ1(0, ·)

(p− l)φ1(0, ·) + lH(·)
,

F1(t, φ) :=

∫ τ1

0

∫
Ω

Γ1(t, t− a, x, y)
clβ(t− a, y)φS1

(t− a, y)φ2(t− a, y)

(p− l)φ1(t− a, y) + lH(y)
dyda,

F2(t, φ) :=

∫ τ2

0

∫
Ω

Γ2(t, t− a, x, y)
bpβ(t− a, y)φS2

(t− a, y)φ1(t− a, y)

(p− l)φ1(t− a, y) + lH(y)
dyda.

Let A(t) = diag(A1(t),A2(t),A3(t),A2(t)). Ai(t) (i = 1, 2) is defined by{
D(Ai) = {ϕ ∈ C2(Ω̄) : ∂ϕ(x)

∂n = 0, x ∈ ∂Ω},
Aiϕ = Di4ϕ− di(t, x)ϕ, ∀ϕ ∈ D(Ai), i = 1, 2,

and A3(t) is defined by{
D(A3(t)) = {ϕ ∈ C2(Ω̄) : ∂ϕ(x)

∂n = 0, x ∈ ∂Ω},
A3(t)ϕ = D14ϕ− (d1(t, x) + ρ)ϕ, ∀ϕ ∈ D(A3(t)).

Then (2.5) can be rewritten as{
∂u(t,x)
∂t = A(t)u(t, x) + F (t, ut), t > 0, x ∈ Ω,

u(θ, x) = φ(θ, x), θ ∈ [−τ, 0], x ∈ Ω.
(2.6)

Let V (t, s) = diag(V1(t, s),V2(t, s),V3(t, s),V2(t, s)) and V (t, s) be an evolution
operator with compactness and strongly positive. Then (2.6) can be rewritten as
the following integral equation

u(t, φ) = V (t, 0)φ(0) +

∫ t

0

V (t, 0)F (s, us)ds, t ≥ 0, φ ∈ C+. (2.7)

A solution of (2.7) is called a mild solution of (2.6).

Lemma 2.1 ( [46], Lemma 3.1). For every initial value function ϕ ∈ C+, system
(2.5) has a unique mild solution z(t, ·, ϕ) ∈ X+ on [0,+∞). Furthermore, system
(2.5) generates a ω-periodic semiflow Qt(·) := zt(·) : C+ → C+, namely,

Qt(ϕ)(θ, x) = zt(ϕ)(θ, x) = z(t+ θ, x, ϕ), ∀t ≥ 0,

and Q := Qω : C+ → C+ has a global attractor in C+.

Define

C1 := C([−τ1, 0], Y ), C+
1 := C([−τ1, 0], Y +),

C2 := C([−τ2, 0], Y ), C+
2 := C([−τ2, 0], Y +),
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C̃ := C1 × C2 × C2 × C1, C̃+ := C+
1 × C

+
2 × C

+
2 × C

+
1 .

For any given ϕ = (ϕS1
, ϕS2

, ϕ1, ϕ2) ∈ C̃+, we define ϕ̂ = (ϕ̂S1
, ϕ̂S2

, ϕ̂1, ϕ̂2) by

ϕ̂S1
(θ) =

{
ϕS1

(−τ1), θ ∈ [−τ,−τ1],

ϕS1
(θ), θ ∈ [−τ1, 0],

ϕ̂S2
(θ) =

{
ϕS2

(−τ2), θ ∈ [−τ,−τ2],

ϕS2(θ), θ ∈ [−τ2, 0],

ϕ̂1(θ) =

{
ϕ1(−τ2), θ ∈ [−τ,−τ2],

ϕ1(θ), θ ∈ [−τ2, 0],

ϕ̂2(θ) =

{
ϕ2(−τ1), θ ∈ [−τ,−τ1],

ϕ2(θ), θ ∈ [−τ1, 0].

It is clearly that ϕ̂ ∈ C+. By the uniqueness of solution, we get u(t, x, ϕ) = z(t, x, ϕ̂)
for all t ∈ [0,+∞). From Lemma 2.1 we admit system (2.5) has a unique solution
u(t, x, ϕ) on [0,+∞).

In the next result, the existence of a solution of (2.5) in a smaller space C̃+ is
stated. We prove that the Poincaré map related to (2.5) admits a global attractor
in C̃+.

Lemma 2.2. For any ϕ ∈ C̃+, system (2.5) has a unique solution, denoted by
u(t, ·, ϕ), on interval [0,+∞) with u0 = ϕ. In addition, (2.5) generates a ω-periodic
semiflow Q̃t(·) := ut(·) : C̃+ → C̃+, i.e., Q̃t(ϕ) = ut(ϕ) for t ≥ 0 and Q̃ := Q̃ω has
a global attractor in C̃+.

Proof. Clearly, 0 ≤ uS1
(t, x), u1(t, x) ≤ H(x),∀t ∈ [0,+∞).

Solve the next time-periodic system:{
∂v(t,x)
∂t = D24v(t, x)− d2(t, x)v(t, x) + µ2(t, x), ∀t > 0, x ∈ Ω,

∂v(t,x)
∂n = 0, ∀t > 0, x ∈ ∂Ω.

