Existence and Multiplicity of Positive Solutions for Fractional Differential Equation with Parameter*

Xiaoling Han ${ }^{1, \dagger}$, Shaolin Zhou ${ }^{1}$ and Ruilian An ${ }^{1}$

Abstract

In this paper, by using the fixed point theorem for a cone map, we study the existence and multiplicity of positive solutions for a class of fractional differential equation with parameter.

Keywords Fractional differential equation, Green function, Cone.
MSC(2010) 34A08, 34B18.

1. Introduction

Fractional calculus has played a significant role in engineering, science, economy, and other fields, during the last few decades. There has been a significant development in ordinary and partial differential equations involving fractional derivatives. There are many important results about the existence of solutions for fractional differential equation, see $[1,2,5-8,10,11]$ for more details.

In [1], Bai and Lü considered the positive solutions for boundary value problem of fractional order differential equation

$$
\left\{\begin{array}{l}
D_{0+}^{\alpha} u(t)+f(t, u(t))=0, t \in(0,1) \\
u(0)=0, u(1)=0
\end{array}\right.
$$

where $1<\alpha \leq 2, f:[0,1] \times[0,+\infty) \rightarrow[0,+\infty)$ is continuous.
In this paper, under different growth conditions of f, we obtain the existence and multiplicity of positive solutions for boundary value problem of fractional differential equation with parameter

$$
\left\{\begin{array}{l}
D_{0+}^{\alpha} u(t)+\lambda f(t, u(t))=0, t \in(0,1) \tag{1.1}\\
u(0)=0, u(1)=0
\end{array}\right.
$$

where $1<\alpha \leq 2, f:[0,1] \times[0,+\infty) \rightarrow[0,+\infty)$ is continuous, $\lambda>0$ is a parameter.
Remark 1.1. When $\alpha=2$, problem (1.1) is reduced to the problem of paper [4].

We make the following hypotheses:

[^0](A) $f(t, u):[0,1] \times[0,+\infty) \rightarrow[0,+\infty)$ is continuous and there exists $g \in$ $C((0,+\infty),(0,+\infty)), q_{1}, q_{2} \in C((0,1),(0,+\infty))$ such that $q_{1}(t) g(y) \leq f\left(t, t^{\alpha-2} y\right) \leq$ $q_{2}(t) g(y), t \in[0,1], y \in[0,+\infty)$.

For the convenience, we take some notations. Let

$$
g_{0}=\lim _{y \rightarrow 0^{+}} \frac{g(y)}{y}, \quad \quad g_{\infty}=\lim _{y \rightarrow+\infty} \frac{g(y)}{y}
$$

$i_{0}=$ numbers of zeros in the set $\left\{g_{0}, g_{\infty}\right\} ; \quad i_{\infty}=$ numbers of infinities in the set $\left\{g_{0}, g_{\infty}\right\}$.

$$
M(p)=\max _{0 \leq y \leq p}\{g(y)\}, \quad m(p)=\min _{\frac{(\alpha-1) p}{16} \leq y \leq p}\{g(y)\}
$$

The tool theorem is following:
Theorem 1.1. Let E be a Banach space, $K \subset E$ is a cone, Ω_{1}, Ω_{2} are bounded open subsets of $E, 0 \in \Omega_{1}, \bar{\Omega}_{1} \subset \Omega_{2}$, suppose that $A: K \bigcap\left(\bar{\Omega}_{2} \backslash \Omega_{1}\right) \rightarrow K$ is completely continuous and satisfies :
(i) $\|A x\| \leq\|x\|, x \in K \bigcap \partial \Omega_{1}$, and $\|A x\| \geq\|x\|, x \in K \bigcap \partial \Omega_{2}$; or
(ii) $\|A x\| \geq\|x\|, x \in K \bigcap \partial \Omega_{1}$, and $\|A x\| \leq\|x\|, x \in K \bigcap \partial \Omega_{2}$;

Then A has a fixed point in $K \bigcap\left(\bar{\Omega}_{2} \backslash \Omega_{1}\right)$.
Definition 1.1. We call $D_{0+}^{\alpha} f(x)=\frac{1}{\Gamma(n-\alpha)}\left(\frac{d}{d x}\right)^{n} \int_{0}^{x} \frac{f(t)}{(x-t)^{\alpha-n+1}} d t, \alpha>0, n=[\alpha]+$ 1 is the Riemann-Liouville fractional derivative of order $\alpha .[\alpha]$ denotes the integer part of number α.
Definition 1.2. We call $I_{0+}^{\alpha} f(x)=\frac{1}{\Gamma(\alpha)} \int_{0}^{x}(x-t)^{\alpha-1} f(t) d t, x>0, \alpha>0$ is Riemann-Liouville fractional integral of order α.

