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A HIV Infection Model with Periodic Multidrug
Therapy

Rui Yuan1 and Zhen Wang2,†

Abstract This paper investigates the effects of periodic drug treatment on
a HIV infection model with two co-circulation populations of target cells. We
first introduce the basic reproduction ratio for the model, and then show that
the infection free equilibrium is globally asymptotically stable if R0 < 1, while
the infection persists and there exists at least one positive periodic state when
R0 > 1. Therefore, R0 serves as a threshold parameter for the infection. We
then consider an optimization problem by shifting the phase of drug efficacy
functions, which corresponds to change the dosage time of drugs in each time
interval. It turns out that shifting the phase affect critically on the stability of
the infection free steady state. Finally, exhaustive numerical simulations are
carried out to support our theoretical analysis and explore the optimal phase
shift.
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1. Introduction

Recently, a great many mathematical models have been developed to study the
dynamics of human immunodeficiency virus (HIV) infection with drug treatment
(see, e.g [1, 4, 5, 8, 10, 13, 14, 17, 23, 24]). Most of these models considered a three
dimensional equation which described the interaction of the HIV and the CD4+

cells. For example, [5,13,14] considered the stability (local or global) of the infection
free equilibrium of the three dimensional within-host model with constant drug
efficacies. [4, 8, 24] extended the work to with periodic drug efficacy functions since
the drugs are most commonly to be prescribed at a fixed dose and fixed time interval
in the process of treatment.

Perelson et cl. [16] observed that after the dosage of the anti-HIV drugs the
load of HIV experienced initially a rapid exponential decline (first phase), then a
slower exponential decline (second phase). The second phase in the decay profile
is probably due to not considering other sources of HIV-1 in the analysis, such
as infected macrophages, activation of latently infected lymphocytes, and so on.
Therefore, other HIV models considered the interaction process of the HIV not
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only with CD4+ cells, but also with macrophages (see, e.g [1,10,17,23]). Elaiw [10]
studied some of the basic properties of the following two co-circulation populations
of target cells:

dT1(t)

dt
= a1 − b1T1(t)− k1T1(t)V (t)

dT ∗1 (t)

dt
= k1T1(t)V (t)− δ1T ∗1 (t)

dT2(t)

dt
= a2 − b2T2(t)− k2T2(t)V (t)

dT ∗2 (t)

dt
= k2T2(t)V (t)− δ2T ∗2 (t)

dV (t)

dt
= N(T ∗1 (t) + T ∗2 (t))− γV (t)

where the state variables and parameters are described in Table 1.
To consider the drug treatment, we first give a brief introduction of the mecha-

nism of the available anti-HIV drugs. Due to clinical experiments, “drug cocktails”,
a combination of multiple drugs, have been proved to be useful and effective, and
become a standard procedure in the treatment of HIV infection. Most of the avail-
able anti-HIV drugs fall into two categories: reverse transcriptase (RT) inhibitors
and protease (P) inhibitors. Invading a CD4∗ target cell and then duplicating its
RNA genome is a crucial part of the viral life cycle. RT inhibitors prevent HIV
RNA from making a DNA copy, thus blocking the integration of the viral code into
the target cells. P inhibitors target on the final step of the viral production: pre-
venting the cutting of the viral proteins before their release from the infected cells.
P inhibitors, therefore, effectively reduce the number of infectious virus particles
released from a infected cell.

In this paper, we consider a HIV infection model with two co-circulation pop-
ulations of target cells and periodic drug efficacy functions. The model studied is
adapted from the previous models used in [10, 24]. We improve the model in [10]
in the following few ways. First, we adopt general growth functions for the CD4+

cell and macrophage population, f1(T ), f2(T ) (see section 2 for details), instead of
fixed ones (a − bT ). Second, we also allow that the CD4+ cell and macrophage
produce different numbers of virus after infection (N1, N2). Third, the drug efficacy
functions are assumed to be periodic instead of fixed constants. Comparing to [24],
we introduce the macrophage population, by which we obtain a more realistic and
accurate model.

The organization of this paper is as follows. In section 2, we formulate the math-
ematical model, and study the existence, uniqueness and boundedness of solutions.
In section 3, we define the basic reproduction ratio, R0, and established a threshold
type result with respect to R0. Furthermore, we introduce the optimization prob-
lem of the phase shift. Exhaustive numerical simulations are performed in section 4
to support our analytical analysis, and explore the optimal phase shift numerically.

2. The model

The model we use is adapted from the model used in [10,24]:

dT1(t)

dt
= f1(T1)− (1− ηRT (t))k1V (t)T1(t),
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dT ∗1 (t)

dt
= (1− ηRT (t))k1V (t)T1(t)− δ1T ∗1 (t),

dT2(t)

dt
= f2(T2)− (1− σηRT (t))k2V (t)T2(t), (2.1)

dT ∗2 (t)

dt
= (1− σηRT (t))k2V (t)T2(t)− δ2T ∗2 (t),

dV (t)

dt
= (1− ηP (t))(δ1N1T

∗
1 (t) + δ2N2T

∗
2 (t))− γV (t).

The variables and parameters are described in Table 1. Here we use general growth
rate functions, f1(T1) and f2(T2), to describe the growth of healthy CD4+ cells and
macrophages, respectively. f1(T1) and f2(T2) are assumed to be smooth and satisfy
the next condition:

(A1) There exists Ti0 > 0 such that fi(Ti)(Ti−Ti0) < 0 for Ti 6= Ti0 and f ′i(Ti0) < 0,
i = 1, 2.

By this assumption, the class of admissible f(T ) is quite large, and includes two
most popular choices

(1) Perelson and Nelson [17]: f(T ) = a− bT + pT (1− T
Tmax

);

(2) Nowak and May [15]: f(T ) = a− bT .

As discussed in the Introduction section, we assume the drug efficacy functions,
ηRT (t), ηP (t) : R+ → [0, 1], to be periodic with common period ω. For realistic
consideration, we assume ηRT (t), ηP (t) 6≡ 0, or 1. Clinical observation shows that
the RT-inhibitors are more effective in the CD4+ cells than in macrophages. Thus,
σ ∈ [0, 1] describes this fact.