(2.8)

It follows from [47, Lemma 2.1] that this system admits a unique positive ω-periodic
solution m∗(t, x) which is globally attractive in Y +. Since the uS2

equation in (2.5)
is dominated by (2.8), by the comparison principle, there exists a time t1 = t(ϕ) > 0
and a positive constant C1 such that for any ϕ ∈ C̃+, uS2(t, x, ϕ) ≤ m∗(t, x) ≤ C1

when t ≥ t1.
Similarly,
∂u2(t, x)

∂t
≤ D24u2(t, x)− d̃2u2(t, x)

+ C1bβ̄

∫ τ2

0

f2(a)

∫
Ω

Γ2(t, t− a, x, y)dyda, t > t1, x ∈ Ω,

∂u2(t,x)
∂n = 0, t > t1, x ∈ ∂Ω,

where d̃2 = mint∈[0,ω],x∈Ω̄ d2(t, x) and β̄ = maxt∈[0,ω],x∈Ω̄ β(t, x). There exists a
time t2(ϕ) > t1 and a positive constant C2 such that u2(t, x, ϕ) ≤ C2 for t ≥ t2(ϕ)
and ϕ ∈ C̃+.
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Define Q̃t(·) : C̃+ → C̃+ by Q̃t(ϕ) = ut(ϕ),∀ϕ ∈ C̃+. The proof of [47,
Lemma 2.1] implies that {Q̃t}t≥0 is an ω-periodic semiflow on C̃+. From the above

analysis, we know that Q̃t is point disspative. By [44, Theorem 2.1.8], we have
Q̃ := Q̃ω is compact. Following from [34, Theorem 2.9], one has that Q̃ has a global
attractor in C̃+.

3. The basic reproduction number

In this section, the critical works are made. Now, we derive the basic reproduction
number of the system (2.5) by the next generation operators method.

Let

Cω(R× Ω̄,R) := {φ ∈ C(R× Ω̄,R) : φ(t) = φ(t+ ω), ∀t ∈ R},
C+
ω := {φ ∈ Cω : φ(t, x) ≥ 0, ∀t ∈ R, x ∈ Ω̄},

Cω(R× Ω̄,R× R) := Cω(R× Ω̄,R)× Cω(R× Ω̄,R),

C+
ω := {φ = (φ1, φ2) ∈ Cω : φi(t, x) ≥ 0, ∀t ∈ R, x ∈ Ω̄, i = 1, 2}.

Taking u1 = u2 = 0, we obtain the next equations for the density of susceptible
population{

∂uSi (t,x)

∂t = Di4uSi(t, x)− di(t, x)uSi(t, x) + µi(t, x), t > 0, x ∈ Ω, i = 1, 2,
∂uSi (t,x)

∂n = 0, t > 0, x ∈ ∂Ω, i = 1, 2.

It follows from [47, Lemma 2.1] that the top equations have a positive solution
u∗Si(t, x)(i = 1, 2), which is ω-periodic in t and globally asymptotically stable. Lin-
earizing system (2.5) at (u∗S1

, u∗S2
, 0, 0), we get the following system

∂u1(t, x)

∂t
= D14u1(t, x)− (d1(t, x) + ρ)u1(t, x) +

∫ τ1

0

f1(a)

∫
Ω

Γ1(t, t− a, x, y)

×
cβ(t− a, y)u∗S1

(t− a, y)

H(y)
u2(t− a, y)dyda, t > 0, x ∈ Ω,

∂u2(t, x)

∂t
= D24u2(t, x)− d2(t, x)u2(t, x) +

∫ τ2

0

f2(a)

∫
Ω

Γ2(t, t− a, x, y)

×
bpβ(t− a, y)u∗S2

(t− a, y)

lH(y)
u1(t− a, y)dyda, t > 0, x ∈ Ω,

∂u1(t,x)
∂n = ∂u2(t,x)

∂n = 0, t > 0, x ∈ ∂Ω.

(3.1)
Define F (t) : Cω(R× Ω̄,R× R)→ Cω(R× Ω̄,R× R) by

F (t)(φ1, φ2)T =

 ∫ τ10
f1(a)

∫
Ω

Γ1(t, t− a, x, y)
cβ(t−a,y)u∗

S1
(t−a,y)

H(y) φ2(−a, y)dyda∫ τ2
0
f2(a)

∫
Ω

Γ2(t, t− a, x, y)
bpβ(t−a,y)u∗

S2
(t−a,y)

lH(y) φ1(−a, y)dyda

 .

Set Ṽ (t, s) = diag(V3(t, s),V2(t, s)). Suppose that v(s, x) ∈ Cω(R× Ω̄,R×R) is the
initial distribution of infectious individuals at time s ∈ R and location x ∈ Ω̄. For
every given s ≥ 0, F (t−s)v(t−s+·, x) represents the density of distribution of newly
infected individuals at time t−s(s < t) and location x. Then Ṽ (t, t−s)F (t−s)v(t−
s+ ·, x) denotes the density distribution at location x of those infected individuals
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who were newly infected at time t− s and remained survive in the environment at
time t for t ≥ s. After that, the term∫ +∞

0

Ṽ (t, t− s)F (t− s)v(t− s+ ·, x)ds

states the distribution of the accumulative infective individuals of the two group at
location x and time t for all previous time t− s(s < t) when the time evolved from
the previous time t− s to t.