2. Preliminaries

Lemma 2.1 (Lemma 2.3, [1]). The solutions of problem

$$
\left\{\begin{array}{l}
D_{0+}^{\alpha} u(t)+\lambda f(t, u(t))=0, t \in(0,1) \\
u(0)=0, u(1)=0
\end{array}\right.
$$

is equivalent to the solutions of the integral equation

$$
\begin{equation*}
u(t)=\lambda \int_{0}^{1} G(t, s) f(s, u(s)) d s \tag{2.1}
\end{equation*}
$$

where

$$
G(t, s)= \begin{cases}\frac{[t(1-s)]^{\alpha-1}-(t-s)^{\alpha-1}}{\Gamma(\alpha)}, & 0 \leq s \leq t \leq 1 \\ \frac{[t(1-s)]^{\alpha-1}}{\Gamma(\alpha)}, & 0 \leq t \leq s \leq 1\end{cases}
$$

Lemma 2.2 (Proposition 1, [5]). The Green function $G(t, s)$ has the following properties:
(i) $G(t, s) \in C([0,1] \times[0,1])$ and $G(t, s)>0, \forall t, s \in(0,1)$;
(ii) There exists s positive function $\gamma \in C(0,1)$ such that

$$
\min _{\frac{1}{4} \leq t \leq \frac{3}{4}} G(t, s) \geq \gamma(s) \max _{0 \leq t \leq 1} G(t, s) \geq \gamma(s) G(s, s), s \in(0,1)
$$

Lemma 2.3 (Lemma 2.3, [5]). The Green function $G(t, s)$ satisfies

$$
\frac{\alpha-1}{\Gamma(\alpha)} t^{\alpha-1}(1-t)(1-s)^{\alpha-1} \leq G(t, s) \leq \frac{1}{\Gamma(\alpha)} t^{\alpha-1}(1-t)(1-s)^{\alpha-2}, t, s \in(0,1)
$$

Let $G^{*}(t, s):=t^{2-\alpha} G(t, s)$, then

$$
\frac{\alpha-1}{\Gamma(\alpha)} t(1-t) s(1-s)^{\alpha-1} \leq G^{*}(t, s) \leq \frac{1}{\Gamma(\alpha)} s(1-s)^{\alpha-1}, t, s \in(0,1)
$$

Define

$$
K:=\{y \in C[0,1] \mid y(t) \geq 0, y(t) \geq(\alpha-1) t(1-t)\|y\|\}
$$

where $\|y\|=\max _{0 \leq t \leq 1}|y(t)|$.
Lemma 2.4. Let $\left(T_{\lambda} y\right)(t):=\lambda \int_{0}^{1} G^{*}(t, s) f\left(s, s^{\alpha-2} y(s)\right) d s$, then $T_{\lambda}: K \rightarrow K$ is completely continuous.

Proof. The continuity of T_{λ} is obvious. Following we prove $T_{\lambda}: K \rightarrow K$. From Lemma 2.2 and condition (A), we can get that $T_{\lambda} y(t) \geq 0, t \in[0,1]$. For $\forall y \in K$, from Lemma 2.3, we have

$$
\begin{aligned}
T_{\lambda} y(t) & =\lambda \int_{0}^{1} G^{*}(t, s) f\left(s, s^{\alpha-2} y(s)\right) d s \\
& \geq \frac{\lambda(\alpha-1)}{\Gamma(\alpha)} t(1-t) \int_{0}^{1} s(1-s)^{\alpha-1} f\left(s, s^{\alpha-2} y(s)\right) d s
\end{aligned}
$$

On the other hand

$$
\left\|T_{\lambda} y\right\|=\max _{0 \leq t \leq 1}\left|T_{\lambda} y(t)\right| \leq \frac{\lambda}{\Gamma(\alpha)} \int_{0}^{1} s(1-s)^{\alpha-1} f\left(s, s^{\alpha-2} y(s)\right) d s
$$

Hence

$$
T_{\lambda} y(t) \geq(\alpha-1) t(1-t)\left\|T_{\lambda} y\right\|
$$

So $T_{\lambda}: K \rightarrow K$.
Next we show that T_{λ} is uniformly bounded and equicontinuous.
Let $\forall D \subset K$ be bounded, so there exists a constant $L>0$ such that $\|y\| \leq L$ for $\forall y \in D$.

