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Global Structure of Planar Quadratic
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Abstract This paper study the planar quadratic semi-quasi-homogeneous
polynomial systems(short for PQSQHPS). By using the nilpotent singular
points theorem, blow-up technique, Poincaré index formula, and Poincaré com-
paction method, the global phase portraits of such systems in canonical forms
are discussed. Furthermore, we show that all the global phase portraits of
PQSQHPS can be-classed into six topological equivalence classes.
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1. Introduction

In this paper, we consider the planar polynomial differential systems of the form

ẋ = P (x, y) , ẏ = Q (x, y) , (1.1)

where P and Q are polynomials, ẋ, ẏ are the first derivatives with regard to the
time variable t. We call (1.1) polynomial differential system of degree n , if n is the
maximum degree of P and Q.

The planar polynomial differential system (1.1) is called to be semi-quasi homo-
geneous, if there exist s1, s2, d1, d2 ∈ N+ and d1 6= d2 such that for any arbitrary
λ ∈ R+,

P (λs1x, λs2y) = λs1−1+d1P (x, y) , Q (λs1x, λs2y) = λs2−1+d2Q (x, y) . (1.2)

We call w = (s1, s2, d1, d2) the weight vector of system(1.1), s1 and s2 the weight
exponents of system (1.1), and d1, d2 the weight degree with respect to weight
exponents s1 and s2. In particular, system (1.1) is a semi-homogeneous system
when s1 = s2, and, (1.1) is a quasi-homogeneous system when d1 = d2.

The weight vector w = (s1, s2, d1, d2) of planar semi-quasi-homogeneous system
(1.1) is not unique (see [19]) and a weight vector wm = (s∗1, s

∗
2, d1

∗, d2
∗) is called to

be a minimal weight vector of (1.1) if any other weight vector w = (s1, s2, d1, d2) of
(1.1) satisfies s∗1 ≤ s1, s

∗
2 ≤ s2, d

∗
1 ≤ d1, d

∗
2 ≤ d2.
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Obviously, the homogeneous and semi-homogeneous systems are respectively
the special types of the quasi-homogeneous and semi-quasi homogeneous systems,
which have attracted lots of interests due to their special properties. In fact, a
large number of scholars have explored these two kinds of systems from different
aspects, such as the centers [6, 7, 12], limit cycles [5], first integral [3], canonical
forms [8], phase portraits of the systems [4, 15] and so on. The research on quasi-
homogeneous systems has also become a hot topic since the 21st century. In the
study of planar quasi-homogeneous polynomial systems, the identification of center
from monodromy singularity, the number and location of limit cycles and various
analytical first integrals (including polynomial first integral, rational first integral
and Liouville first integral) are discussed. For example, the integrability of the
planar quasi-homogeneous system was studied in the literature [1, 2, 10, 11], the
bifurcation of limit cycles in quasi-homogeneous centers was discussed in [13, 14],
the algorithm for obtaining the canonical forms of all given quasi-homogeneous
but non-homogeneous systems was provided in [11]. Later, some authors used this
algorithm to obtain the canonical form of quasi-homogeneous system of degree 2–6,
and made further efforts to analyse the dynamic behavior of them. For instance,
the authors of [17] analyzed the quintic quasi-homogeneous system, and, the global
phase portraits and the first integral properties of such systems were obtained by
further analysis after the canonical forms were given.

The semi-quasi-homogeneous polynomial differential systems are the generaliza-
tions of semi-homogeneous and quasi-homogeneous systems, and appear in many
fields of the natural sciences. For example, in Newton’s laws of motion when the
mass of a particle is potion dependent, we have the motion equation ẍ−aẋ2−bx3 = 0
which can be changed to the semi-quasi-homogeneous polynomial differential sys-
tems ẋ = y, ẏ = ay2 + bx3, with the weight vector wm = (2, 3, 2, 4), see [19] and the
references therein.