Now we define two linear operators by

[Lv](t) :=

∫ +∞

0

Ṽ (t, t− s)F (t− s)v(t− s+ ·, ·)ds, ∀t ∈ R, v ∈ Cω,

and

[L̂v](t) := F (t)

(∫ +∞

0

Ṽ (t+ ·, t− s+ ·)v(t− s+ ·, ·)ds
)
, ∀t ∈ R, v ∈ Cω.

Set

[Av](t) :=

∫ +∞

0

Ṽ (t, t− s)v(t− s, ·)ds, ∀t ∈ R, v ∈ Cω,

[Bv](t) := F (t)v(t+ ·, ·)ds, ∀t ∈ R, v ∈ Cω.

Then L = A ◦B and L̂ = B ◦A. As a consequence, L and L̂ have the same spectral
radius, that is, r(L) = r(L̂). Next, we use the spectral radius of L to depict the
basic reproduction number for (2.5), namely,

R0 := r(L) = r(L̂).

As the previous result, there exists constants M > 1 and ci ∈ R such that

‖ Vi(t, s) ‖≤Meci(t−s), ∀t ≥ s, t, s ∈ R, i = 2, 3.

One has that c∗i := ω(Vi) ≤ ci, where

ω(Vi) = inf{ω | ∃M ≥ 1 s.t. ‖ Vi(t, s) ‖≤Meωt, ∀t ≥ s, t, s ∈ R}.

Let r(Vi(ω, 0)) be the spectral radius of the operator Vi(ω, 0). Due to the com-
pactness and strong positive of Vi(t, s) on Y +, it follows from the Krein-Rutman
theorem ( [18, Theorem 7.2]) that r(Vi(ω, 0)) > 0 (i = 2, 3). By [18, Lemma 14.2],
we further have r(Vi(ω, 0)) < 1. Hence, the conclusion that c∗i < 0 (i = 2, 3) is
obtained by [19, Proposition A.2].

Define P̂ : C([−τ, 0], Y × Y )→ C([−τ, 0], Y × Y ) by P̂ (φ) = vω(φ), where

vt(φ)(θ, x) = v(t+ θ, x, φ) = (v1(t+ θ, x, φ), v2(t+ θ, x, φ)),

∀t ≥ 0,∀(θ, x) ∈ [−τ, 0]× Ω̄.

Refering to [46, Theorem 3.5] and [27, Theorem 3.7], we get

Lemma 3.1. R0 − 1 has the same sign as r(P̂ )− 1.
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Let P : C2 × C1 → C2 × C1 and P (ϕ) = v̄ω(ϕ). Here

v̄t(ϕ)(θ, x) = (v̄1(t+ θ1, x, ϕ), v̄2(t+ θ2, x, ϕ)),

∀t ≥ 0, x ∈ Ω̄, θ = (θ1, θ2) ∈ [−τ2, 0]× [−τ1, 0].

It follows from [39, Section 5.3] that v̄(t, x, ϕ) � 0 for any t > 2τ , x ∈ Ω̄ and
ϕ ∈ C+

2 × C
+
1 \ {0}. Moreover, v̄t is compact for all t > 2τ . Hence, Pn(nω > 2τ)

is compact and strongly positive. By using [28, Lemma 3.1], we admit that the
spectral radius r(P ) is a unique simple eigenvalue of P having a strongly positive
eigenvector.

Lemma 3.2. Let µ = ln r(P )
ω . Then there exists a positive ω-periodic function

v∗(t, x) such that eµtv∗(t, x) is a solution of system (3.1).

Proof. Denote ϕ̄ is the eigenvector corresponding to r(P ). Then ϕ̄ ∈ int(C+
2 ×

C+
1 ). Let v̄(t, x, ϕ̄) = (v̄1(t, x, ϕ̄), v̄2(t, x, ϕ̄)) be the solution of (3.1) satisfying

v̄0(ϕ̄) = ϕ̄. Clearly, v̄t(ϕ̄)� 0 for all t ≥ 0. Define

v∗1(t, x) = e−µtv̄1(t, x, ϕ̄), t ≥ −τ2, x ∈ Ω̄,

v∗2(t, x) = e−µtv̄2(t, x, ϕ̄), t ≥ −τ1, x ∈ Ω̄.

Thus v∗(t, x) = (v∗1(t, x), v∗2(t, x)) � 0,∀t ≥ −τ̇ (τ̇ = min{τ1, τ2}), x ∈ Ω̄. And
v∗(t, x) satisfies the following system with parameter µ:

∂v∗1
∂t

= D14v∗1(t, x)− (d1(t, x) + ρ+ µ)v∗1(t, x) +

∫ τ1

0

f1(a)

∫
Ω

Γ1(t, t− a, x, y)

× cβ(t− a, y)

H(y)
u∗S1

(t− a, y)e−µav∗2(t− a, y)dyda,

∂v∗2
∂t

= D24v∗2(t, x)− (d2(t, x) + µ)v∗2(t, x) +

∫ τ2

0

f2(a)

∫
Ω

Γ2(t, t− a, x, y)

× bpβ(t− a, y)

lH(y)
u∗S2

(t− a, y)e−µav∗1(t− a, y)dyda,

∂v∗1
∂n =

∂v∗2
∂n = 0,

v∗0(θ, x) = (v∗1(θ1, x), v∗2(θ2, x)) = (e−µθ1 ϕ̄1(θ1, x), e−µθ2 ϕ̄2(θ2, x)).