Table 1. Variables and parameters for system (2.1).

Variables and parameters Description

Dependent variables
T1 Concentration of the uninfected CD4+ cells
T ∗1 Concentration of the infected CD4+ cells
T2 Concentration of the uninfected macrophages
T ∗2 Concentration of the infected macrophages
V Concentration of the free virus particles
Parameters
f1(T1) (a1 − b1T1) Net growth rate of uninfected CD4+ cells
f2(T2) (a2 − b2T2) Net growth rate of uninfected macrophages
k1 Infection rate of uninfected CD4+ cells by virus
k2 Infection rate of uninfected macrophages by virus
δ1 Death rate of uninfected CD4+ cells
δ2 Death rate of uninfected macrophages
N1 Rate of the virus particles produced by the infected CD4+ cells
N2 Rate of the virus particles produced by the infected macrophages
γ Rate at which the virus cleared from the plasma
ηRT (t) Drug efficacy function of the RT inhibitor
ηP (t) Drug efficacy function of the P inhibitor
σ Fraction of the effectiveness of the RT inhibitors to the macrophages

Remark 2.1. Usually, different RT inhibitors and P inhibitors have different dosage
interval. Therefore, ηRT (t) and ηP (t) can have different periods, ω1 and ω2, respec-
tively. If ω1

ω2
is a rational number, we can choose ω to be the minimum multiple of ω1
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and ω2, and then regard the system as an ω-periodic system. If ω1

ω2
is an irrational

number, one cannot find a common period for ηRT (t) and ηP (t). However, such a
case is rare in reality.

Clearly, condition (A1) and the continuity of fi implies that fi(Ti0) = 0, i = 1, 2.
It then follows that E0 = (T10, 0, T20, 0, 0) is the unique infection free equilibrium
point of (2.1).

Theorem 2.1. System (2.1) has a unique and bounded solution with initial value
in R5

+. Further, the compact set

D :=
{

(T1, T
∗
1 , T2, T

∗
2 , V ) ∈ R5

+ : T1 ≤ T10, T
∗
1 ≤ A1 + T10 + 1,

T2 ≤ T20, T
∗
2 ≤ A2 + T20 + 1, V ≤ L

}
is positively invariant and attracts all positive orbits in R5

+. Here Ai > 0 satisfies
that δiAi > Si + 1 with Si = maxT≥0 fi(T ), i = 1, 2,

and L = δ1N1(A1+T10+1)+δ2N2(A2+T20+1)
γ .

Proof. We use the argument similar to that in the proof of [14, Lemma 3.1]. By
[19, Theorem5.2.1], it follows that for any (T1(0), T ∗1 (0), T2(0), T ∗2 (0), V (0)) ∈ R5

+,
system (2.1) has a unique local nonnegative solution (T1(t), T ∗1 (t), T2(t), T ∗2 (t), V (t))
through the initial value (T1(0), T ∗1 (0), T1(0), T ∗1 (0), V (0)).

Since dT1(t)
dt ≤ f1(T1), ∀t ≥ 0, we see that lim supt→∞ T1(t) ≤ T10. Then for

large t, say t > t0, we have T1(t) < T10 + 1. Let S1 = maxT≥0 f1(T ). By the first
two equations of system (2.1), we obtain that d

dt (T1(t) + T ∗1 (t)) = f1(T1)− δ1T ∗1 ≤
S1− δ1T ∗1 . Let A1 > 0 be such that δ1A1 > S1 + 1. Then as long as T1(t) +T ∗1 (t) >
A1 +T10 +1 and t > t0, we have d

dt (T1(t)+T ∗1 (t)) < −1. Clearly, there exists t1 > t0
such that T1(t)+T ∗1 (t) < A1 +T10 +1 for all t ≥ t1. Therefore, T ∗1 (t) < A1 +T10 +1
for all t ≥ t1. By similar argument for the (T2, T

∗
2 ) population, we have that: there

exists a large t2 > 0 such that lim supt→∞ T2(t) ≤ T20 and T ∗2 (t) < A2 + T20 + 1
for all t > t2, where A2 > 0 satisfies δ2A2 > S2 + 1 and S2 = maxT≥0 f2(T ). Then

we have dV (t)
dt ≤ δ1N1(A1 + T10 + 1) + δ2N2(A2 + T20 + 1) − γV < Lγ − γV for

all t ≥ max{t1, t2}, where L is defined as in the theorem. It then follows that
limt→∞ V (t) ≤ L. Thus, we conclude that the solution is ultimately bounded.
Hence, the solutions of system (2.1) exist globally on the interval [0,∞), and D is
positively invariant and attracts all positive orbits in R5

+.

3. The global dynamics

We then consider the stability of E0, and the global dynamical behavior of system
(2.1). First, we derive the basic reproduction ratio R0 for system (2.1) by applying
the next generation operator approach (see [2, 22]). The linearized system of (2.1)
at the infection free equilibrium point E0 is (we only list the equations for infected
cells and free virus particles)
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dT ∗1 (t)

dt
= (1− ηRT (t))k1T10V − δ1T ∗1 ,

dT ∗2 (t)

dt
= (1− σηRT (t))k2T20V − δ2T ∗2 ,

dV (t)

dt
= (1− ηP (t))(δ1N1T

∗
1 + δ2N2T

∗
2 )− γV.

(3.1)

Define

F (t) :=


0 0 (1− ηRT (t))k1T10

0 0 (1− σηRT (t))k2T20

N1(1− ηP (t))δ1 N2(1− ηP (t))δ2 0

 ,

and

G(t) :=


δ1 0 0

0 δ2 0

0 0 γ

 .

Let ΦA(t) and ρ(ΦA(ω)) be the monodromy matrix of the linear ω-periodic

system dx(t)
dt = A(t)x and the spectral radius of ΦA(ω), respectively. Let Y (t, s),

t ≥ s, be the evolution operator of the linear ω-periodic system

dy

dt
= −G(t)y, (3.2)

that is, for each s ∈ R, the 2× 2 matrix Y (t, s) satisfies

dY (t, s)

dt
= −G(t)Y (t, s), ∀t ≥ s, Y (s, s) = I,

where I is the 3×3 identity matrix. Thus, the monodromy matrix Φ−G(t) of system
(3.2) equals to Y (t, 0), t ≥ 0.