However, as far as we know, there are a few of results on the semi-quasi-
homogeneous polynomial differential systems. Because they do not have such special
properties as the semi-homogeneous and quasi-homogeneous systems that it is more
difficult to be studied. Here we list two important results about the semi-quasi-
homogeneous systems. The authors of [18] gave a criterion for the non-existence of
a rational first integral of a semi-quasi-homogeneous system by using Kowalevsky
exponent. Zhao studied the limit cycles of semi-quasi homogeneous systems in [21].
He gave some sufficient conditions for the nonexistence and existence of periodic
orbits, and, gave a lower bound for the maximum number of limit cycles of such
systems.

Very resent, inspired by [11], the authors of [19] established an algorithm to
obtain all the semi-quasi homogeneous systems with a given degree and got all
the canonical forms of semi-quasi homogeneous systems of degree 2 and 3. After
obtaining the canonical forms of the planar semi-quasi-homogeneous systems, we
naturally pay more attention to the global dynamic behavior of them. Therefore,
in this paper, we will study the global structure of planar quadratic semi-quasi-
homogeneous polynomial systems (short for PQSQHPS) on the basis of [19] and
give the global phase portrait structures of PQSQHPS in the sense of topological
equivalence.
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2. Preliminaries and main results

In order to better analyze the phase portraits of PQSQHPS, it is necessary to
introduce some preliminaries.

Lemma 2.1 ( [21]). If (1.1) is the planar semi-quasi-homogeneous system, and
P and Q are coprime polynomials, then the origin is a unique finite singularity of
system (1.1).

Lemma 2.2 ( [19]). If (1.1) is a PQSQHPS, then system (1.1) has no center.

The above lemma implies that, when we want to determine the global phase
portraits of PQSQHPS, it suffices to analyse the singularities at the origin and at the
infinity, as well as the limit cycle (such as the existence and the position). However,
as we will see soon, the finite singularity of PQSQHPS is always degenerate and
sometimes is of higher-order. Generally, the trajectory structure near the degenerate
singularity is much more complicate than the elementary one. In this paper, we
are going to use the classical methods, namely the nilpotent singularity theorem
and the blow-up technique, to investigate the degenerate singularities, both at the
origin and at the infinity, of PQSQHPS.

Let’s first introduce the nilpotent singularity theorem and the blow-up technique.

Lemma 2.3 ( [20]). Consider the following system

ẋ = P2(x, y), ẏ = y +Q2(x, y), (2.1)

where the origin O(0, 0) is an isolated singularity of the system (2.1), P2(x, y) and
Q2(x, y) are analytic in the neighborhood of the point. Given that y = φ(x) is
the solution of equation y + Q2(x, y) = 0 in the neighborhood of the origin, and
φ(0) = φ′(0) = 0. Let ψ(x) = P2(x, φ(x)) = amx

m + [x]m+1, where am 6= 0, m ≥ 2,
[x]m+1 represents the sum of those terms in ψ(x) which degree is not less than m+1.
Then the following holds:

(i) if m is odd and am > 0, then O(0, 0) is an unstable node;

(ii) if m is odd and am < 0, then O(0, 0) is a saddle;

(iii) if m is even, then O(0, 0) is a saddle-node.

The above lemma can be applied to study the singularity of system (1.1) when
it’s linear approximation system at this singularity has exactly one zero eigenvalue.
When the linear approximation system of (1.1) at the singularity is not vanish but
has two zero eigenvalues, we will use the following result.

Lemma 2.4 ( [9]). Consider the system of form

ẋ = y +A(x, y), ẏ = B(x, y), (2.2)

where the origin O(0, 0) is an isolated singularity of system (2.2), A(x, y) and
B(x, y) are analytic in a neighborhood of the origin and j1A(0, 0, ) = j1B(0, 0) = 0.
Given that y = f(x) is the solution of equation y + A(x, y) = 0 in a neighborhood
of the origin, and let F (x) = B(x, f(x)), G(x) = (∂A/∂x + ∂B/∂y)(x, f(x)). If
F (x) = amx

m + o(xm) and G(x) = bnx
n + o(xn) for m,n ∈ N, m ≥ 2, n ≥

1, am 6= 0, bn 6= 0, then we have

(1) if m is odd and am > 0 then the origin is a saddle;
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(2) if m is odd, am < 0 and