(3.2)
Here v∗t (θ, x) is defined by

v∗t (θ, x) = (v∗1(t+ θ1, x), v∗2(t+ θ2, x))

= (e−µ(t+θ1)ϕ̄1(t+ θ1, x, ϕ̄), e−µ(t+θ2)ϕ̄2(t+ θ2, x, ϕ̄)),

∀t ≥ 0, x ∈ Ω, θ = (θ1, θ2) ∈ [−τ2, 0]× [−τ1, 0].

Since

v∗1(ω + θ1, x) = e−µ(ω+θ1)v1(ω + θ1, x, ϕ̄) = e−µ(ω+θ1)(P (ϕ̄))1(θ1, x)

= e−µ(ω+θ1)r(P )ϕ̄1(θ1, x) = e−µθ1 ϕ̄1(θ1, x)

= v∗1(θ1, x), ∀θ1 ∈ [−τ2, 0], x ∈ Ω̄,

v∗2(ω + θ2, x) = e−µ(ω+θ2)v2(ω + θ2, x, ϕ̄) = e−µ(ω+θ2)(P (ϕ̄))2(θ2, x)

= e−µ(ω+θ2)r(P )ϕ̄2(θ2, x) = e−µθ2 ϕ̄2(θ2, x)
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= v∗2(θ2, x), ∀θ2 ∈ [−τ1, 0], x ∈ Ω̄,

we have v∗0(θ, x) = v∗ω(θ, x) for all θ = (θ1, θ2) ∈ [−τ2, 0]× [−τ1, 0] and x ∈ Ω̄. So,

v∗1(t, x) = v∗1(t+ ω, x), ∀t ≥ −τ2, x ∈ Ω̄,

v∗2(t, x) = v∗2(t+ ω, x), ∀t ≥ −τ1, x ∈ Ω̄.

Therefore, v∗(t, x) is an ω-periodic solution of (3.2) and eµtv∗(t, x) is also a solution
of (3.1).

Lemma 3.3. r(P̂ ) = r(P ).

Proof. Set A := C([−τ, 0], Y × Y ) and B := C2 × C1. Assume v(t, s, ϕ) is a
solution of (2.5) on A and u(t, s, φ) = (u1(t, s, φ), u2(t, s, φ)) is a solution of (2.5) on
B. It follows from the uniqueness of solutions that v(t, s, ϕ) = u(t, s, φ) with ϕ = φ
for all t ≥ s.

Define

vt(s, ϕ)(θ) = v(t+ θ, s, ϕ), vs(s, ϕ) = ϕ, ∀t ≥ s,∀θ ∈ [−τ, 0],

ut(s, φ)(θ) = (u1(t+ θ1, s, φ), u2(t+ θ2, s, φ)), us(s, φ) = φ,

∀t ≥ s,∀θ = (θ1, θ2) ∈ [−τ2, 0]× [−τ1, 0].

Let Û(t, s) and U(t, s) are the evolution operators of (2.5) on A and B respectively.
And they satisfy that

Û(t, s)ϕ = vt(s, ϕ), ∀ϕ ∈ A, ∀t ≥ s,
U(t, s)φ = ut(s, φ), ∀φ ∈ B, ∀t ≥ s.

Note ω(Û) and ω(U) are the exponent growth bound of Û(t, s) and U(t, s) respec-
tively. Then the next claims are true.

Claim 1: ω(U) ≤ ω(Û) + δ, ∀δ > 0.
The definition of the exponent growth bound tell us there exist Mδ > 1 such

that

‖ Û(t+ s, s)ϕ ‖A≤Mδe
(ω(Û)+δ)t ‖ ϕ ‖A, ∀t ≥ 0, ∀s ∈ R, ∀ϕ ∈ A.

Then

‖ v(t+ s, s, ϕ) ‖Y×Y≤Mδe
(ω(Û)+δ)t ‖ ϕ ‖A, ∀t ≥ 0, ∀s ∈ R, ∀ϕ ∈ A.

For any given φ = (φ1, φ2) ∈ B, we define φ̂ = (φ̂1, φ̂2) by

φ̂1(θ) =

{
φ1(−τ2), −τ ≤ θ ≤ −τ2,
φ1(θ1), −τ2 ≤ θ ≤ 0,

φ̂2(θ) =

{
φ2(−τ1), −τ ≤ θ ≤ −τ1,
φ2(θ2), −τ1 ≤ θ ≤ 0.

It is easy seen that φ̂ ∈ A. The uniqueness of solutions implies that u(t, s, φ) =

v(t, s, φ̂) for t ≥ s, s ∈ R.
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Since ‖ φ̂ ‖A=‖ φ ‖B, we get

‖ u(t+ s, s, φ) ‖Y×Y =‖ v(t+ s, s, φ̂) ‖Y×Y
≤Mδe

(ω(Û)+δ)t ‖ φ̂ ‖A
= Mδe

(ω(Û)+δ)t ‖ φ ‖B, ∀t ≥ 0,∀s ∈ R.