In view of the periodic environment, we assume that φ(s), ω-periodic in s, is
the initial distribution of infectious individuals. Then F (s)φ(s) is the rate of new
infectious produced by the infected individuals who where introduced at time s.
Given t ≥ s, Y (t, s)F (s)φ(s) gives the distribution of those infected individuals
who were newly infected at time s and remain in the infected compartments at
time t. It follows that

Ψ(t) :=

∫ t

−∞
Y (t, s)F (s)φ(s)ds =

∫ ∞
0

Y (t, t− a)F (t− a)φ(t− a)da

is the distribution of accumulative new infectious at time t produced by all those
infected individuals φ(s) introduced at time previous to t.

Let Cω be the ordered Banach space of all ω-periodic functions from R to R2,
which is equipped with the maximum norm ‖·‖ and the positive cone C+

ω := {φ ∈
Cω : φ(t) ≥ 0,∀t ∈ R}. Then we can define a linear operator L: Cω → Cω by

(Lφ)(t) =

∫ ∞
0

Y (t, t− a)F (t− a)φ(t− a)da, ∀t ∈ R, φ ∈ Cω. (3.3)
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Following [22], we call L the next generation operator and define the basic
reproduction ratio as R0 := ρ(L), the spectral radius of L.

In a special case of ηRT (t) ≡ ηRT and ηP (t) ≡ ηP , for all t ≥ 0, we obtain
F (t) ≡ F . By Van Den Driessche and Watmough [9], we have an explicit expression
for R0:

R0 = ρ(FG−1) = (1− ηP )
N1(1− ηRT )k1T10 +N2(1− σηRT )k2T20

γ
.

In the periodic case, let W (t, λ) be the monodromy matrix of the linear ω-
periodic system

dw

dt
=

(
−G(t) +

1

λ
F (t)

)
w, t ∈ R. (3.4)

with parameter λ ∈ (0,∞). Since F (t) is nonnegative and −G(t) is coopera-
tive, it follows that ρ(W (ω, λ)) is continuous and nonincreasing in λ ∈ (0,∞) and
limλ→∞ ρ(W (ω, λ)) < 1. It is easy to verify that system (2.1) satisfies assumptions
(A1)− (A7) in [22]. Thus, we have the following two results.

Lemma 3.1. ( [22, Theorem 2.1]) The following statements are valid:

(i) If ρ(W (ω, λ)) = 1 has a positive solution λ0, then λ0 is an eigenvalue of
operator L and hence R0 > 0.

(ii) If R0 > 0, then λ = R0 is the unique solution of ρ(W (ω, λ)) = 1.

(iii) R0 = 0 if and only if ρ(W (ω, λ)) < 1 for all λ > 0.

Lemma 3.2. ( [22, Theorem 2.2]) The following statements are valid:

(i) R0 = 1 if and only if ρ(ΦF−G(ω)) = 1.

(ii) R0 > 1 if and only if ρ(ΦF−G(ω)) > 1.

(iii) R0 < 1 if and only if ρ(ΦF−G(ω)) < 1.

Thus, the infection free equilibrium E0 is locally asymptotically stable if R0 < 1,
and unstable if R0 > 1.

Theorem 3.1. If the basic reproduction ratio R0 < 1, then the unique infection
free equilibrium E0 is globally asymptotically stable.

Proof. By Lemma 3.2, we know that when R0 < 1, E0 is locally asymptotically
stable. Therefore, we only need to prove the global attractivity of E0 for R0 < 1.

By Theorem 2.1, it follows that for any ε > 0, there exists a large t0 > 0 such
that Ti(t) < Ti0 + ε (i = 1, 2) when t > t0. Therefore, when t > t0, we have

dT ∗1 (t)

dt
≤ (1− ηRT (t))k1(T10 + ε)V − δ1T ∗1 ,

dT ∗2 (t)

dt
≤ (1− σηRT (t))k2(T20 + ε)V − δ2T ∗2 ,

dV (t)

dt
= (1− ηP (t))(δ1N1T

∗
1 + δ2N2T

∗
2 )− γV.

Considering the following comparison system

dh(t)

dt
= (F (t)−G(t) +Mε)h(t). (3.5)
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where

Mε =


0 0 (1− ηRT (t))k1ε

0 0 (1− σηRT (t))k2ε

0 0 0

 .

By Lemma 3.2, we know that R0 < 1 if and only if ρ(ΦF−G(ω)) < 1. We can choose
ε small enough such that ρ(ΦF−G+Mε(ω)) < 1.

By [26, Lemma 2.1], it follows that there exists a positive, ω-periodic function
h̄(t) such that h(t) = eθth̄(t) is a solution of system (3.5), where θ = 1

ω ln ρ(ΦF−G+Mε

(ω)). Since ρ(ΦF−G+Mε
(ω)) < 1, θ is a negative constant. Therefore, we have

h(t) → 0 as t → ∞. For any nonnegative initial value (T ∗1 (0), T ∗2 (0), V (0))T for
system (2.1), there is a sufficiently large M∗ > 0, such that (T ∗1 (0), T ∗2 (0), V (0))T ≤
M∗h̄(0) holds. By the comparison principle [20, Theorem B.1], we have (T ∗1 (t), T ∗2 (t),
V (t))T ≤ M∗h(t), for all t ≥ 0, where M∗h(t) is also a solution for system (3.5).
Therefore, we get T ∗1 (t)→ 0, T ∗2 (t)→ 0 and V (t)→ 0 as t→∞. By asymptotically
autonomous semiflows [21], it then follows that Ti(t)→ Ti0, i = 1, 2 as t→∞.

Define

X0 :=
{

(T1, T
∗
1 , T2, T

∗
2 , V ) ∈ R5

+ : T ∗1 > 0, T ∗2 > 0, V > 0
}
, ∂X0 := R5

+ \X0.

