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Qualitative Analysis of Crossing Limit Cycles in
Discontinuous Liénard-Type Differential Systems∗
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Abstract In this paper, we investigate qualitative properties of crossing limit
cycles for a class of discontinuous nonlinear Liénard-type differential systems
with two zones separated by a straight line. Firstly, by applying left and right
Poincaré mappings we provide two criteria on the existence, uniqueness and
stability of a crossing limit cycle. Secondly, by geometric analysis we estimate
the position of the unique limit cycle. Several lemmas are given to obtain an
explicit upper bound for the amplitude of the limit cycle. Finally, a predator-
prey model with nonmonotonic functional response is studied, and Matlab
simulations are presented to show the agreement between theoretical results
and numerical analysis.

Keywords Discontinuous Liénard-type differential system, crossing limit cy-
cle, existence, uniqueness, stability, position.

MSC(2010) 34A26, 34A34, 34A36, 34C05, 34C60.

1. Introduction

In the real world, many problems from mechanics, physics and engineering are dis-
continuous in nature, such as forcing terms of electro-magnetic field and controls in
engineering. The mathematical modeling can be described by differential equations
with discontinuous right-hand sides, called as discontinuous differential systems.
Up to now, there have been rich achievements on the basic properties of solutions
and the stability theory (see monograph [6] for example). The main topics have
been become the analysis of existence and uniqueness of periodic orbits, number
and bifurcation of limit cycles in qualitative theory of planar systems of ordinary
differential equations. An important type of planar systems is of the form

d2x

dt2
+ f(x)

dx

dt
+ g(x) = 0, (1.1)
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called as Liénard differential equation which exhibits notably rich dynamics. The
equivalent system of (1.1)

dx

dt
= y − F (x),

dy

dt
= −g(x) (1.2)

with F (x) =
∫ x

0
f(s)ds, and the more general form

dx

dt
= h(y)− F (x),

dy

dt
= −g(x) (1.3)

are both called as Liénard-type systems. Many planar models in physical applica-
tions, chemical reaction and biological models can be transformed into the Liénard
forms (1.2) or (1.3). The problem on limit cycles of (1.2) and (1.3), such as the
(non)existence, uniqueness, number and relative position have been widely studied,
see [1,4,10,11,15-16,18-22] for example. The existence is often proved by the well
known Poincaré-Bendixson theorem by constructing a trapping zone where a limit
cycle is located. The following conditions appear frequently in the literatures of the
study of limit cycles of (1.2) and (1.3):

(i) xg(x) > 0 for x 6= 0, and G(x) =
∫ x

0
g(s)ds with G(±∞) = +∞;

(ii) there exist x1 < 0 < x0 such that F (x1) = F (0) = F (x0) = 0, xF (x) > 0 for
x ∈ (x0,+∞) ∪ (−∞, x1) and xF (x) < 0 for x ∈ (x1, x0);

(iii) F ′(x) > 0 for x ∈ (x0,+∞) ∪ (−∞, x1), and F (±∞) = ±∞;

(iv) h′(y) > 0 for y ∈ R, and h(±∞) = ±∞.

Note that the theory of smooth systems cannot be directly applied to the discon-
tinuous case. In fact, there may be appearing sliding solutions, grazing solutions or
impact solutions. Hence it is necessary to study the discontinuous differential sys-
tems in theory and applications. About the investigation of existence, uniqueness,
number and bifurcation of limit cycles, one can see [2-3,5-6,7-9,12-14] for example.
In this paper, we consider a Liénard-type system (1.3) allowing for discontinuity,
where the discontinuities occur along a straight line (called as a discontinuity line).
The analysis shows that the system has no sliding solutions. Therefore, we focus on
the existence, uniqueness and stability of a crossing limit cycle. Here the crossing
limit cycle is defined as a limit cycle with trajectory intersecting the discontinuity
line at finite points, and the time parameter representation of this kind of limit cy-
cles is usually continuous but possesses discontinuous derivative on the discontinuity
line.

Another classical topic in the qualitative theory of planar systems of ordinary
differential equations is to estimate the position and amplitude of limit cycles. How-
ever, there are few papers involving the upper bound of amplitude of limit cycles
for Liénard-type systems [1,3-4,15-16,18]. Recently, Yang and Zeng [18] studied an
upper bound of the amplitude of a unique limit cycle for (1.2) with symmetry under
some conditions as follows

(i) f(x) has a unique positive zero a1 > 0 and f(x)(x−a1) > 0 for x > 0, x 6= a1;

(ii) f(x)/g(x) is monotone increasing on (a1,+∞);

(iii)
∫ x

0
F (s)g(s)ds > 0 for sufficiently large x > 0.
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The condition (iii) is quite natural to guarantee that the integral
∫ x

0
F (s)g(s)ds

has a unique positive zero, which gives an upper bound for the amplitude of a
limit cycle. For the same symmetric system as in [18], Chen, Han and Xia [3] also
studied the amplitude of limit cycles in discontinuous case. In section 4 of this
paper, by considering the upper bounds of amplitude of the unique crossing limit
cycle on left and right half plane respectively, we estimate the position of the limit
cycle on the plane. Here the amplitude of a limit cycle on the left/right half plane
{(x, y) ∈ R2 : x < 0}/{(x, y) ∈ R2 : x > 0} is defined as the minimal/maximal
value of the x-coordinate on the limit cycle, and the amplitude of a limit cycle on
the plane is defined as the maximum absolute value of the x-coordinate on the limit
cycle. Physically the amplitude represents the maximal deviation of the oscillation
from the equilibrium state.