Let $M=\max _{0 \leq y \leq L}|g(y)|+1$, then

$$
\begin{aligned}
\left|T_{\lambda} y(t)\right| & \leq \lambda \int_{0}^{1}\left|G^{*}(t, s) f\left(s, s^{\alpha-2} y(s)\right)\right| d s \\
& \leq \lambda \int_{0}^{1}\left|G^{*}(t, s) q_{2}(s) g(y(s))\right| d s \\
& \leq M \lambda \int_{0}^{1} \frac{1}{\Gamma(\alpha)} s(1-s)^{\alpha-1} q_{2}(s) d s
\end{aligned}
$$

It follows from (A) that $T_{\lambda}(D)$ is uniformly bounded. For $\forall \varepsilon>0, \forall y \in D, t_{1}, t_{2} \in$ $[0,1], t_{1}<t_{2}$, since $G^{*}(t, s)$ is uniformly continuous on $(t, s) \in[0,1] \times[0,1]$, then there exists $\eta>0$, when $\left|t_{1}-t_{2}\right|<\eta$, we have

$$
\left|G^{*}\left(t_{1}, s\right)-G^{*}\left(t_{2}, s\right)\right|<\frac{\varepsilon}{M \lambda \int_{0}^{1} q_{2}(s) d s}
$$

Then from condition (A), one has

$$
\begin{aligned}
& \left|T_{\lambda} y\left(t_{1}\right)-T_{\lambda} y\left(t_{2}\right)\right| \\
= & \lambda\left|\int_{0}^{1} G^{*}\left(t_{1}, s\right) f\left(s, s^{\alpha-2} y(s)\right) d s-\lambda \int_{0}^{1} G^{*}\left(t_{2}, s\right) f\left(s, s^{\alpha-2} y(s)\right) d s\right| \\
\leq & \lambda \int_{0}^{1}\left|G^{*}\left(t_{1}, s\right)-G^{*}\left(t_{2}, s\right)\right| f\left(s, s^{\alpha-2} y(s)\right) d s \\
\leq & \lambda \int_{0}^{1}\left|G^{*}\left(t_{1}, s\right)-G^{*}\left(t_{2}, s\right)\right| q_{2}(s) g(y(s)) d s \\
< & M \lambda \cdot \frac{\varepsilon}{M \lambda \int_{0}^{1} q_{2}(s) d s} \cdot \int_{0}^{1} q_{2}(s) d s=\varepsilon .
\end{aligned}
$$

By means of the Arzela- Ascoli theorem, $T_{\lambda}: K \rightarrow K$ is completely continuous.

3. Main results and proofs

Theorem 3.1. Assume (A) hold,
(a) If $i_{0}=1$ or 2 , then problem (1.1) has i_{0} positive solutions for $\lambda>\lambda_{0}=$ $\frac{1}{\int_{\frac{3}{4}}^{\frac{3}{4}} G^{*}\left(\frac{1}{2}, s\right) q_{1}(s) d s \cdot m(1)} ;$
(b) If $i_{\infty}=1$ or 2 , then problem (1.1) has i_{∞} positive solutions for $0<\lambda<\lambda_{0}=$ $\left\{\frac{1}{\Gamma(\alpha)} \int_{0}^{1} s(1-s)^{\alpha-1} q_{2}(s) d s \cdot M(1)\right\}^{-1}$.
Proof. (a) Choose a number $p=1$, let $\Omega_{p}=\{y \in C[0,1] \mid\|y\|<p\}$, we have $\frac{(\alpha-1) p}{16} \leq y(t) \leq p$ for $y \in K \bigcap \partial \Omega_{p}$ and $t \in\left[\frac{1}{4}, \frac{3}{4}\right]$.

Hence

$$
\begin{aligned}
\left\|T_{\lambda} y\right\| \geq T_{\lambda} y\left(\frac{1}{2}\right) & =\lambda \int_{0}^{1} G^{*}\left(\frac{1}{2}, s\right) f\left(s, s^{\alpha-2} y(s)\right) d s \\
& \geq \lambda \int_{\frac{1}{4}}^{\frac{3}{4}} G^{*}\left(\frac{1}{2}, s\right) q_{1}(s) g(y(s)) d s \\
& \geq \lambda \int_{\frac{1}{4}}^{\frac{3}{4}} G^{*}\left(\frac{1}{2}, s\right) q_{1} d s \cdot m(p) .
\end{aligned}
$$