Hence, there have M̃δ ≥Mδ such that

‖ U(t+ s, s)φ ‖B=‖ u(t+ s, s, φ) ‖B≤ M̃δe
(ω(Û)+δ)t ‖ φ ‖B,

∀t ≥ 0, ∀s ∈ R, ∀φ ∈ B.

Therefore,

‖ U(t+ s, s) ‖≤ M̃δe
(ω(Û)+δ)t, ∀t ≥ 0, s ∈ R.

By the definition of ω(U), one has

ω(U) ≤ ω(Û) + δ.

Claim 2: ω(Û) ≤ ω(U) + δ, ∀δ > 0.
According to the definition of ω(U), there exist Kδ > 1 such that

‖ U(t+ s, s)φ ‖B≤ Kδe
(ω(U)+δ)t ‖ φ ‖B, ∀t ≥ 0, ∀s ∈ R, ∀φ ∈ B.

Then

‖ u(t+ s, s, φ) ‖Y×Y≤ Kδe
(ω(U)+δ)t ‖ φ ‖B, ∀t ≥ 0, ∀s ∈ R, ∀φ ∈ B.

For every ϕ ∈ A, we assume τ = τ1 and define ϕ̂ = (ϕ̂1, ϕ2), where

ϕ̂1(θ1) = ϕ1(θ1), −τ2 ≤ θ1 ≤ 0.

Clearly, ϕ̂ ∈ B. When τ = τ2, we obtain the same result. Therefore, u(t, s, ϕ̂) =
v(t, s, ϕ), ∀t ≥ s, s ∈ R.

Since ‖ ϕ̂ ‖B≤‖ ϕ ‖A, we know

‖ v(t+ s, s, ϕ) ‖Y×Y =‖ u(t+ s, s, ϕ̂) ‖Y×Y
≤ Kδe

(ω(U)+δ)t ‖ ϕ̂ ‖B
≤ Kδe

(ω(U)+δ)t ‖ ϕ ‖A, ∀t ≥ 0,∀s ∈ R.

Further, there exists K̃δ ≥ Kδ such that

‖ Û(t+ s, s)ϕ ‖A=‖ vt(s, ϕ) ‖A≤ K̃δe
(ω(U)+δ)t ‖ ϕ ‖A

∀t ≥ 0, ∀s ∈ R, ∀ϕ ∈ A.

Hence

‖ Û(t+ s, s) ‖≤ K̃δe
(ω(U)+δ)t, ∀t ≥ 0, s ∈ R.

By the definition of ω(Û), we obtain that

ω(Û) ≤ ω(U) + δ.

Let δ → 0+. The claim 1 and claim 2 imply that ω(Û) = ω(U). However,
P̂ = Û(ω, 0) and P = U(ω, 0). By refering to [19, Proposition A.2], it is showed
that r(P ) = r(P̂ ).
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4. Threshold dynamics

In this section, we establish a threshold result on the extinction and uniform per-
sistence of the disease in terms of R0. First, the next lemma holds.

Lemma 4.1. Assume (uS1
(t, x, ϕ), uS2

(t, x, ϕ), u1(t, x, ϕ), u2(t, x, ϕ)) is a solution
of (2.5) with ϕ ∈ C̃+. Then the following results hold, namely,

(1) If there exists some t0 ≥ 0 such that ui(t0, ·, ϕ) 6≡ 0 (i = 1, 2), then

ui(t, x, ϕ) > 0, ∀t > t0, x ∈ Ω̄, i = 1, 2;

(2) For any ϕ ∈ C̃+, we always have uSi(t, ·, ϕ) > 0 (i = 1, 2), ∀t > 0, and

lim inf
t→+∞

uSi(t, x, ϕ) ≥ C, i = 1, 2,

uniformly for x ∈ Ω̄, where C is a positive constant.

Proof. The proof of the lemma is similar to those of [5, Lemma 9] or [47, Lemma 4.2],
here is it omited.

Theorem 4.1. Assume u(t, x, φ) is a solution of system (2.5) satisfying initial
value u0 = φ ∈ C̃+. Then the following states is true.

(i) If R0 < 1, then the disease free ω-periodic solution (u∗S1
, u∗S2

, 0, 0) is globally

attractive in C̃+;

(ii) If R0 > 1, then there exists a constant η > 0 such that for any φ ∈ C̃+ with
φ1(0, ·) 6≡ 0 or φ2(0, ·) 6≡ 0, we have

lim inf
t→+∞

ui(t, ·, φ) ≥ η, i = 1, 2.

Proof. (i) If R0 < 1, then r(P ) < 1 by lemma 3.1 and lemma 3.3. Hence µ =
ln r(P )
ω < 0.
Consider the next equation with parameter ε > 0:

∂ūε1(t, x)

∂t
= D14ūε1(t, x)− (d1(t, x) + ρ)ūε1(t, x) +

∫ τ1

0

f1(a)

∫
Ω

Γ1(t, t− a, x, y)

× cβ(t− a, y)

H(y)
(u∗S1

(t− a, y) + ε)ūε2(t− a, y)dyda, t > 0, x ∈ Ω,

∂ūε2(t, x)

∂t
= D24ūε2(t, x)− d2(t, x)ūε2(t, x) +

∫ τ2

0

f2(a)

∫
Ω

Γ2(t, t− a, x, y)

× bpβ(t− a, y)

lH(y)
(u∗S2

(t− a, y) + ε)ūε1(t− a, y)dyda, t > 0, x ∈ Ω,

∂ūε1(t,x)
∂n =

∂ūε2(t,x)
∂n = 0, t > 0, x ∈ ∂Ω.