Let P : R5
+ → R5

+ be the Poincaré map associated with system (2.1), that is

P (x0) = u(ω, x0), ∀x0 ∈ R5
+,

where u(t, x0) is the unique solution of system (2.1) with initial value u(0, x0) = x0.
It is easy to see that

Pm(x0) = u(mω, x0), ∀m > 0.

Lemma 3.3. If R0 > 1, then there exists a α∗ > 0, such that for any x0 ∈ X0, we
have

lim sup
m→∞

d(Pm(x0), E0) ≥ α∗. (3.6)

Proof. Since R0 > 1, by Lemma 3.2, we have ρ(ΦF−G(ω)) > 1. Then we can
choose ε > 0 small enough such that ρ(ΦF−G−Mε

(ω)) > 1.
Note that the system, for i = 1, or i = 2,

T̃i
′
(t) = fi(T̃i)− αkiT̃i, (3.7)

admits a unique globally asymptotically stable positive equilibrium point, denoted
as T̃i0(α), when α is sufficiently small, and T̃i0(α) → Ti0 as α → 0. We then fix α
small enough such that T̃i0(α) > Ti0 − ε. Denote T̃i(t, α) be solution of (3.7) with
initial value T̃i(0).

By the continuity of solutions with respect to initial condition, for α > 0, there
exists a α∗ = α∗(α) such that for all x0 ∈ X0 with ‖x0 − E0‖ ≤ α∗, there holds
‖u(t, x0)− u(t, E0)‖ = ‖u(t, x0)− E0‖ < α, ∀t ∈ [0, ω).

Assume, by contradiction, that lim supm→∞ d(Pm(x0), E0) < α∗ for some x0 ∈
X0. Without loss of generality, we assume that d(Pm(x0), E0) < α∗, ∀m ≥ 0. It
then follows that

‖u(t, Pm(x0))− u(t, E0)‖ < α, ∀t ∈ [0, ω], ∀m ≥ 0.
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For any t ≥ 0, let t = mω + t′, where t′ ∈ [0, ω), m is the largest integer less
than or equal to t/ω. Therefore we have

‖u(t, x0 − u(t, E0)‖
= ‖u(t′, Pm(x0)− u(t′, E0)‖ < α, ∀t ≥ 0.

Note that (T1(t), T ∗1 (t), T2(t), T ∗2 (t), V (t)) = u(t, x0). It then follows that T ∗1 (t) <
α, T ∗2 (t) < α, V (t) < α, ∀t ≥ 0. From the equations of T1(t) and T2(t) in system
(2.1), we have

T ′1(t) ≥ f1(T1)− α(1− ηRT (t))k1T1 ≥ f1(T1)− αk1T1,

T ′2(t) ≥ f2(T2)− α(1− σηRT (t))k2T2 ≥ f2(T2)− αk2T2.

Since T̃i0(α) is globally asymptotically stable for system (3.7) and T̃i0(α) >
Ti0−ε, we obtain for T ∗1 , T ∗2 and V populations of system (2.1) that, for sufficiently
large t,

T ∗′1 (t) ≥ (1− ηRT (t))k1(T10 − ε)V − δ1T ∗1 ,
T ∗′2 (t) ≥ (1− σηRT (t))k2(T20 − ε)V − δ2T ∗2 ,
V ′(t) = (1− ηP (t))(δ1N1T

∗
1 + δ2N2T

∗
2 )− γV.

(3.8)

Next we consider the following system

T̃ ∗′1 (t) = (1− ηRT (t))k1(T10 − ε)V − δ1T̃ ∗1 ,
T̃ ∗′2 (t) = (1− σηRT (t))k2(T20 − ε)V − δ2T̃ ∗2 ,
Ṽ ′(t) = (1− ηP (t))(δ1N1T̃

∗
1 + δ2N2T̃

∗
2 )− γṼ .

(3.9)

By [26, Lemma 2.1], we know that there exists a positive ω-periodic function

(T̄1
∗
(t), T̄2

∗
(t), V̄ (t))T such that (T̃1

∗
(t), T̃2

∗
(t), Ṽ (t))T = eζt(T̄1

∗
(t), T̄2

∗
(t), V̄ (t))T

is a solution of system (3.9), where ζ = 1
ω ln ρ(ΦF−G−Mε

(ω)). Since ρ(ΦF−G−Mε
(ω))

> 1, ζ is a positive constant. Let t = nω and n be nonnegative integer, then we get

(T̃1
∗
(nω), T̃2

∗
(nω), Ṽ (nω))T = eζnω(T̄1

∗
(t), T̄2

∗
(t), V̄ (t))T → (∞,∞)

as n → ∞, since ωζ > 0 and (T̄1
∗
(t), T̄2

∗
(t), V̄ (t))T > 0. For any nonnegative

initial condition (T ∗1 (0), T ∗2 (0), V (0))T of system (3.8), there exists a sufficiently
small m∗ > 0 such that (T ∗1 (0), T ∗2 (0), V (0))T ≥ m∗(T̄1

∗
(0), T̄2

∗
(0), V̄ (0))T . By the

comparison principle [20, Theorem B.1], we have

(T ∗1 (t), T ∗2 (t), V (t))T ≥ m∗(T̃1
∗
(t), T̃2

∗
(t), Ṽ (t))T for all t > 0.

where m∗(T̃1
∗
(t), T̃2

∗
(t), Ṽ (t))T is also a solution for (3.9). Thus we have T ∗1 (nω)→

∞, T ∗2 (nω)→∞ and V (nω)→∞ as n→∞, which is a contradiction.

Theorem 3.2. When R0>1, there exists a ξ>0 such that any solution (T1(t), T ∗1 (t),
T2(t), T ∗2 (t), V (t)) of system (2.1) with initial value (T1(0), T ∗1 (0), T2(0), T ∗2 (0),
V (0)) ∈ X0 satisfies

lim inf
t→∞

(T ∗1 (t), T ∗2 (t), V (t)) > (ξ, ξ, ξ).

and system(2.1) admits at least one positive periodic solution.
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Proof. By Theorem 2.1, the discrete-time system {Pm}m≥0 admits a global at-
tractor in R5

+, and R5
+ is positively invariant. By the second and third equations of

system (2.1), we have

dT ∗1 (t)

dt
≥ −δ1T ∗1 ,

dT ∗2 (t)

dt
≥ −δ2T ∗2 ,

dV (t)

dt
≥ −γV.