Then $\left\|T_{\lambda} y\right\|>\|y\|, y \in K \bigcap \partial \Omega_{p}$ for $\lambda>\lambda_{0}=\frac{1}{\int_{\frac{1}{4}}^{\frac{3}{4}} G^{*}\left(\frac{1}{2}, s\right) q_{1}(s) d s \cdot m(1)}$.
If $g_{0}=0$, then there exists $r \in(0, p)$ such that $g(y) \leq \varepsilon y, 0 \leq y \leq r$, where $\varepsilon>0$ satisfies

$$
\frac{\lambda \varepsilon}{\Gamma(\alpha)} \int_{0}^{1} s(1-s)^{\alpha-1} q_{2}(s) d s \leq 1
$$

Let $\Omega_{r}=\{y \in C[0,1] \mid\|y\|<r\}$, from Lemma 2.2 and (A), we have

$$
\begin{aligned}
T_{\lambda} y(t) & =\lambda \int_{0}^{1} G^{*}(t, s) f\left(s, s^{\alpha-2} y(s)\right) d s \\
& \leq \frac{\lambda}{\Gamma(\alpha)} \int_{0}^{1} s(1-s)^{\alpha-1} q_{2}(s) g(y(s)) d s \\
& \leq \frac{\lambda \varepsilon}{\Gamma(\alpha)} \int_{0}^{1} s(1-s)^{\alpha-1} q_{2}(s) d s \cdot\|y\| \leq\|y\|
\end{aligned}
$$

So $\left\|T_{\lambda} y\right\| \leq\|y\|, y \in K \bigcap \partial \Omega_{r}$. Therefore, by the (i) of Theorem 1.1, it follows that T_{λ} has a fixed point $y_{1} \in K \bigcap\left(\bar{\Omega}_{p} \backslash \Omega_{r}\right)$ and $r \leq\left\|y_{1}\right\|<p$.

If $g_{\infty}=0$, then there exists $M>0$ such that $g(y) \leq \varepsilon y, y>M$.
Let

$$
R=\max \left\{\frac{\lambda \max _{0 \leq y \leq M}\{g(y(s))\} \int_{0}^{1} s(1-s)^{\alpha-1} q_{2}(s) d s}{\Gamma(\alpha)-\lambda \varepsilon \int_{0}^{1} s(1-s)^{\alpha-1} q_{2}(s) d s}, p+M\right\},
$$

From Lemma 2.3 and condition (A), we have

$$
\begin{aligned}
T_{\lambda} y(t) & =\lambda \int_{0}^{1} G^{*}(t, s) f\left(s, s^{\alpha-2} y(s)\right) d s \\
& \leq \frac{\lambda}{\Gamma(\alpha)} \int_{0}^{1} s(1-s)^{\alpha-1} q_{2}(s) g(y(s)) d s \\
& \leq \frac{\lambda}{\Gamma(\alpha)} \int_{0 \leq y \leq M} s(1-s)^{\alpha-1} q_{2}(s) g(y(s)) d s \\
& +\frac{\lambda}{\Gamma(\alpha)} \int_{M<y \leq R} s(1-s)^{\alpha-1} q_{2}(s) g(y(s)) d s \\
& \leq \frac{\lambda}{\Gamma(\alpha)}\left(\max _{0 \leq y \leq M}\{g(y(s))\}+\varepsilon\|y\|\right) \int_{0}^{1} s(1-s)^{\alpha-1} q_{2}(s) d s \leq R=\|y\|
\end{aligned}
$$

So $\left\|T_{\lambda} y\right\| \leq\|y\|, y \in K \bigcap \partial \Omega_{R}$. Therefore, by the part (ii) of Theorem 1.1, it follows that T_{λ} has a fixed point $y_{2} \in K \bigcap\left(\bar{\Omega}_{R} \backslash \Omega_{p}\right)$ and $p<\left\|y_{2}\right\| \leq R$.