(2.1) Either m < 2n + 1, or m = 2n + 1 and b2n + 4(n + 1)am < 0, then the
origin is a center or a focus;

(2.2) n is odd and either m > 2n+ 1, or m = 2n+ 1 and b2n + 4(n+ 1)am ≥ 0,
then the phase portrait of the origin consists of one hyperbolic and one
elliptic sector;

(2.3) n is even and either m > 2n+1, or m = 2n+1 and b2n+4(n+1)am ≥ 0,
then the origin is a node;

(3) if m is even, and

(3.1) m < 2n+ 1, then the origin is a cusp;

(3.2) m > 2n+ 1, then the origin is a saddle-node.

Lemma 2.4 is a part of the conclusion of the nilpotent singularity theorem. The
readers are referred to the references [9] (pages 116–117) for more details.

Next, we introduce briefly the blow-up technique (see [16] pages 157–171) which
can be employed to study the high order degenerate singularity of system (1.1),
i.e., the linear approximation system of (1.1) at the singularity is identically zero.
Making the following transformationx = µαx̄,

y = µβ ȳ,
(2.3)

where 0 ≤ µ � 1, with some suitable positive integers α and β, the high order
degenerate singularity of system (1.1) can be blown up into several elementary
singularities, see the literature [9] for more details and for the method to search the
suitable α and β.

It is well known that, if a limit cycle surround a unique isolate singularity, then
the index of this singularity is 1. In order to determine the existence of the limit
cycles for PQSQHPS, we need the following result, which can be found in many
monograph of ODE such as [9, 20].

Lemma 2.5. (Poincaré Index Formula) Let Q ba an isolated singular point having
the finite sectorial decomposition property. Let e, h and p denote the number of
elliptic, hyperbolic, and parabolic sectors of Q, respectively, and suppose that e +
h+ p > 0. Then the index of Q equals to (e− h)/2 + 1.

In the end of this section, we would like to introduce the main results of this
paper, which are obtained on the basis of the following lemma.

Lemma 2.6 ( [19]). After the appropriate reversible linear transformations, all the
planar quadratic semi-quasi-homogeneous but non-semi-homogeneous systems with
the minimal weight vector wm, can be written as one of the following forms

(A1) ẋ = x2, ẏ = y2 + x, with wm = (2, 1, 3, 2).
(A21) ẋ = y2 + x, ẏ = ay2 + x, with a(a− 1) 6= 0, wm = (2, 1, 1, 2).
(A22) ẋ = y2 + x, ẏ = y2, with wm = (2, 1, 1, 2).
(A23) ẋ = y2 + x, ẏ = x, with wm = (2, 1, 1, 2).
(A24) ẋ = y2, ẏ = y2 + x, with wm = (2, 1, 1, 2).
(A25) ẋ = x, ẏ = y2 + x, with wm = (2, 1, 1, 2).
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Theorem 2.1. The global phase portraits of all the systems in Lemma 2.6 are
shown below.

（ ）1

( )A1

（ ）2

( ): >1A a21

（ ）2

( ): <0A a21

（ ）3

( ): 0 <1A <a21

（ ）4

( )A22

（ ）5

( )A23

（ ）6

( )A24

（ ）2

( )A25

Figure 1. The global phase portraits of PQSQHPS

It is not hard to check that, in Figure 1, the global phase portraits with the
same number in the upper right corner are topologically equivalent. Therefore, we
can get the following Theorem 2.2 directly from Theorem 2.1.

Theorem 2.2. The set of all global phase portraits has six topological equivalence
classes in PQSQHPS (where the semi-homogeneous and the quasi-homogeneous sys-
tems have been excluded), as shown in Figure 2.

(1) (2) (3) (4)

(5) (6)

Figure 2. Topological equivalent classes of global phase portraits for PQSQHPS

The following result can be obtained immediately from Theorem 2.2 and Lemma
2.5.
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Corollary 2.1. For any PQSQHPS, the index of the origin (as the unique finite
singularity of the system) is zero.