This paper is organized as follows. In section 2, we present some relevant pre-
liminaries. In section 3, we state and prove the existence, uniqueness and stability
of a crossing limit cycle. In section 4, we give an explicit upper bound for the am-
plitude of the unique limit cycle on the plane. In section 5, applications are given
to illustrate the obtained results, and Matlab simulations are presented to show the
agreement between theoretical results and numerical analysis. Concluding remarks
are outlined in section 6.

2. Preliminaries

Consider the discontinuous Liénard-type system
dx

dt
= h(y)− F (x),

dy

dt
= −g(x),

(2.1)

where F, h ∈ C(R,R) and g is given by

g(x) =

{
g+(x), x > 0,

g−(x), x < 0.
(2.2)

Let Σ0 denote the discontinuity line and Σ± the two subregions of R2 separated
by Σ0 as follows

Σ0 = {x = 0, y ∈ R}, Σ+ = {(x, y) ∈ R2 : x > 0}, Σ− = {(x, y) ∈ R2 : x < 0}.

Then R2 = Σ+∪Σ0∪Σ− and the unit normal vector to Σ0 is taken to be nT = (1, 0).
Denote the vector field of (2.1)-(2.2) by

V (x, y) =

{
V−(x, y), (x, y) ∈ Σ−,

V+(x, y), (x, y) ∈ Σ+,
(2.3)

where V±(x, y) = (h(y) − F (x), −g±(x))T . Since the second component of (2.3)
is discontinuous on R2, by using the Filippov theory (for more details see [6-7] for
example) to define orbits of the system when they intersect Σ0 such that the orbits
can be concatenated in a natural way. We give the following definition similar to
Definition 2.1 in [7].
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Definition 2.1. For any given (0, y) ∈ Σ0, if

[nTV (0−, y)] · [nTV (0+, y)] ≤ 0,

(0, y) is called as a sliding point. A set of sliding points is a sliding set denoted by
Σs. We say (0, y) is a crossing point, if

[nTV (0−, y)] · [nTV (0+, y)] > 0.

A set of crossing points is called as a crossing set.

It follows that the origin O(0, 0) is the unique sliding point on Σ0. So we focus
on crossing periodic orbits of (2.1)-(2.2) in the next text. Here a crossing periodic
orbit is defined as a closed orbit but it does not share points with Σs.

In this paper, we assume the following hypotheses for (2.1)-(2.2).

(H1) F ∈ C(R,R), and there are x1 < 0 < x0 such that F (0) = F (x0) = F (x1) = 0,
xF (x) > 0 for x ∈ (x0,+∞) ∪ (−∞, x1) and xF (x) < 0 for x ∈ (x1, x0).

(H2) g+ ∈ C1([0,+∞), [0,+∞)) and g− ∈ C1((−∞, 0], (−∞, 0]).

(H3) h ∈ C(R,R) satisfying yh(y) > 0 for y 6= 0, and there are 0 < δ < M < +∞
such that

h(y) ≥ |h(−y)| for 0 < y < δ, h(y) ≤ |h(−y)| for y > M. (2.4)

(H4) F ∈ C1(R\{0},R) satisfying F ′(x) > 0 for x ∈ (−∞, x1) ∪ (x0,+∞), F ′(0+)
and F ′(0−) exist, and F (±∞) = ±∞.

(H5) h is monotone increasing satisfying h(±∞) = ±∞.

Remark 2.1. As we will see, (H3) is mainly used to prove Lemma 3.3 in section 3
which is key to establish the existence result of crossing periodic orbits of (2.1)-(2.2).

By (H1)-(H3), the possible singular point of (2.1)-(2.2) is the origin O(0, 0). If
the system has a crossing periodic orbit Γ, by the Poincaré-Bedixson theorem [see
Theorem 4.6 in Chapter 1, 21], the interior of bounded region limited by Γ must
contain the origin.

3. Existence and uniqueness

In this section, we study the existence, uniqueness and stability of a crossing limit
cycle surrounding the origin. From [6], one can easily verify the following result.

Lemma 3.1. For any (x0, y0) ∈ R2, there exists a unique solution pair x(t) =
x(t;x0, y0), y(t) = y(t;x0, y0) of (2.1)-(2.2) satisfying the initial value condition
x(0) = x0, y(0) = y0. Further the solution (x(t), y(t)) is continuously dependent on
(x0, y0).

Let P (xP , yP ) ∈ R2\{O}, and denote by L+
P , L

−
P , LP the positive, negative and

the whole crossing orbit of (2.1)-(2.2) passing through the point P respectively. Let

Σ+
0 = {(x, y) : x = 0, y > 0}, Σ−0 = {(x, y) : x = 0, y < 0},

ΣF = {(x, y) ∈ R2 : F (x) = h(y)}.