(4.1)
For any φ ∈ C2×C1, let ūε(t, x, φ) = (ūε1(t, x, φ), ūε2(t, x, φ)) be the solution of (4.1)
with ūε0(φ)(θ, x) = (φ1(θ1, x), φ2(θ2, x)), where

ūεt(φ)(θ, x) = (ūε1(t+ θ1, x, φ), ūε2(t+ θ2, x, φ)),

∀t ≥ 0, x ∈ Ω̄, θ = (θ1, θ2) ∈ [−τ2, 0]× [−τ1, 0].

Define P ε : C+
2 ×C

+
1 → C+

2 ×C
+
1 by P ε(φ) = ūεω(φ). Let r(P ε) be the spectral

radius of P ε. Since limε→0+ r(P ε) = r(P ) < 1, we can obtain a sufficiently small
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number ε0 > 0 such that r(P ε) < 1 for ε ∈ [0, ε0). Hence, µ̄ε = ln r(P ε)
ω < 0 for

given ε ∈ [0, ε0). According to lemma 3.2, there exists a positive ω-periodic function
v̄ε(t, x) such that eµ̄

εtv̄ε(t, x) is a solution of (4.1).
Since uSi(i = 1, 2) in (2.5) can be dominated by the next system:{
∂uSi (t,x)

∂t ≤ Di4uSi(t, x)− di(t, x)uSi(t, x) + µi(t, x), t > 0, x ∈ Ω, i = 1, 2,
∂uSi (t,x)

∂n = 0, t > 0, x ∈ ∂Ω, i = 1, 2.

(4.2)
Then it follows from [47, Lemma 2.1] and the comparison principle that exists some
integer n1 > 0 such that

uSi(t, x) ≤ u∗Si(t, x) + ε, ∀t ≥ n1ω, x ∈ Ω̄, i = 1, 2.

Hence

∂u1(t, x)

∂t
≤ D14u1(t, x)− (d1(t, x) + ρ)u1(t, x) +

∫ τ1

0

f1(a)

∫
Ω

Γ1(t, t− a, x, y)

× cβ(t− a, y)

H(y)
(uS∗

1
(t− a, y) + ε)u2(t− a, y)dyda, t > n1ω, x ∈ Ω,

∂u2(t, x)

∂t
= D24u2(t, x)− d2(t, x)u2(t, x) +

∫ τ2

0

f2(a)

∫
Ω

Γ2(t, t− a, x, y)

× bpβ(t− a, y)

lH(y)
(uS2

(t− a, y) + ε)u1(t− a, y)dyda, t > n1ω, x ∈ Ω,

∂u1(t,x)
∂n = ∂u2(t,x)

∂n = 0, t > n1ω, x ∈ ∂Ω.

So, for any φ ∈ C̃+, there exists some α1 > 0 such that

(u1(t, x, φ), u2(t, x, φ)) ≤ α1(eµ̄
εtv̄ε1(t, x), eµ̄

εtv̄ε2(t, x)), ∀t ∈ [n1ω, n1ω + τ ], x ∈ Ω̄.

By [35, Proposition 3], we get

(u1(t, ·, φ), u2(t, ·, φ)) ≤ α1(eµ̄
εtv̄ε1(t, ·), eµ̄

εtv̄ε2(t, ·)), ∀t ≥ n1ω.

However, µ̄ε < 0. Hence, limt→+∞ ui(t, ·, ψ) = 0(i = 1, 2). Then, the equation
uSi (i = 1, 2) in (2.5) is asymptotic to{

∂vi(t,x)
∂t = Di4vi(t, x)− di(t, x)vi(t, x) + µi(t, x), t > 0, x ∈ Ω, i = 1, 2,

∂vi(t,x)
∂n = 0, t > 0, x ∈ ∂Ω, i = 1, 2,

(4.3)
[47, Lemma 2.1] implys (4.3) has an unique ω-periodic solution u∗Si(t, x) (i = 1, 2)

which is globally attractive in Y +. Next, we prove that limt→+∞ uSi(t, x, φ) =
u∗Si(t, x, φ) (i = 1, 2) uniformly for x ∈ Ω̄.

Let Q̃ := Q̃(ω). Note J = ω̄(φ) is the omega limit set for φ ∈ C̃+, namely,

J = {φ = (φ∗S1
, φ∗S2

, φ∗1, φ
∗
2) ∈ C̃+ : ŽæÔÚ{nk} → +∞, s.t.

lim
k→+∞

Q̃nk(φ) = lim
k→+∞

Q̃(nkω)(φ) = (φ∗S1
, φ∗S2

, φ∗1, φ
∗
2)}.

By [49], we admit that J is an internally chain transitive set for Q̃. Because
limt→+∞ ui(t, x, φ) = 0(i = 1, 2), we have J = J1 × {0̂}. Here 0̂ = (0̂1, 0̂2),

0̂1(θ1, ·) = 0, ∀θ1 ∈ [−τ2, 0],
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0̂2(θ2, ·) = 0, ∀θ2 ∈ [−τ1, 0].