3. The proof of Theorem 2.1

According to Lemma 2.6, all the canonical forms of PQSQHPS are the systems
(A1), (A21)-(A25). Therefore, we will discuss all the global phase portraits of these
systems one by one.
Proof.

(1) The phase portrait of (A1).
Let’s first study the singularity of system (A1) at the origin by applying Lemma
2.4 (with the change of coordinates x↔ y). Let A(x, y) = x2 and B(x, y) = y2.
By x+B(x, y) = 0, we get x = f(y) = −y2, and

F (y) = A(f(y), y) = y4, G(y) =

(
∂

∂x
(x2) +

∂

∂y
(y2 + x)

) ∣∣∣
x=f(y)

= 2y − 2y2.

From Lemma 2.4, we know that the origin is a saddle-node. Notice that x = 0 is
the invariant straight line of the system, it is easy to get the trajectory direction
near the origin, which is shown in Figure 3 (a).
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( )f
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Figure 3. Phase portraits of singularities of systems (A1), (A21)-(A25) at the origin

Next consider the singularities of system (A1) at the infinity. After making
the Poincaré transformation (x, y) → (1/z, u/z) and the time transformation
dτ = dt/z, system (A1) becomes

dz
dτ = −z,

du
dτ = u2 + z − u.

(3.1)

System (3.1) has two singularities at A(0, 0) and at B(0, 1) respectively on the u-
axis. It is easy to see that A is a stable node and B is a saddle. In order to study
the singularity at the infinity on the y-axis direction, by making the Poincaré
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transformation (x, y)→ (v/z, 1/z) and making the time scale dτ = dt/z for the
system (A1), we get 

dz
dτ = −z − z2v,

dv
dτ = −v + v2 − zv2.

(3.2)

System (3.2) has a singularity at C(0, 0). Moreover, the singularity is a stable
node.
On the other hand, since system (A1) has an invariant straight line x = 0, it
follows that system (A1) has no limit cycle. Thus we can get the global phase
portrait of (A1) easily, which was shown in Figure 1.

(2) The phase portraits of (A21).
In order to study the singularity at the origin, we take the transformation
x = ȳ, y = x̄+ ȳ, which change the system (A21) to

˙̄x = (a− 1)(x̄2 + 2x̄ȳ + ȳ2),

˙̄y = ȳ + x̄2 + 2x̄ȳ + ȳ2.

(3.3)

System (3.3) is a special case of system (2.1) with P2(x̄, ȳ) = (a−1)(x̄2+2x̄ȳ+ȳ2)
and Q2(x̄, ȳ) = x̄2 + 2x̄ȳ + ȳ2. By ȳ + Q2(x̄, ȳ) = 0, we get ȳ = φ(x̄) =
−x̄2 +2x̄3 + · · · and ψ(x̄) = P2(x̄, φ(x̄)) = (a−1)x̄2 +[x̄]3. From Lemma 2.3, we
know that the origin of system (3.3) is a saddle-node. Since the transformation
is non-degenerate and keeps the origin unchanged, the origin of system (A21) is
also a saddle-node (see Figure 3 (b) and (c)).
Next consider the singularities of system (A21) at the infinity. By making
Poincaré transformation (x, y)→ (1/z, u/z) and the time transformation dτ =
dt/z, system (A21) is changed to

dz
dτ = −u2z − z2,

du
dτ = z − uz + au2 − u3.

(3.4)

System (3.4) has two singularities at A(0, 0) and at B(0, a) respectively on
the u-axis. It is easy to verify that B is a stable node. So we only need to
discuss the singularity of system (3.4) at A. Let A(z, u) = −uz + au2 − u3 and
B(z, u) = −u2z− z2. By z+A(z, u) = 0, we get z = f(u) = −au2 + (1−a)u3 +
· · · , F (u) = B(f(u), u) = (a− a2)u4 + o(u5) and

G(u) =

(
∂

∂z
(−u2z − z2) +

∂

∂u
(z − uz + au2 − u3)

) ∣∣∣
z=f(u)

= 2au+ o(u2).