The following lemma gives some basic properties of solutions of (2.1)-(2.2),
whose proof is similar to Lemma 3.1 in [9].
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Lemma 3.2. Let (H1)-(H5) hold. Then we have the following three statements.

1. If P ∈ ΣF , there exists T+ > 0 (T− < 0) such that L+
P (L−P ) intersects with

Σ0\{O} for the first time when t = T+ (t = T−).

2. If P ∈ Σ0, there exists T+ > 0 (T− < 0) such that L+
P (L−P ) intersects with

ΣF \{O} for the first time when t = T+ (t = T−).

3. For any given P ∈ R2\{O}, the corresponding solution passing through P
exists for t ∈ (−∞,+∞).

The results in Lemma 3.2 imply that all orbits of (2.1)-(2.2) cross Σ0 transver-
sally in a clockwise fashion. Inspired by [11], we make a similar definition as follows.

Definition 3.1. For any (0, y) ∈ Σ+
0 , let (0,−pR(y)) ∈ Σ−0 be the first intersection

point of the orbit starting from (0, y) and Σ0. Then the planar mapping PR :
(0, y)→ (0,−pR(y)) is called as a right Poincaré mapping. Similarly, for (0,−y) ∈
Σ−0 , let (0, pL(y)) ∈ Σ+

0 be the first intersection point of the orbit starting from
(0,−y) and Σ0, and we call PL : (0,−y)→ (0, pL(y)) as a left Poincaré mapping.

By the continuous dependence of solutions on initial values, PL and PR are con-
tinuous, and consequently the component functions pL and pR are also continuous.
For the orbit of (2.1)-(2.2) starting from a given (0, y) ∈ Σ+

0 , by Definition 3.1 it
intersects Σ−0 at (0,−pR(y)) and Σ+

0 then at (0, pL(pR(y))). Clearly the orbit is
periodic if and only if y = pL(pR(y)).

The following lemma is a key step to establish the existence result of crossing
periodic orbits of (2.1)-(2.2).

Lemma 3.3. Let (H1)-(H5) hold. Then the function qz(y) ≡ pz(y)− y satisfies

qz(y) > 0 for y ∈ (0, δz), qz(y) < 0 for y ∈ (Mz,+∞),

where 0 < δz < Mz < +∞ and z ∈ {L,R}.

Proof. We only prove the statement for the case of qR(y), and the proof for qL(y)
is similar. Consider the trajectory arc of (2.1)-(2.2) on Σ+, which starts from any
(0, y) ∈ Σ+

0 . When PR applies, it intersects Σ−0 at (0,−pR(y)) ∈ Σ−0 . Let

λ(x, y) = H(y) +G(x), (3.1)

where G(x) =
∫ x

0
g(s)ds with G(0) = 0 and H(y) =

∫ y
0
h(s)ds with H(0) = 0. Then

along the trajectory arc, one has that

dλ(x(t), y(t))

dt
= −g+(x(t))F (x(t)). (3.2)

By Lemma 3.2, for the point C+(x0, 0) ∈ ΣF there must exist A+(0, y+) ∈ Σ+
0

such that L−C+ intersects with Σ+
0 at the point A+ for the first time. Then according

to 0 < y < y+ and y > y+, there are two possible cases to consider.
(i) Trajectory arcs starting from the point (0, y) ∈ Σ+

0 with y < y+ are completely
contained in the strip region {(x, y) ∈ R2 : 0 < x < x0}.

Choose any A0(0, yA0
) with 0 < yA0

< y+, consider the trajectory arc ¸�A0C0B0

starting from A0 and PR maps it to B0(0,−yB0) with yB0 > 0 (see Figure 1). Since
F (x) < 0 for 0 < x < x0, it follows from (3.2) that

λ(B0)− λ(A0) =

∫
Ā0B0

F (x)dy =

∫ −yB0

yA0

F (x(y))dy > 0.
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This together with (3.1) mean that H(−yB0
) − H(yA0

) > 0. Next we show that
when yA0

> 0 is small,

qR(yA0
) = pR(yA0

)− yA0
> 0. (3.3)

Choose a point C(0,−yC) with yC > 0 such that H(−yC) = H(yA0). Then
H(−yC) < H(−yB0

). Thus we have that yB0
> yC . Note that∫ yA0

0

h(s)ds =

∫ yC

0

|h(−t)|dt,

it follows from (2.4) that yC ≥ yA0
and pR(yA0

) = yB0
> yC ≥ yA0

for yA0
> 0

small. Hence (3.3) holds.