By the comparison principle, we get that T ∗1 (t) > 0, T ∗2 (t) > 0, and V (t) > 0, ∀t ≥ 0
if T ∗1 (0) > 0, T ∗2 (0) > 0, V (0) > 0, which implies that X0 is positively invariant.
Now we prove that {Pm}m≥0 is uniformly persistent with respect to (X0, ∂X0).

From the first and third equations of (2.1), we get

dTi(t)

dt
≥ −kiV (t)Ti, i = 1, 2. (3.10)

By the comparison principal, we get Ti(t) > 0 for all t ≥ 0 if Ti(0) > 0. When
Ti(0) = 0, we have

dTi(0)

dt
= fi(0) > 0,

then we have Ti(t) > 0 for 0 < t� 1, then by (3.10) and the comparison principle,
we get that when Ti(0) = 0, T (t) > 0 for t > 0. Then we have for all initial value
in X0, that

Ti(t) > 0, ∀t > 0, i = 1, 2. (3.11)

Define

M∂ :=
{
x0 ∈ ∂X0 : Pm(x0) ∈ ∂X0, ∀m ≥ 0

}
.

We now show that

M∂ :=
{

(T1, 0, T2, 0, 0) : T1 ≥ 0, T2 ≥ 0
}
.

Clearly
{

(T1, 0, T2, 0, 0) : T1 ≥ 0, T2 ≥ 0
}
⊂ M∂ . It suffices to prove that for any

(T1(0), T ∗1 (0), T2(0), T ∗2 (0), V (0)) ∈M∂ , we have T ∗1 (mω) = T ∗2 (mω) = V (mω) = 0,
∀m ≥ 0. If it is not true, for some initial value (T1(0), T ∗1 (0), T2(0), T ∗2 (0), V (0)) ∈
M∂ , there exists an m1 ≥ 0 such that (T ∗1 (m1ω), T ∗2 (m1ω), V (m1ω)) > 0. If
(T ∗1 (m1ω), T ∗2 (m1ω), V (m1ω)) � 0, by the positive invariance of X0, we have
(T ∗1 (t), T ∗2 (t), V (t)) � 0 for any t > m1ω, which is a contradiction. Therefore,
we only need to consider the following six cases:

Case 1: T ∗1 (m1ω) = 0, T ∗2 (m1ω) > 0 and V (m1ω) > 0.
According to the above analysis and T ∗2 (m1ω) > 0, V (m1ω) > 0, we obtain that

T ∗2 (t), V (t) > 0, for all t ≥ m1ω. Therefore, we obtain

T ∗′1 (m1ω) = (1− ηRT (m1ω))k1V (m1ω)− σ1T
∗
1 (m1ω)

= (1− ηRT (m1ω))k1V (m1ω).
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Table 2. Six cases such that (T∗
1 (m1ω), T∗

2 (m1ω), V (m1ω)) > 0.

Cases 1 2 3 4 5 6

T ∗1 (m1ω) 0 + + 0 0 +
T ∗2 (m1ω) + 0 + 0 + 0
V (m1ω) + + 0 + 0 0

If ηRT (m1ω) 6= 1, T ∗′1 (m1ω) > 0 for t > m1ω + ε with ε sufficiently small. Then by
the positively invariance of X0, we have T ∗′1 (m1ω) > 0 for all t > m1ω.

If ηRT (m1ω) = 1, thus, T ∗′1 (m1ω) = 0. By the assumption of ηRT (t) 6= 1 for all
t ∈ [0, ω), define t∗ as t∗ = inf{t ∈ [0, ω), ηRT (t + m1ω) 6= 1}. Therefore, we have
T ∗1 (m1ω) > 0 for t > t∗ +m1ω + ε for some ε sufficiently small.

Case 5: T ∗1 (m1ω) = 0, T ∗2 (m1ω) > 0 and V (m1ω) = 0.
In this case, we have for the free virus population that

V ′(m1ω) = N(1− ηP (m1ω))(δ1T
∗
1 (m1ω) + δ2T

∗
2 (m1ω))− γV (m1ω)

= N(1− ηP (m1ω))δ2T
∗
2 (m1ω)

If ηP (m1ω) 6= 1, V ∗′(m1ω) > 0 for t > m1ω + ε with ε sufficiently small. Then by
the positively invariance of X0, we have V ∗′(m1ω) > 0 for all t > m1ω.

If ηP (m1ω) = 1, by similar analysis as for case 1, we have that V ∗′(m1ω) > 0
for some t > m1ω + t̄.

The analysis for case 2, 3, 4, and 6 are similar. Thus, we have that (T1(t), T ∗1 (t),
T2(t), T ∗2 (t), V (t) finally enters X0 with an initial condition in M∂ , which is a con-
tradiction. Thus, we conclude that M∂ :=

{
(T1, 0, T2, 0, 0) : T1 ≥ 0, T2 ≥ 0

}
.

Clearly, there is exactly one fixed point E0 of P in M∂ . According to Lemma
3.3, we obtain that E0 is an isolated invariant set, and W s(E0) ∩ X0 = ∅. Note
that every orbit in M∂ approaches to E0, and E0 is acyclic in M∂ . [27, Remark
1.3.1] implies that P is uniformly persistent with respect to (X0, ∂X0). By [27,
Theorem 3.1.1], it follows that the solutions of system (2.1) are uniformly persis-
tent with respect to (X0, ∂X0), which means that there exists a ξ > 0 such that
any solution (T1(t), T ∗1 (t), T2(t), T ∗2 (t), V (t)) of system (2.1) with initial condition
(T1(0), T ∗1 (0), T2(0), T ∗2 (0), V (0)) ∈ X0 satisfies

lim inf
t→∞

(T ∗1 (t), T ∗2 (t), V (t)) > (ξ, ξ, ξ).