From Lemma 2.4 , we know that A is a saddle-node. In order to study the
singularity of system (A21) at the infinity on the y-axis direction, we make the
Poincaré transformation (x, y)→ (v/z, 1/z) and the time rescale dτ = dt/z , it
follows that 

dz
dτ = −az − z2v,

dv
dτ = 1 + zv − av − zv2.

(3.5)
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It is easy to find that (0,0) is not a singularity of system (3.5), i.e., system (A21)
has no singularity at infinity in the y-axis direction.
From Lemma 2.5, it follows that (A21) has no limit cycle because the index
of the unique finite singularity is zero. Finally, combining all of the above
information, we can obtain the global phase portrait of (A21), see Figure 1.

(3) The phase portrait of (A22).
We will firstly apply Lemma 2.3 to investigate the singularity of system (A22)
at the origin. It follows from y2 + x = 0 that x = f(y) = −y2 and ψ(y) = y2.
Therefore, the origin of system (A22) is a saddle-node as being shown in Figure
3 (d).
Next consider the singularities of the system (A22) at the infinity. After making
the Poincaré transformation (x, y) → (1/z, u/z) and the time transformation
dτ = dt/z, system (A22) becomes

dz
dτ = −u2z − z2,

du
dτ = u2 − u3 − uz.

(3.6)

System (3.6) has two singularities at A(0, 0) and at B(0, 1) respectively on the
u-axis. It is easy to check that B is a stable node. Since A is a high order
degenerate singularity, we will blow-up it by using the transformation (2.3)
with α = β = 1. To simplify the symbols, we replace u, z, τ in the system (3.6)
with x, y, t respectively, and get

dx
dt = x2 − x3 − xy,

dy
dt = −x2y − y2.

(3.7)

Then on the coordinate cards {x̄ = ±1}, taking (x, y) = (±µ, µȳ) and time
transformation µdt = dτ , system (3.7) becomes

dµ
dτ = ±µ− µ2 − µȳ,

dȳ
dτ = ∓ȳ.

(3.8)

Clearly, the origin of systems (3.8) is a saddle. On the coordinate cards {ȳ =
±1}, we take the transformation (x, y) = (±µx̄, µ) and the time transformation
µdt = dτ to change system (3.7) into

dµ
dτ = ∓µ− µ2x̄2,

dx̄
dτ = x̄2.

(3.9)

It is not hard to see from Lemma 2.3 that the origin of systems (3.9) is a
saddle-node. From the properties of the singularities on both coordinate cards
{x̄ = ±1} and coordinate cards {ȳ = ±1}, we can obtain the phase portrait
of system (3.6) near the singularity A(0, 0), see Figure 4, where (a) is a graph
on the four coordinate cards, (b) is a graph of the singularity A(0, 0) of system
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(3.7) after blowing up, and, (c) is a graph of the singularity A(0, 0) of system
(3.7).

μμ

μ

x

x

yy

(a) (b)

x

y

(c)

Figure 4.

Let’s study the singularity at the infinity on the y-axis direction. By the trans-
formation (x, y)→ (v/z, 1/z) and dτ = dt/z , system (A22) is changed into

dz
dτ = −z,

dv
dτ = 1 + zv − v.

(3.10)

We find that (0,0) is not a singularity of system (3.10).
On the other hand, system (A22) has no limit cycle because it has an invariant
straight line y = 0. By combining all of the above information, we can obtain
the global phase portrait of (A22). Please see Figure 1.

(4) The phase portrait of (A23).
Similarly, we first utilize Lemma 2.3 to study the singularity of system (A23) at
the origin. Through y2 + x = 0, we get x = f(y) = −y2 and ψ(y) = −y2. From
Lemma 2.3, we know that the origin is a saddle-node as was shown in Figure 3
(e).
Next consider the singularities of system (A23) at the infinity. After making
the Poincaré transformation (x, y) → (1/z, u/z) and the time transformation
dτ = dt/z, system (A23) becomes

dz
dτ = −u2z − z2,

du
dτ = z − uz − u3.