(ii) Trajectory arcs starting from any (0, y) ∈ Σ+
0 with y > y+ are not completely

contained in {(x, y) ∈ R2 : 0 < x < x0}.
Choose any A1(0, yA1) with yA1 > y+, consider the trajectory arc ˇ�A1C1D1B1

starting from A1 and PR maps it to B1(0,−yB1
) with yB1

> 0 (see Figure 1). With
the similar analysis to Lemma 3.3 in [9], we have that H(−yB1

) −H(yA1
) < 0 for

yA1
large enough. Next we show that when yA1

> 0 is large,

qR(yA1
) = pR(yA1

)− yA1
< 0. (3.4)

Choose a point ‹C(0,−y
C̃

) with y
C̃
> 0 such that H(−y

C̃
) = H(yA1). Then

H(−yB1
) < H(−y

C̃
), and so yB1

< y
C̃

. Note that∫ yA1

0

h(s)ds =

∫ y
C̃

0

|h(−t)|dt,

it follows from (2.4) that yA1 ≥ y
C̃

and pR(yA1) = yB1 < y
C̃
≤ yA1 for yA1 large

enough. Hence (3.4) holds. The proof is completed.

Remark 3.1. Note that Lemma 3.3 is reduced to the corresponding one in [9] for
h(y) = y (see Lemma 3.3 in [9]). Hence our result is a generalization.
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Figure 1. Trajectory arcs of (2.1)-(2.2) on Σ+.

Now we present the existence result of crossing periodic orbits of (2.1)-(2.2).
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Theorem 3.1. Let (H1)-(H5) hold. Then there exists at least one crossing periodic
orbit surrounding the origin on R2.

Proof. The proof is similar to the one of Theorem 3.4 in [9] by Lemma 3.3 and
then omitted.

Remark 3.2. By Lemma 3.2, the crossing periodic orbit of (2.1)-(2.2) intersects
ΣF only once on Σ+ (resp. Σ−), and the x-component of the intersection point is
the maximal (resp. minimal) value on the periodic orbit.

Note that there exists A+(0, y+) ∈ Σ+
0 (see Figure 1) such that all positive orbits

of (2.1)-(2.2) starting from the point (0, y) with y > y+ will cross transversally the
line {(x, y) : x = x0} and the curve ΣF for x > x0. Similarly, on Σ− there exists
A−(0,−y−) ∈ Σ−0 such that the positive orbits starting from (0,−y) with y > y−

will cross transversally the line {(x, y) : x = x1} and the curve ΣF for x < x1. Then
we give the following lemma which is key to obtain the uniqueness and stability of
the crossing periodic orbit of (2.1)-(2.2).

Lemma 3.4. Consider any orbits of (2.1)-(2.2) crossing ΣF for x ∈ (x0,+∞) ∪
(−∞, x1). Then the following two statements hold.

(i) On Σ+, the function y 7→ H(−pR(y))−H(y) is strictly decreasing for y > y+.

(ii) On Σ−, the function y 7→ H(−y)−H(pL(y)) is strictly increasing for y > y−.

x=x
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B
B

C

C

x

y

2

3

2

2

D

D3

3

0

h(y)=F(x)

 

Figure 2. Any two trajectory arcs of (2.1)-(2.2) crossing ΣF for x > x0.

Proof. Choose any A2(0, yA2) and A3(0, yA3) with yA3 > yA2 > y+, consider the

trajectory arcs ˇ�A2C2D2B2 and ˇ�A3C3D3B3 starting from A2 and A3 respectively,
and crossing ΣF for x > x0 on Σ+ (see Figure 2). With the similar analysis to
Lemma 3.3 in [9], one has that

λ(B3)− λ(A3) < λ(B2)− λ(A2).

It is equivalent to H(−pR(yA3
)) − H(yA3

) < H(−pR(yA2
)) − H(yA2

). Hence the
function y 7→ H(−pR(y))−H(y) is strictly decreasing for y > y+.

For the trajectory arc on Σ−, it starts from any (0,−y) with y > y− and crosses
ΣF for x < x1. When PL applies, it intersects with Σ+

0 at (0, pL(y)). Similarly,
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the function y 7→ H(−y)−H(pL(y)) is strictly increasing for y > y−. The proof is
completed.

Now we are ready to state and prove the uniqueness and stability of the crossing
periodic orbit of (2.1)-(2.2).

Theorem 3.2. Let (H1)-(H5) hold. Then (2.1)-(2.2) have exactly one crossing
limit cycle and it is stable.

Proof. By Theorem 3.1, (2.1)-(2.2) have a crossing periodic orbit denoted by L̃.
We next show that it is unique and stable.

Suppose on the contrary that (2.1)-(2.2) have two crossing periodic orbits L̃, L,

and assume that L locates in the interior of L̃. Let (0, ỹR) and (0,−ỹL) denote the

intersection points of L̃ intersecting Σ+
0 and Σ−0 respectively, (0, yR) and (0,−yL)

denote the intersection points of L intersecting Σ+
0 and Σ−0 respectively. Then

pR(yR) = yL, pL(yL) = yR, pR(ỹR) = ỹL and pL(ỹL) = ỹR. Moreover, by the
properties of planar autonomous systems, ỹR > yR > 0 and ỹL > yL > 0.

By Lemma 3.4, H(−pR(ỹR))−H(ỹR) < H(−pR(yR))−H(yR). NamelyH(−ỹL)−
H(pL(ỹL)) < H(−yL)−H(pL(yL)), this is a contradiction. Hence L̃ is the unique
crossing limit cycle surrounding the origin.

Now we show the stability. By (3.1), for x ∈ (0, x0) ∪ (x1, 0) one has that

dλ(x(t), y(t))

dt
= −g(x(t))F (x(t)) > 0.