Furthermore, by the coexistence theorem [27, Theorem 1.3.6], we have that P has a
fixed point, denoted as E∗ = (T1∗(0), T ∗1∗(0), T2∗(0), T ∗2∗(0), V∗(0)) ∈ X0. Obviously,
we have Ti∗(0) ≥ 0, T ∗i∗(0) > 0 and V∗(0) > 0, i = 1, 2. We then prove that the ω-
periodic solution for system (2.1), denoted as (T1∗(t), T

∗
1∗(t), T2∗(t), T

∗
2∗(t), V∗(t)),

which corresponds to E∗, is positive. It is suffice to prove that Ti∗(t) > 0 for all
t > 0 by the positively invariance of X0. By the periodicity of Ti∗(t), we only need
to prove that Ti∗(t̄) > 0 for some t̄ ∈ [0, ω). If it is not true, we have Ti∗(t) ≡ 0 for
all t ≥ 0. By the equations for Ti(t), we obtain that

0 = T ′i∗ = fi(0) > 0,

which is a contradiction. Thus, (T1∗(t), T
∗
1∗(t), T2∗(t), T

∗
2∗(t), V∗(t)) is a positive

ω-periodic solution of system (2.1).
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By Theorems 3.1 and 3.2, we conclude that to determine whether the viral
persists in an individual, we only need to determine the value of R0. Thus, R0

serves as a threshold parameter. Zhao [28] gives a detailed algorithm for numerical
computation of R0, which is used in the numerical studies in section 4.

All the previous analysis is with the assumption that the two different kinds
of drugs are taken at the the same time every day. Browne and Pilyugin [4], and
Wang and Zhao [24] analyzed the phase shift problem, and showed that shifting
the phase of the drug efficacy functions, which corresponds to changing daily drug
administration time, can critically effect the stability of infectious-free steady state.
Inspired by their work, we then consider the phase shift problem with ψ1, ψ2 ∈ [0, ω):

dT1(t)

dt
= f1(T1)− (1− ηRT (t− ψ1))k1V T1,

dT ∗1 (t)

dt
= (1− ηRT (t− ψ1))k1V T1 − δ1T ∗1 ,

dT2(t)

dt
= f2(T2)− (1− σηRT (t− ψ1))k2V T2, (3.12)

dT ∗2 (t)

dt
= (1− σηRT (t− ψ1))k2V T2 − δ2T ∗2 ,

dV (t)

dt
= (1− ηP (t− ψ2))(δ1N1T

∗
1 + δ2N2T

∗
2 )− γV.

Therefore, the linearized system of system (3.12) at E0 are (we only list the equa-
tions for the infected cells and free virus particles):

x′ = B(t, ψ1, ψ2)x, (3.13)

where x = (T ∗1 , T
∗
2 , V )T , and

B(t, ψ1, ψ2)=


−δ1 0 (1−ηRT (t− ψ1))k1T10

0 −δ2 (1− σηRT (t−ψ1))k2T20

N1(1−ηP (t−ψ2))δ1 N2(1−ηP (t−ψ2))δ2 −γ

 .

Define

F (t, ψ1, ψ2) =


0 0 (1− ηRT (t− ψ1))k1T10

0 0 (1−σηRT (t−ψ1))k2T20

N1(1−ηP (t−ψ2))δ1 N2(1−ηP (t−ψ2))δ2 0

 .

and

G(t, ψ1, ψ2) = G(t) =


δ1 0 0

0 δ2 0

0 0 γ

 .

By similar argument for system (3.1), we define the basic reproduction ratio for
system (3.13):

R0(ψ1, ψ2) := ρ(Lψ1,ψ2
)
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where

(Lψ1,ψ2
φ)(t) =

∫ ∞
0

Y (t, t− a)F (t− a, ψ1, ψ2)φ(t− a)da, ∀t ∈ R, φ ∈ Cω.

By [24, Lemma 2.4], we have the next similar result.

Lemma 3.4. R0(ψ1, ψ2) = R0(0, ψ), where ψ = (ψ2 −ψ1) modulo ω, that is, ψ is
determined by ψ2 − ψ1 = mω + ψ, ψ ∈ [0, ω), m ∈ Z.

Proof. The proof is similar to the proof for [24, Lemma 2.4]. Therefore, we omit
the proof here.

For simplicity, denote R0(0, ψ) = R0(ψ). We observe that the map ψ → R0(ψ)
is a ω-periodic function in R. Therefore, instead of considering the optimization
problem of finding optimal ψ1 and ψ2 for ηRT (t) and ηP (t), we only need to find the
optimal phase shift ψ for ηP (t − ψ). Therefore, we only need to consider the time
difference between administrated dosages of the RT inhibitors and P inhibitors.

4. Case studies

In this section, we numerically study the effect of phase shift to the basic repro-
duction ratio, R0, and then determine its effect to the viral states in an individual.
To start with a simple case of drug efficacy functions and also as a comparison to
the numerical studies in [4] and [24], we choose the drug efficacy function to be
of the bang-bang type with same duration of activation, and then with different
efficacy levels and different durations of activity. Then using the numerical fitting
results in [24], we simulate the case with drug efficacy functions based on actual
pharmocokinetic models.

4.1. Drug efficacies of the bang-bang type

As in [4] and [24], we first choose ηRT (t), ηP (t) : R→ [0, 1) as following

ηRT (t) =

 eRT , if t ∈ [0, 1
2 ],

0 , if t ∈ ( 1
2 , 1)

, ηP (t) =

 eP , if t ∈ [0, 1
2 ],

0 , if t ∈ ( 1
2 , 1).

where eRT , eP ∈ [0, 1] are fixed constants. Therefore, we have ω = 1(day), and the
RT-inhibitor and P-inhibitor are active with efficacy eRT and eP , respectively, for
the first 12 hours of a day, and 0 for the next 12 hours.