(3.11)

We notice that on the u-axis, system (3.11) has a degenerate singularity at
A(0, 0) which can be studied by applying Lemma 2.4. In fact, by setting
A(z, u) = −uz − u3, B(z, u) = −u2z − z2. By z + A(z, u) = 0, we get
z = f(u) = u3 + u4 + · · · , F (u) = B(f(u), u) = −u5 + o(u6) and

G(u) =

(
∂

∂z
(−u2z − z2) +

∂

∂u
(z − uz − u3)

) ∣∣∣
z=f(u)

= −4u2 + o(u3).

which yields that A(0, 0) is a stable node. On the other hand, by direct cal-
culation we find that system (A23) has no singularity at infinity on the y-axis
direction.
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Finally, taking into account Lemma 2.5 which implies that (A23) has no limit
cycle because the index of the unique finite singularity is zero, and, combining
all of the above information, we can obtain the global phase portrait of system
(A23) which was shown in Figure 1.

(5) The phase portrait of (A24).
Let’s first apply Lemma 2.4 to study the singularity of system (A24) at the
origin. Similar to the analysis of system (A1), it is not hard to get that F (y) =
y2, G(y) = 2y. From Lemma 2.4, the singularity (0,0) is a cusp as was shown
in Figure 3 (f). Next we take the Poincaré transformation (x, y)→ (1/z, u/z)
and the time transformation dτ = dt/z, then system (A24) becomes

dz
dτ = −u2z,

du
dτ = z + u2 − u3.

(3.12)

System (3.12) has two singularities at A(0, 0) and at B(0, 1) respectively on
the u-axis. It is easy to check that B is a stable node. Then, we discuss the
singularity at A with Lemma 2.4. Let A(z, u) = u2 − u3, B(z, u) = −u2z. By
z+A(z, u) = 0, we get that z = f(u) = −u2+u3, F (u) = B(f(u), u) = u4+o(u5)
and

G(u) =

(
∂

∂z
(−u2z) +

∂

∂u
(z + u2 − u3)

) ∣∣∣
z=f(u)

= 2u+ o(u2).

From Lemma 2.4, we know that the singularity at A(0, 0) is a saddle-node.
On the other hand, by a direct computation we find that system (A24) has
no singularity at infinity on the y-axis direction. Thus, from the above results
and Lemma 2.5 which implies that system (A24) has no limit cycle because the
index of the unique finite singularity is zero, we can obtain the global phase
portrait of (A24), which was shown in Figure 1.

(6) The phase portrait of (A25).
We first make the linear transformation x = ȳ, y = x̄+ ȳ and transform system
(A25) into the form 

˙̄x = x̄2 + 2x̄ȳ + ȳ2,

˙̄y = ȳ.

(3.13)

Then we apply Lemma 2.3 to study the singularity of system (3.13) at the
origin. It is easy to obtain that ψ(x̄) = x̄2, so from Lemma 2.3, the origin of
system (A25) is a saddle-node as was shown in Figure 3 (g).
Next consider the singularities of system (A25) at the infinity. After making
the Poincaré transformation (x, y)→ (1/z, u/z) and the time rescale dτ = dt/z,
system (A25) becomes 

dz
dτ = −z2,

du
dτ = z + u2 − uz.

(3.14)

System (3.14) has a singularity at A(0, 0) on the u-axis. In order to apply
Lemma 2.4, we let A(z, u) = u2 − uz and B(z, u) = −z2. By z + A(z, u) = 0,
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we get that z = f(u) = −u2 + · · · , F (u) = B(f(u), u) = −u4 + o(u5) and

G(u) =

(
∂

∂z
(−z2) +

∂

∂u
(z + u2 − uz)

) ∣∣∣
z=f(u)

= 2u+ o(u2).

Therefore the singularity A(0, 0) is a saddle-node. Next, by taking the change
(x, y)→ (v/z, 1/z) and dτ = dt/z, system (A25) becomes

dz
dτ = −z − z2v,

dv
dτ = zv − v − zv2.

(3.15)

It is easy to see that the singularity at (0,0) is a stable node of system (3.15).
Finally, taking into account the above results and the fact that (A25) has an
invariant straight line x = 0 which yields that this system has no limit cycle,
we can easily get the global phase portrait of (A25). Please see Figure 1.
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