So L̃ is stable from the interior, and it must encircle (x1, 0) and (x0, 0) as the interior

points. We only show that L̃ is also stable from the exterior.
Let L̂ denote any orbit of (2.1)-(2.2), and it locates in the exterior of L̃. Assume

that L̂ starts from (0, ŷR) ∈ Σ+
0 , and PR maps it to (0,−ŷL) ∈ Σ−0 . Then ŷL =

pR(ŷR). We claim that
pL(ŷL) < ŷR. (3.5)

In fact, by ŷR > ỹR > 0 one has that

H(−ŷL)−H(ŷR) = H(−pR(ŷR))−H(ŷR)

< H(−pR(ỹR))−H(ỹR) = H(−ỹL)−H(pL(ỹL)).
(3.6)

On the other hand, it follows from ŷL > ỹL > 0 that

H(pL(ŷL))−H(−ŷL) < H(pL(ỹL))−H(−ỹL). (3.7)

From (3.6)-(3.7), we have that H(ŷR) > H(pL(ŷL)). Hence (3.5) holds. The proof
is completed.

4. Amplitude of the limit cycle

In this section, by analyzing the upper bounds for amplitude of the unique crossing
limit cycle of (2.1)-(2.2) on Σ+ and Σ− respectively, we estimate the position of the
limit cycle on the plane. Here the amplitude of a limit cycle on Σ+ (resp. Σ− ) is
defined as the maximal (resp. minimal) value of the x-coordinate on the limit cycle,
and the amplitude of a limit cycle on the plane is defined as the maximum absolute
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value of the x-coordinate on the limit cycle. Physically the amplitude represents
the maximal deviation of the oscillation from the equilibrium state.

By (H1) and the Rolle’s theorem, there are x ∈ (x1, 0) and x ∈ (0, x0) such that
F ′(x) = F ′(x) = 0. Further we make the following hypothesis for (2.1)-(2.2).

(H6) g+(x)
F ′(x) and g−(x)

F ′(x) are monotone decreasing on (x,+∞) and (−∞, x) respec-

tively.

Consider an orbit LA of (2.1)-(2.2), which starts from A(0, yA) ∈ Σ+
0 and crosses

ΣF transversally for x > x0 and x < x1 (see Figure 3). By Lemma 3.2, it intersects
with ΣF and Σ−0 at B(xB , yB) and C(0, yC) respectively for the first time. Later it
continues to enter Σ− and intersect again ΣF and Σ+

0 at D(−xD, yD) and E(0, yE)
respectively. Let4R(xB) = H(yA)−H(yC),4L(xD) = H(yC)−H(yE) and4(x) =
H(yA)−H(yE). If yA = yE (i.e. ∆(x) = 0), the orbit is a crossing periodic orbit,
and the amplitude is exactly max{xB , xD}. If yE < yA (i.e. ∆(x) > 0), there exists
at least one crossing periodic orbit contained in Ω, and max{xB , xD} is an upper

bound of the amplitude. Here Ω denotes a closed region encircled by ˝�ABCDE∪EA.
In fact, the origin is a source singular point and Ω is a positive invariant region. So
by the Poincaré-Bendixson theorem, (2.1)-(2.2) have at least one crossing periodic
orbit in Ω. If yA < yE (i.e. ∆(x) < 0), Ω is encircled by a crossing periodic orbit,
and max{xB , xD} is a low bound of the amplitude. Therefore, we will aim to find
max{xB , xD} as small as possible such that ∆(x) ≥ 0.

x=x

O

A

B

C

x

y

D

E

0

h(y)=F(x)

x=x1

 

Figure 3. An orbit LA of (2.1)-(2.2) crossing ΣF transversally for x > x0 and x < x1.

In the following, we consider the part of LA on Σ+ (i.e. the arc ĂBC). Denote

arcs ÃB and B̃C by the graphs of functions y = y(x) and y = y(x) for x ∈ [0, xB ]
respectively (see Figure 4). Let v(x) = h(y)− F (x) and v(x) = F (x)− h(y). Then
for x ∈ (0, xB), one has that

(1) y(x) is strictly monotone decreasing, and h(y(xB)) = F (xB).

(2) y(x) < h−1(F (x)) < y(x), and y(0) = yC < 0 < y(0) = yA.

(3) y(x) is strictly monotone increasing, and h(y(xB)) = F (xB).

(4) v(x) > 0, v(x) > 0 and v(xB) = v(xB) = 0.

We give three lemmas to determine an upper bound of amplitude of the unique
crossing limit cycle of (2.1)-(2.2) on Σ+.
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Lemma 4.1. Let xB > x0, then

H(yA) >
1

v(x0)

∫ xB

0

F (x)g+(x)dx+G(xB) +H(yB).

Proof. Differentiating λ(x, y) = H(y) +G(x) in x and taking y = y(x) then

d

dx
[H(y(x)) +G(x)] = −g+(x)F (x)

v(x)
.

Take integral for the above equality from x = 0 to x = xB , one has that

H(yB) = −
∫ xB

0

g+(x)F (x)

v(x)
dx−G(xB) +H(yA).