Hence T_{λ} has two fixed points y_{1}, y_{2} and $r \leq\left\|y_{1}\right\|<p<\left\|y_{2}\right\| \leq R$. It follows from above that if $g_{0}=g_{\infty}=0$, then T_{λ} has two positive solutions for $\lambda>\lambda_{0}$ and satisfies

$$
y_{i}(t)=\lambda \int_{0}^{1} G^{*}(t, s) f\left(s, s^{\alpha-2} y_{i}(s)\right) d s, t \in[0,1], i=1,2, \text { and }\left\|y_{i}\right\| \leq R
$$

It is obvious that $u_{i}(t)=t^{\alpha-2} y_{i}(t), i=1,2$ are two positive solutions of problem (2.1) for $t \in[0,1]$, i.e

$$
u_{i}(t)=\lambda \int_{0}^{1} G(t, s) f\left(s, u_{i}(s)\right) d s, t \in[0,1], i=1,2
$$

Next, we will prove $u_{i}(0)=0, i=1,2$. From $y_{i} \in C[0,1]$ and condition (A), we have

$$
\lim _{t \rightarrow 0^{+}} u_{i}(t)=\lambda \lim _{t \rightarrow 0^{+}} \int_{0}^{1} G(t, s) f\left(s, u_{i}(s)\right) d s
$$

$$
\begin{aligned}
& =\lambda \lim _{t \rightarrow 0^{+}} \int_{0}^{1} G(t, s) f\left(s, s^{\alpha-2} y_{i}(s)\right) d s \\
& \leq \lambda \lim _{t \rightarrow 0^{+}} \int_{0}^{1} G(t, s) q_{2}(s) g\left(y_{i}(s)\right) d s \\
& \leq \lambda \lim _{t \rightarrow 0^{+}} \int_{0}^{1} G(t, s) q_{2}(s) d s \cdot \max _{\left\|y_{i}\right\| \leq 1} g\left(y_{i}\right)=0, \quad i=1,2 .
\end{aligned}
$$

Thus, $u_{i}(0)=0, i=1,2$. Then $u_{i}(t)=t^{\alpha-2} y_{i}(t), i=1,2$ are two positive solutions of (2.1) for $t \in[0,1]$, from Lemma 2.1, problem (1.1) has two positive solutions $u_{1}(t)=t^{\alpha-2} y_{1}(t), u_{2}(t)=t^{\alpha-2} y_{2}(t)$.
(b) Choose a number $p=1$, let $\Omega_{p}=\{y \in C[0,1] \mid\|y\|<p\}$, then for $y \in$ $K \bigcap \partial \Omega_{p}$, we have

$$
\begin{aligned}
T_{\lambda} y(t) & \leq \frac{\lambda}{\Gamma(\alpha)} \int_{0}^{1} s(1-s)^{\alpha-1} f\left(s, s^{\alpha-2} y(s)\right) d s \\
& \leq \frac{\lambda}{\Gamma(\alpha)} \int_{0}^{1} s(1-s)^{\alpha-1} q_{2}(s) g(y(s)) d s \\
& \leq \frac{\lambda}{\Gamma(\alpha)} \int_{0}^{1} s(1-s)^{\alpha-1} q_{2}(s) d s \cdot M(p)
\end{aligned}
$$

So $\left\|T_{\lambda} y\right\|<\|y\|$ for $0<\lambda<\lambda_{0}=\left\{\frac{1}{\Gamma(\alpha)} \int_{0}^{1} s(1-s)^{\alpha-1} q_{2}(s) d s \cdot M(1)\right\}^{-1}, y \in$ $K \bigcap \partial \Omega_{p}$.

If $g_{0}=\infty$, then there exists $r \in(0, p)$, such that $g(y) \geq M y, 0 \leq y \leq r$, where

$$
\frac{\lambda M(\alpha-1)^{2}}{64 \Gamma(\alpha)} \int_{\frac{1}{4}}^{\frac{3}{4}} s(1-s)^{\alpha-1} q_{1}(s) d s \geq 1
$$

Let $\Omega_{r}=\{y \in C[0,1] \mid\|y\|<r\}$, from Lemma 2.3 and (A), we have

$$
\begin{aligned}
\left\|T_{\lambda} y\right\| \geq T_{\lambda} y\left(\frac{1}{2}\right) & =\lambda \int_{0}^{1} G^{*}\left(\frac{1}{2}, s\right) f\left(s, s^{\alpha-2} y(s)\right) d s \\
& \geq \frac{\lambda(\alpha-1)}{4 \Gamma(\alpha)} \int_{\frac{1}{4}}^{\frac{3}{4}} s(1-s)^{\alpha-1} q_{1}(s) g(y(s)) d s \\
& \geq \frac{\lambda M(\alpha-1)}{4 \Gamma(\alpha)} \int_{\frac{1}{4}}^{\frac{3}{4}} s(1-s)^{\alpha-1} q_{1}(s) y(s) d s \\
& \geq \frac{\lambda M(\alpha-1)^{2}}{64 \Gamma(\alpha)} \int_{\frac{1}{4}}^{\frac{3}{4}} s(1-s)^{\alpha-1} q_{1}(s) d s \cdot\|y\| \geq\|y\|
\end{aligned}
$$

Therefore, by the (ii) of Theorem 1.1, it follows that T_{λ} has a fixed point $y_{1} \in$ $K \bigcap\left(\bar{\Omega}_{p} \backslash \Omega_{r}\right)$ and $r \leq\left\|y_{1}\right\|<p$.