According to lemma 4.1, one has 0̂ /∈ J1.

For every ϕ ∈ C+
1 ×C

+
2 , we assume w(t, x, ϕ(0, ·)) = (w1(t, x, ϕ(0)), w2(t, x, ϕ(0)))

is a solution of (4.3) with w(0, x) = ϕ(0, x) in C+
1 × C

+
2 . Define

w1t(θ2, x, ϕ) =

{
w1(t+ θ2, x, ϕ(0)), t+ θ2 > 0, t > 0, θ2 ∈ [−τ1, 0],

ϕ1(t+ θ2, x), t+ θ2 ≤ 0, t > 0, θ2 ∈ [−τ1, 0],

w2t(θ1, x, ϕ) =

{
w2(t+ θ1, x, ϕ(0)), t+ θ1 > 0, t > 0, θ1 ∈ [−τ2, 0],

ϕ2(t+ θ1, x), t+ θ1 ≤ 0, t > 0, θ1 ∈ [−τ2, 0].

Then wt = (w1t, w2t) is a solution semiflow of (4.3) on C+
1 ×C

+
2 . Let P̄ (ϕ) = wω(ϕ).

It follows from [47, Lemma 2.1] that ω(ϕ) = {u∗0 = (u∗S1,0
, u∗S2,0

)}, where

u∗S1,0(θ2, ·) = u∗S1
(θ2, ·), θ2 ∈ [−τ1, 0],

u∗S2,0(θ1, ·) = u∗S2
(θ1, ·), θ1 ∈ [−τ2, 0].

Since Q̃(J) = J and ui(t, x, (φS1
, φS2

, 0̂1, 0̂2)) ≡ 0(i = 1, 2), we obtain that Q̃(J) =
P̄ (J1) × {0̂}. Hence, P̄ (J1) = J1. Therefore, J1 is an internally chain transitive
set for P̄ . Through [47, Lemma 2.1], we get u∗0 is globally attractive in C+

1 × C
+
2 .

And [47, Lemma 3.1] prove that J̄ = {u∗0}. So, J = {(u∗S1,0
, u∗S2,0

, 0̂1, 0̂2)}. By the
definition of J , one has

lim
t→+∞

(uS1
(t, ·, φ), uS2

(t, ·, φ), u1(t, ·, φ), u2(t, ·, φ)) = (u∗S1
, u∗S2

, 0, 0).

(ii) If R0 > 1, then r(P ) > 1. Hence µ = ln r(P )
ω > 0. Let

W0 = {φ ∈ C̃+ : φ1(0, ·) 6≡ 0, or φ2(0, ·) 6≡ 0},
∂W0 = C̃+ \W0 = {φ ∈ C̃+ : φ1(0, ·) ≡ 0, and φ2(0, ·) ≡ 0}.

Lemma 4.1 indicates that u1(t, x, φ) > 0 for all t > 0 and x ∈ Ω̄ if φ ∈ W0 and
φ1(0, ·) 6≡ 0. Further, we have u1(t, x, φ) > 0 for t > τ2 and x ∈ Ω̄. If φ ∈ W0 and
φ2(0, ·) 6≡ 0, then the similar result holds. As a consequence, ui(t, x, φ) > 0,∀t >
τ, x ∈ Ω̄, i = 1, 2. We obtain that there exists some n0 ∈ N such that Q̃n(W0) ⊂W0

for n > n0.

Set

M∂ := {ψ ∈ ∂C0 : Qn(ψ) ∈ ∂C0, ∀n ∈ N},

and ω(φ) be the omega limit set of the orbit γ+(φ) := {Q̃n(φ) : ∀n ∈ N}. Let
M = (u∗S1

, u∗S2
, 0̂1, 0̂2). For any φ ∈ M∂ , Q̃n(φ) ∈ ∂W0, ∀n ∈ N . So, for every

φ ∈M∂ , ui(t, x, φ) ≡ 0 (i = 1, 2), ∀t ≥ 0, x ∈ Ω̄. Hence,

lim
t→+∞

uSi(t, ·, φ) = uSi(t, ·), i = 1, 2.

Finally, ω(φ) = {M}, ∀φ ∈M∂ .
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Now, we consider the linear equation with parameter δ(> 0):

∂vδ1
∂t

= D14vδ1(t, x)− (d1(t, x) + ρ)vδ1(t, x) +

∫ τ1

0

f1(a)

∫
Ω

Γ1(t, t− a, x, y)

× clβ(t− a, y)

(p− l)δ + lH(y)
(u∗S1

(t− a, y)− δ)vδ2(t− a, y)dyda, t > 0, x ∈ Ω,

∂vδ2
∂t

= D24vδ2(t, x)− d2(t, x)vδ2(t, x) +

∫ τ2

0

f2(a)

∫
Ω

Γ2(t, t− a, x, y)

× bpβ(t− a, y)

(p− l)δ + lH(y)
(u∗S2

(t− a, y)− δ)vδ1(t− a, y)dyda, t > 0, x ∈ Ω,

∂vδ1
∂n =

∂vδ2
∂n = 0, t > 0, x ∈ ∂Ω.