Since F (x)(x− x0) > 0 for x ∈ (0, xB) \ {x0}, it follows from the property (1) that

v(x) = h(y)− F (x) > v(x0), x ∈ [0, x0),

v(x) = h(y)− F (x) < v(x0), x ∈ (x0, xB ].

Hence − g+(x)F (x)
v(x) < − g+(x)F (x)

v(x0) for x ∈ (0, xB ]\{x0}. The proof is completed.

Lemma 4.2. Let (H6) hold. Then v(x) is monotone decreasing on x ∈ [0, xB ].

Proof. By (H1) and the Rolle’s theorem, there exists at least one x ∈ (0, x0) such

that F ′(x) = 0. Since F ′(x)
g+(x) is monotone increasing on (x,+∞), x is the unique

zero of F ′(x) = 0 on (0,+∞) satisfying F ′(x) < 0 for x ∈ [0, x) and F ′(x) > 0 for
x ∈ (x,+∞).

Note that v(x) satisfies the differential equation

dv(x)

dx
= F ′(x)− h′(y)

g+(x)

v(x)
.

From the property (3), it is obvious that dv(x)
dx < 0 for x ∈ [0, x].

Due to v(x) > 0 and F ′(x) > 0 for x ∈ (x, xB ], in order to obtain dv(x)
dx < 0 on

(x, xB ] it suffices to show that the curve y = v∗(x) with v∗(x) = v(x)
h′(y) does not meet

the isocline y = g+(x)
F ′(x) on such interval. It follows that g+(x)

F ′(x) > 0 for x ∈ (x,+∞)

with limx→x+
g+(x)
F ′(x) = +∞, and g+(x)

F ′(x) is monotone decreasing on (x,+∞). There

are following two possible cases to consider.

Case I. If the curve y = v∗(x) touches tangentially the isoline y = g+(x)
F ′(x) at x2 ∈

(x, xB), i.e. v∗(x2) = g+(x2)
F ′(x2) but v∗(x) < g+(x)

F ′(x) for x ∈ (x, xB ] \ {x2}. It is obvious.

Case II. If y = v∗(x) crosses transversally y = g+(x)
F ′(x) for the first time at x2 ∈ (x, xB).

Then v∗(x) > g+(x)
F ′(x) , i.e. dv(x)

dx > 0 for x ∈ U+(x2), where U+(x2) denotes a right-

neighborhood of x2. Since g+(x)
F ′(x) is monotone decreasing on (x,+∞), the curve

y = v∗(x) will not meet the isocline again. This contradicts with v(xB) = 0. Hence
v(x) is monotone decreasing for x ∈ [0, xB ]. The proof is completed.

Lemma 4.3. Let xB > x0, then

H(yC) ≤ − 1

v(x0)

∫ xB

0

F (x)g+(x)dx+G(xB) +H(yB).
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Proof. By the similar way to Lemma 4.1, it follows that

d

dx
[H(y(x)) +G(x)] =

g+(x)F (x)

v(x)
.

Taking integral from x = 0 to x = xB in the above equality gives then

H(yC) = G(xB) +H(yB)−
∫ xB

0

g+(x)F (x)

v(x)
dx.

By Lemma 4.2 and F (x)(x− x0) > 0 for x ∈ (0, xB) \ {x0}, one has that

−g+(x)F (x)

v(x)
≤ −g+(x)F (x)

v(x0)
, x ∈ (0, xB ].

Hence the conclusion follows. The proof is completed.

O

A

B

x

y

0x

y=y(x)-

y=y(x)
-

h(y)=F(x)

C

 

Figure 4. A trajectory arc ĀBC of (2.1)-(2.2) on Σ+.

Similarly, for the part of LA on Σ− (see the arc C̆DE in Figure 3), we present

the arcs C̃D and D̃E by the graphs of functions y = y(x) and y = y(x) for x ∈
[−xD, 0] respectively, and let v(x) = h(y)−F (x) and v(x) = F (x)−h(y). Then for
x ∈ (−xD, 0), one has that

(1) y(x) is strictly monotone increasing and h(y(−xD)) = F (−xD).

(2) y(x) < h−1(F (x)) < y(x) and y(0) = yC < 0 < y(0) = yE .

(3) y(x) is strictly monotone decreasing and h(y(−xD)) = F (−xD).

(4) v(x) > 0, v(x) > 0 and v(−xD) = v(−xD) = 0.

With the similar analysis, we have the following three lemmas to obtain an upper
bound for the amplitude of the unique crossing limit cycle of (2.1)-(2.2) on Σ−.

Lemma 4.4. Let xD > −x1, then

H(yC) >
1

v(x1)

∫ 0

−xD

F (x)g−(x)dx+G(−xD) +H(yD).

Lemma 4.5. Let (H6) holds. Then v(x) is monotone increasing for x ∈ [−xD, 0].
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Lemma 4.6. If xD > −x1, then

H(yE) ≤ − 1

v(x1)

∫ 0

−xD

F (x)g−(x)dx+G(−xD) +H(yD).

Now we are ready to state and prove the result on an explicit upper bound for
the amplitude of the unique crossing limit cycle of (2.1)-(2.2) on the plane.