System (2.1) contains numerous parameters that must be assigned before nu-
merical computation. In order to compare the numerical results with the ones did
in [24] which studied the interaction of HIV infection and the CD4+ cells, we apply
two sets of parameters here (Table 3). In parameter set I, the parameters for the
CD4+ cell population are the same as in [4, 24]. The parameter set II are extract
from the parameter values as in [?, 3, 5]. Note that fi(Ti) = ai − biTi, i = 1, 2.

We first study the relation between R0 and the drug efficacy level, eRT , and
eP . Figure 1 shows the plot of R0 as a function of e for both parameter sets,
where e = eRT = eP : the red solid curve describes the in-phase case (ψ = 0),
while the blue dashed curve is for the out of phase case (ψ = 0.5). Remember
that the infection free equilibrium E0 is globally asymptotically stable if R0 < 1
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Table 3. Two sets of parameter values used for simulations of system (2.1).

Parameter Value for parameter set I Value for parameter set II Units

a1 10000 10000 cells/mL·day
b1 0.01 0.01 1/day
δ1 1 0.7 1/day
k1 2.4 × 10−8 8.0×10−7 mL/virious·day
a2 31.98 31.98 cells/mL·day
b2 0.01 0.01 1/day
σ 0.34 (∈ [0, 1]) 0.34 (∈ [0, 1]) —
δ2 0.7 0.7 1/day
k2 10000 10000 mL/virious·day
N1 3000 100 virions/cell
N2 100 100 virions/cell
γ 23 13 1/day

and unstable if R0 > 1. Thus, for parameter set I, the in-phase treatment cannot
clear the infection, while the out of phase treatment can clear the infection when
e > 0.89 (approximately). Notice that, Figure 1 in [24] showed that the out of phase
treatment can clear the infection when e > 0.7 (approximately) without considering
the macrophage population. Therefore, we conclude that, it may underestimate the
value of R0, thus, underestimate the level of infection if the macrophage population
is not considered. For parameter set II, neither the in-phase and out of phase
treatment can clear the infection from an individual’s system. However, the out
of phase treatment greatly reduces the value of R0, which means that it can slow
down the process of infection.

Figures 2, 3, 4, and 5 show the 3D plot of R0 as a function of eRT and eP for
both parameter sets. Comparing the in-phase plot and the out of phase plot, we
further conclude that the phase shift helps clear the infection out.
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Figure 1. Basic reproduction ratio R0 vs. efficacy for in-phase (red solid curve) and out of phase
treatments (blue dashed curve). (a) Parameter set I; (b) Parameter set II

To better understand the relation of R0 and ψ, we then plot R0 as a function of
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Figure 2. Basic reproduction ratio R0 vs. eRT and eP with parameter set I: in-phase treatment
(ψ = 0): two different views

0
0.2

0.4
0.6

0.8
1

0
0.2

0.4
0.6

0.8
1

0.8

1

1.2

1.4

1.6

1.8

2

2.2

e
RT

 (drug efficacy for RT−inhibitor)
e

P
 (drug efficacy for P−inhibitor)

R
0
 (

b
a
s
ic

 r
e
p
ro

d
u
c
ti
o
n
 r

a
ti
o
)

(a)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0

0.5

1

0.8

1

1.2

1.4

1.6

1.8

2

2.2

e
P
 (drug efficacy level for P−inhibitor)

e
RT

 (drug efficacy level for RT−inhibitor)

R
0
 (

b
a

s
ic

 r
e

p
ro

d
u

c
ti
o

n
 r

a
ti
o

)

(b)

Figure 3. Basic reproduction ratio R0 vs. eRT and eP with parameter set I: out of phase treatment
(ψ = 0.5): two different views

ψ with fixed eRT and eP (see Figure 6). Since R0(ψ) is a ω-periodic (here ω = 1)
function of ψ, we only plot one period. The blue solid curve in Figure 6 depicts
the case when eRT = 0.9 and eP = 0.5, while the red dot dashed curve is for
the case when eRT = eP = 0.85. For both parameter sets, we observe that the
minimum of R0 occurs at ψ ≈ 0.45 which corresponds to the optimal phase shift.
This optimal phase shift is exactly the same as in [24]. However, for parameter set
I, the basic reproduction ratio R0 is less than 1 when ψ = ψ∗ with no consideration
of the macrophage population, and greater than 1 for any ψ when the macrophage
population is considered.

We further explore the case with the drug efficacy function of bang-bang type
with different drug efficacy level and different duration of activation. ηRT (t) and
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Figure 4. Basic reproduction ratio R0 vs. eRT and eP with parameter set II: in-phase treatment
(ψ = 0): two different views
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Figure 5. Basic reproduction ratio R0 vs. eRT and eP with parameter set II: out of phase treatment
(ψ = 0.5): two different views

ηP (t) then have the next form:

ηRT (t) =

 eRT , if t ∈ [0, pRT ],

0 , if t ∈ (pRT , ω)
, ηP (t) =

 eP , if t ∈ [0, pP ],

0 , if t ∈ (pP , ω).

Without loss of generality, we assume that pRT < pP . By similar arguments as in
the proof of [?, Theorem 3.1], we have the following result.

Theorem 4.1. R0 is monotone decreasing in each of the four arguments: eRT , eP ,
pRT and pP .
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Figure 6. Basic reproduction ratio R0 vs. phase difference ψ. (a) Parameter set I; (b) Parameter set
II
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Figure 7. Basic reproduction ratio R0 as a function of drug efficacy e and duration of activity p with
parameter set I. The horizontal surface corresponds to R0 = 1. (a) In-phase case (ψ = 0); (b) Out of
phase case (ψ = 0.5)

Figures 7 and 8 evaluate R0 as a function of e and p, where we assume that
eRT = eP = e ∈ [0, 1], and pRT = pP = p ∈ [0, 1]. Note that for both of the
parameter sets, the region for e and p such that R0 > 1 in the out of phase case is
greater than that in the in-phase case. This further supports our conclusion that
the phase shift can critically affect the stability of the infection free steady state.