(4.4)
Let vδ(t, x, φ) = (vδ1(t, x, φ), vδ2(t, x, φ)) is a solution of (4.4) with vδ0(φ) = φ ∈
C2 × C1, where

vδt (φ)(θ, x) = (vδ1(t+ θ1, x, φ), vδ2(t+ θ2, x, φ)),

∀t ≥ 0, x ∈ Ω̄, θ = (θ1, θ2) ∈ [−τ2, 0]× [−τ1, 0].

Define P δ : C2 × C1 → C2 × C1, i.e. P δ(φ) = vδω(φ). r(P δ) represents the spectral
radius of P δ. Since limδ→0+ r(P δ) = r(P ) > 1, there exists a sufficient small number
δ0 > 0 such that r(P δ) > 1 for δ ∈ [0, δ0). For given δ ∈ (0, δ0), by the continuous
dependence of solutions on initial value, there is δ∗ ∈ (0, δ0) such that

‖ Q̃(t)φ− Q̃(t)M ‖< δ, ∀t ∈ [0, ω],

for ‖ φ−M ‖< δ∗. Next, we prove the following claim.
Claim: lim supn→+∞ ‖ Q̃n(φ)−M ‖≥ δ∗, ∀φ ∈W0.
Suppose, by contradiction, that there is some φ0 ∈W0 such that

lim sup
n→∞

‖ Q̃n(φ0)−M ‖< δ∗.

Then there exists n2 ∈ N such that

‖ Q̃n(φ0)−M ‖< δ∗, ∀n ≥ n2.

By the continuous dependence of solutions on initial value,

uSi(t, x, φ0) > u∗Si(t, x)− δ, t ≥ n2ω, x ∈ Ω̄, i = 1, 2,

0 < ui(t, x, φ0) < δ, t ≥ n2ω, x ∈ Ω̄, i = 1, 2.

Hence u1(t, x, φ0) and u2(t, x, φ0) satisfy

∂u1

∂t
≥ D14u1(t, x)− (d1(t, x) + ρ)u1(t, x) +

∫ τ1

0

f1(a)

∫
Ω

Γ1(t, t− a, x, y)

× clβ(t− a, y)

(p− l)δ + lH(y)
(u∗S1

(t− a, y)− δ)u2(t− a, y)dyda, t ≥ n2ω + τ, x ∈ Ω,

∂u2

∂t
≥ D24u2(t, x)− d2(t, x)u2(t, x) +

∫ τ2

0

f2(a)

∫
Ω

Γ2(t, t− a, x, y)

× bpβ(t− a, y)

(p− l)δ + lH(y)
(u∗S2

(t− a, y)− δ)u1(t− a, y)dyda, t ≥ n2ω + τ, x ∈ Ω,

∂u1

∂n = ∂u2

∂n = 0, t ≥ n2ω + τ, x ∈ ∂Ω.

(4.5)
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Since ui(t, x, φ0) � 0 for all ∀t > τ , x ∈ Ω̄ and i = 1, 2, there exists some α2 > 0
sucn that

(u1(t, x, φ0), u2(t, x, φ0)) ≥ α2e
µδtvδ(t, x), ∀t ∈ [n2ω, n2ω + τ ], x ∈ Ω̄.

Here, µδ = ln r(P δ)
ω and eµ

δtvδ(t, x) is a solution of (4.4). By (4.5) and the compar-
ison principle,

(u1(t, x, φ0), u2(t, x, φ0)) ≥ α2e
µδtvδ(t, x), ∀t > n2ω + τ, x ∈ Ω̄.

Combining µδ > 0, we get

lim
t→+∞

ui(t, ·, φ0) = +∞, i = 1, 2.

This leads to a contradiction.
The above claim states that W s(M)

⋂
W0 = ∅ and M ⊂ W0 is an isolated

invariant set. Here, W s(M) := {φ ∈ C̃+ : limn→+∞ d(Q̃(φ),M) = 0}. By [49, The-
orem 1.3.1 and Remark 1.3.1], we know that Q̃ : C̃+ → C̃+ is uniformly persistent
with respect to (W0, ∂W0). It is easy seen that Q̃n = Q̃(nω) is compact and point
dissipative. According to [34, Theorem 2.9], Q̃ : W0 →W0 admits a global attractor
A0 in W0.

Define a continuous function p : C̃+ → R+ by

p(φ) = min{min
x∈Ω̄

φ1(0, x), min
x∈Ω̄

φ2(0, x)}, ∀φ ∈ C̃+.

Since A0 = Q̃(A0), it follows that

φi(0, x) > 0, ∀φ ∈ A0, i = 1, 2.

Let B0 :=
⋃
t∈[0,ω] Q̃(t)A0. Then B0 ⊂W0 and

lim
t→+∞

d(Q̃(t)φ,B0) = 0, ∀φ ∈W0.

Moreover, B0 ⊂ W0 is a compact subset. Hence, minφ∈B0 p(φ) > 0. According to
lemma 4.1, there exists some η∗ > 0 such that

lim inf
t→+∞

ui(t, ·, φ) ≥ η∗, i = 1, 2.

Further, there exists some constant η ∈ (0, η∗) such that

lim inf
t→+∞

ui(t, ·, φ) ≥ η, ∀φ ∈W0, i = 1, 2.

This completes the proof.
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