Theorem 4.1. Let (H1)-(H6) hold. Then there is an upper bound x∗=max{xB ,xD}
for the amplitude of the unique crossing limit cycle of (2.1)-(2.2) such that the limit
cycle locates in {(x, y) ∈ R2 : |x| < x∗}, where xB and xD are uniquely determined

by
∫ xB

0
g+(x)F (x)dx = 0 and

∫ 0

−xD
g−(x)F (x)dx = 0 respectively.

Proof. We first show that there is a unique x∗R such that
∫ x∗R

0
g+(x)F (x)dx = 0.

By F (x)(x−x0) > 0 for x ∈ (0,+∞)\{x0},
∫ x

0
g+(x)F (x)dx < 0 for 0 < x ≤ x0.

Since
∫ x

0
g+(x)F (x)dx is monotone increasing for x > x0, from F (+∞) = +∞ there

exists sufficiently large x such that
∫ x

0
g+(x)F (x)dx > 0. Hence by the property of

strictly monotone increasing, there is a unique x∗R such that
∫ x∗R

0
g+(x)F (x)dx = 0

and
∫ x

0
g+(x)F (x)dx > 0 for x > x∗R. Moreover, from Lemma 3.4 there is a unique

x∗B such that ∆R(x∗B) = 0 and ∆R(xB) > 0 for xB > x∗B . By Lemmas 4.1 and 4.3,
one has that

∆R(xB) = H(yA)−H(yC) >

(
1

v(x0)
+

1

v(x0)

)∫ xB

0

F (x)g+(x)dx. (4.1)

Let xB = x∗R such that
∫ xB

0
F (x)g+(x)dx = 0 and then ∆R(x∗R) > 0. Namely x∗R is

an upper bound of the amplitude of the unique crossing limit cycle on Σ+.

Similarly, on Σ− there exists a unique x∗L such that
∫ 0

−x∗L
g−(x)F (x)dx = 0, and

from Lemmas 4.4 and 4.6 one has that

∆L(xD) = H(yC)−H(yE) >

(
1

v(x1)
+

1

v(x1)

)∫ 0

−xD

F (x)g−(x)dx. (4.2)

Let xD = x∗L such that ∆L(x∗L) > 0. Hence (4.1)-(4.2) imply that the unique limit
cycle of (2.1)-(2.2) locates in {(x, y) ∈ R2 : |x| < x∗} with x∗ = max{xB , xD}. The
proof is completed.

5. Applications

In this section, two examples including the celebrated nonlinear differential equation
model of predator-prey system are presented to illustrate the obtained results.

Example 5.1. Xiao and Ruan [17] studied dynamics of the following predator-prey
system with nonmonotonic functional response

dx

dt
= rx(1− x

K
)− xy

c+ x2
,

dy

dt
= y(

µx

c+ x2
−D),

(5.1)
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for x > 0, y > 0, where r, c, µ,K and D are positive parameters. Clearly (5.1) has

a unique positive equilibrium point (x1, y1) = (
µ−
√
µ2−4cD2

2D , r(1− x1

K )(c+ x2
1)) for

µ2 >
16

3
cD2, x2 > K > x3,

and

x2 =
µ+

√
µ2 − 4cD2

2D
, x3 =

2µ−
√
µ2 − 4cD2

2D
.

The authors gave some conditions such that (5.1) has a unique limit cycle in {(x, y) :
0 < x < K, 0 < y < +∞} (see Figure 5), and by the variable transformation (5.1)
can be transformed into the Liénard-type form.
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Figure 5. A unique limit cycle of (5.1) and the red dot denotes the equilibrium point (x1, y1), where

r = 1
8−5
√

2
, c = 1, µ = 2

√
2, K = 2 and D = 1.

Now we consider the discontinuous Liénard-type system as follows
dx

dt
= h(y)− F (x),

dy

dt
= −g(x),

(5.2)

where F (x) = x(x2+(5−3
√

2)x+14−10
√

2)

16−10
√

2
,

g(x) =

{
x(x+2)√
2−1−x , 0 ≤ x <

√
2− 1,

x−1√
2−1−x ,

√
2− 3 < x < 0,

h(y) =


ey − 1, y ≥ 0,

y, −δ ≤ y ≤ 0,

ye−(y+δ), y ≤ −δ,
(5.3)

and δ > 0 is a constant.
Obviously, Σ0 = {x = 0, y ∈ R}, Σ− = {

√
2 − 3 < x < 0, y ∈ R} and Σ+ =

{0 < x <
√

2 − 1, y ∈ R}. By computations, there are x0 = 3
√

2−5+
√

10
√

2−13
2 > 0

and x1 = 3
√

2−5−
√

10
√

2−13
2 < 0 such that F (x0) = F (x1) = F (0) = 0, F (x) > 0 for

x ∈ (x1, 0)∪ (x0,
√

2− 1), F (x) < 0 for x ∈ (
√

2− 3, x1)∪ (0, x0), and F ′(x) > 0 for
x ∈ (x0,

√
2−1)∪(

√
2−3, x1); g− ∈ C1((

√
2−3, 0],R), g+ ∈ C1([0,

√
2−1),R) with

g(0) = 0 = g(0+), g(0−) = −1√
2−1

and xg(x) > 0 for x ∈ (
√

2 − 3, 0) ∪ (0,
√

2 − 1);