Note that the bang-bang type drug efficacy function may not be realistic. How-
ever, it is possible to improve the bang-bang type to a piecewise constant function
(for example, see [4]). Moreover, every continuous function can be approximated by
a piecewise constant function. Thus, the numerical study of bang-bang type drug
efficacy function is necessary, and important.
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Figure 8. Basic reproduction ratio R0 as a function of drug efficacy e and duration of activity p with
parameter set II. The horizontal surface corresponds to R0 = 1. (a) In-phase case (ψ = 0); (b) Out of
phase case (ψ = 0.5)

4.2. Drug efficacy functions based on an actual pharmacoki-
netic model

After dosage, the drug concentration vary continuously due to drug absorption,
distinction and metabolism of a single individual [18,24]. [7] developed a two com-
partmental parmacokinetic model to determine the efficacy of two drugs: tenofovir
DF (a RT-inhibitor) and retonovir (a P-inhibitor), and all the inside parameter val-
ues are based on clinic data and extensive experiments. [24] then simulated the two
compartment model and gave an explicit expression for the drug efficacy function
for ηRT (t). In this section, we use their resulted ηP (t) and ηRT (t) for simulation.

First, for completeness of this paper, we only give a brief overview of the con-
struction of ηP (t) and ηRT (t). Please refer to [7] for detailed explanation of the
construction and parameter values. [7] used the simplest functionality to estimate
the instantaneous drug efficacy:

ηX(t) =
CX(t)

IC50X + CX(t)
, (4.1)

where X is either RT or P , IC50 is the concentration at which the drug is 50%
efficacious, and CX(t) is the intracellular concentration of the corresponding drug.
When multiply doses of a drug are administrated continuously, the concentration
of the drug in the blood is given by

Cb(t) =
FDka

Vd(ke − ka)

e−ket

ekaId − 1
[1− e(ke−ka)t(1− eNdkaId)

+
(ekeId − ekaId)(e(Nd−1)keId − 1)

ekeId − 1
− e((Nd−1)ke+ka)Id ], (4.2)

For retonovir, the intracellular drug concentration CP (t) may be written as

CP (t) = (1− fb)HCb(t), (4.3)
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Therefore, we have

ηP (t) =
CP (t)

9× 10−7 + CP (t)
(4.4)

with IC50P = 9× 10−7.
The RT inhibitors are transported in and out the compartment in a much more

completed way, [24] simulate the model established in [7], and explicitly express the
intracellular concentration of tenofovir DF as

f(t) = 17.23 + 2.251 cos(3.041s)− 30.15 sin(3.041s)− 21.58 cos(2× 3.041s)

−3.178 sin(2× 3.041s)− 2.878 cos(3× 3.041s) + 11.92 sin(3× 3.041s)

+4.778 cos(4× 3.041s) + 1.71 sin(4× 3.041s) + 0.6227 cos(5× 3.041s)

−1.246 sin(5× 3.041s)− 0.1609 cos(6× 3.041s)− 0.1087 sin(6× 3.041s).

where s = mod(t, 1). Therefore, we have

ηRT (t) =
f(t)

0.54 + f(t)
(4.5)

with IC50RT = 0.54.
Figure 9 plot R0 as a function of the phase shift ψ with ηRT (t) and ηP (t) as in

(4.5) and (4.4), respectively. From the figure, we see that R0 varies in a small range
for all ψ (≈ [1.500, 1.506] for parameter set I, and ≈ [2.062, 2.068] for parameter set
II). Thus, the infection cannot be cleared for both parameter sets, and the phase
shift does not have a significant influence on the treatment outcome. However, there
exists an optimal phase shift (≈ 0.25 for both parameter sets).

0 0.5 1 1.5 2 2.5 3
1.5

1.501

1.502

1.503

1.504

1.505

1.506

1.507

ψ (phase shift)

R
0
 (

b
a

s
ic

 r
e

p
ro

d
u

c
ti
o

n
 r

a
ti
o

)

(a)

0 0.5 1 1.5 2 2.5 3
2.061

2.062

2.063

2.064

2.065

2.066

2.067

2.068

2.069

ψ (phase difference)

R
0
 (

b
a

s
ic

 r
e

p
ro

d
u

c
ti
o

n
 r

a
ti
o

)

(b)

Figure 9. The basic reproduction ratio R0 vs. phase difference ψ. (a) Parameter set I; (b) Parameter
set II

5. Conclusions and discussion

In this paper, we considered a HIV infection model with two co-circulation popu-
lations of target cells, and analyzed how periodic forcing of drug efficacies affected
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the infection free equilibrium point. Mathematically, we calculated the basic re-
production ratio, R0, and established a threshold type result in terms of R0: the
infection will always be cleared out if R0 < 1, and persist if R0 > 1. Therefore, by
controlling the basic reproduction ratio, we can achieve the goal of control the HIV
infection.

We further investigated the treatment time scale by varying the phase shift ψ
in ηP (ψ), which corresponds to change the time interval between daily dosages of
the RT inhibitors and P inhibitors. Unlike other parameters, phase shift does not
depend on, or affect the efficacies of the drugs. Therefore, with no consideration
of the side effects of the medication, the treatment with the optimal phase shift
gave the best treatment without increasing the cost. In the numerical simulation,
we considered two different sets of parameter values, and two types of drug efficacy
functions. Both the bang-bang type control and drug efficacy functions based on the
actual pharmacokinetic models showed that the phase shift greatly reduced the value
of R0, thus, affected critically on the clearance of the infection. Although we can
not calculate optimal phase shift, the numerical simulation gave an approximation.
We also observe that for a same type of drug efficacies, the optimal phase shift is
almost the same for both parameter values. Therefore, we may assume that the
optimal phase shift is only related to the drug efficacies, but further investigation
is needed for rigorous proof.

Comparing the simulation results of parameter set I to the simulation results
in [24], we found that introducing the macrophage population lead to a increasing
of the value of R0. Macrophages played a key role in several critical aspects of HIV
infection: they are the first cells infected by HIV, and perhaps the main sources
of HIV production when CD4+ cells become depleted [6]. Thus, not considering
the macrophages resulted in underestimating the production of HIV in the system
when the concentration of CD4+ cells was relatively low, which agreed with the
conclusion of the comparison of the numerical results.
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