h ∈ C(R,R) satisfying yh(y) > 0 for y 6= 0, h′(y) > 0 for y ∈ (−∞,−δ)∪ (−δ,+∞)
and h′(−δ+) = 1, h′(−δ−) = 1 + δ, and h+(y) > |h−(−y)| for 0 < y < δ, h+(y) <
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|h−(−y)| for y > M withM > max{eδ, δ}−1. Hence (H1)-(H5) hold. By Theorems
3.1-3.2, (5.2)-(5.3) have a unique stable crossing limit cycle surrounding the origin.
Indeed Matlab simulation shows the result shown in Figure 6. From the phase
portrait, we observe that the crossing limit cycle is continuous but non-smooth at
the intersection points of the limit cycle and Σ0.
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Figure 6. Left: a crossing limit cycle of (5.2)-(5.3), red dot denotes the equilibrium point O(0, 0) and
red dash line denotes Σ0; Right: time series (t, x(t)) and (t, y(t)).

Remark 5.1. Example 5.1 shows that the unique limit cycle of (5.1) is preserved
under discontinuity perturbations. This indicates that the oscillatory nature of the
predator-prey model is preserved.

Example 5.2. Consider a discontinuous Liénard-type system with the discontinu-
ity line Σ0 = {x = 0} as follows

dx

dt
= h(y)− F (x),

dy

dt
= −g(x),

(5.4)

where functions F, h and g are of the form

F (x) =

−x2 − 2x, x < 0,

x2 − x, x ≥ 0,
h(y) =


y2 + y, y ≥ 0,

y, −1 ≤ y ≤ 0,

ye−(y+1), y ≤ −1,

(5.5)

g(x) =

2x− 1, x < 0,

x, x ≥ 0.
(5.6)

It is easy to see that F, h ∈ C(R,R) and g− ∈ C1((−∞, 0], (−∞, 0)), g+ ∈
C1([0,+∞), (0,+∞)) satisfying g(0+) = 0, g(0−) = −1. There are x0 = 1, x1 = −2
such that F (−2) = F (1) = F (0) = 0, F (x) > 0 for x ∈ (−2, 0)∪ (1,+∞), F (x) < 0
for x ∈ (−∞,−2) ∪ (0, 1), F ′(x) > 0 for x ∈ ( 1

2 ,+∞) ∪ (−∞,−1), F ′(x) < 0 for
x ∈ (−1, 0) ∪ (0, 1

2 ) and F ′(0+) = −1, F ′(0−) = −2; yh(y) > 0 for y 6= 0, h′(y) > 0
for y ∈ (−∞,−1) ∪ (−1,+∞) and h′(−1+) = 1, h′(−1−) = 2, and we can choose
δ = 1 and M = 2 such that (2.4) holds. Hence (H1)-(H5) hold. By Theorems
3.1-3.2, (5.4)-(5.6) have a unique stable crossing limit cycle surrounding the origin.
Indeed Matlab simulation shows the result shown in Figure 7.
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Moreover, one can easily verify that g+(x)
F ′(x) and g−(x)

F ′(x) are monotone decreasing

for x > 0 and x < 0 respectively. On Σ+, it follows that∫ x

0

F (s)g+(s)ds = x3(
1

4
x− 1

3
) = 0.

Hence x = 4
3 is the right upper bound for the amplitude of the unique crossing limit

cycle. Similarly, on Σ− it follows from∫ 0

x

F (x)g−(x)dx = x2(
1

2
x2 + x− 1) = 0

that x = −
√

3−1 is the left upper bound of the amplitude. Hence by Theorem 4.1,
the unique crossing limit cycle of (5.4)-(5.6) locates in {(x, y) ∈ R2 : |x| <

√
3 + 1}.
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Figure 7. Left: a crossing limit cycle of (5.4)-(5.6) and red dash line denotes Σ0; Right: time series
(t, x(t)) and (t, y(t)).

6. Concluding remarks

In the above sections, we have mainly investigated the existence, uniqueness, sta-
bility and relative position of a crossing limit cycle for a discontinuous nonlinear
Liénard-type differential system with two zones separated by Σ0. By adopting the
Filippov theory to define orbits of the system when they intersect Σ0 such that the
orbits can be concatenated in a natural way. Firstly, we presented the properties
of solutions and the left and right Poincaré mappings as well. Then by Poincaré
mapping method and analysis techniques, we provided two criteria on the existence,
uniqueness and stability of a crossing limit cycle surrounding the origin. Secondly,
by geometric analysis we further studied the position of the unique crossing limit
cycle. By considering the upper bounds of the amplitude of the limit cycle on Σ+

and Σ− respectively, we gave several lemmas to obtain the explicit upper bound.
Finally, two examples including an application to the predator-prey model are pre-
sented to illustrate the obtained results, and Matlab simulations are also presented
to show the agreement between theoretical results and numerical analysis.
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