If $g_{\infty}=\infty$, then there exists $M^{*}>0$ such that $g(y) \leq \rho y, y>M^{*}$. Let

$$
R=p+\frac{16}{\alpha-1} M^{*}, \quad \Omega_{R}=\{y \in C[0,1] \mid\|y\|<R\}
$$

So $y(t) \geq \frac{\alpha-1}{16}\|y\|>M^{*}$ for $y \in K \bigcap \partial \Omega_{R}, t \in\left[\frac{1}{4}, \frac{3}{4}\right]$, and

$$
\begin{aligned}
\left\|T_{\lambda} y\right\| \geq T_{\lambda} y\left(\frac{1}{2}\right) & \geq \lambda \int_{\frac{1}{4}}^{\frac{3}{4}} G^{*}\left(\frac{1}{2}, s\right) q_{1}(s) \rho y(s) d s \\
& \geq \frac{\rho \lambda(\alpha-1)}{16} \int_{\frac{1}{4}}^{\frac{3}{4}} G^{*}\left(\frac{1}{2}, s\right) q_{1}(s) d s \cdot\|y\| \\
& \geq \frac{\rho \lambda(\alpha-1)^{2}}{64 \Gamma(\alpha)} \int_{\frac{1}{4}}^{\frac{3}{4}} s(1-s)^{\alpha-1} q_{1}(s) d s \cdot\|y\| \geq\|y\|
\end{aligned}
$$

Therefore, by the (i) of Theorem 1.1, it follows that $\left\|T_{\lambda} y\right\| \geq\|y\|, y \in K \bigcap \partial \Omega_{R}$. Thus T_{λ} has a fixed point $y_{2} \in K \bigcap\left(\bar{\Omega}_{R} \backslash \Omega_{p}\right)$, and $p<\left\|y_{2}\right\| \leq R$. Consequently, T_{λ} has two fixed points y_{1}, y_{2} and $r \leq\left\|y_{1}\right\|<p<\left\|y_{2}\right\| \leq R$. It follows from above that if $g_{0}=g_{\infty}=\infty$, then T_{λ} has two positive solutions for $0<\lambda<\lambda_{0}$.

It is similar with (a) that $u_{i}(t)=t^{\alpha-2} y_{i}(t), i=1,2$ are two positive solutions of problem (1.1).
Theorem 3.2. Assume (A) hold and $i_{0}=i_{\infty}=0$, if

$$
\begin{aligned}
& \frac{64 \Gamma(\alpha)}{(\alpha-1)^{2} \int_{\frac{1}{4}}^{\frac{3}{4}} s(1-s)^{\alpha-1} q_{1}(s) d s \cdot \max \left\{g_{\infty}, g_{0}\right\}}<\lambda \\
< & \frac{\Gamma(\alpha)}{\int_{0}^{1} s(1-s)^{\alpha-1} q_{2}(s) d s \cdot \min \left\{g_{\infty}, g_{0}\right\}}
\end{aligned}
$$

then (1.1) has a positive solution.
Proof. If $g_{\infty}>g_{0}$, then

$$
\frac{64 \Gamma(\alpha)}{(\alpha-1)^{2} \int_{\frac{1}{4}}^{\frac{3}{4}} s(1-s)^{\alpha-1} q_{1}(s) d s \cdot g_{\infty}}<\lambda<\frac{\Gamma(\alpha)}{\int_{0}^{1} s(1-s)^{\alpha-1} q_{2}(s) d s \cdot g_{0}}
$$

It is easy to see that there exists $0<\varepsilon<g_{\infty}$ such that

$$
\frac{64 \Gamma(\alpha)}{(\alpha-1)^{2} \int_{\frac{1}{4}}^{\frac{3}{4}} s(1-s)^{\alpha-1} q_{1}(s) d s \cdot\left(g_{\infty}-\varepsilon\right)}<\lambda<\frac{\Gamma(\alpha)}{\int_{0}^{1} s(1-s)^{\alpha-1} q_{2}(s) d s \cdot\left(g_{0}+\varepsilon\right)}
$$

Now turning to g_{0} and g_{∞}, there is $r_{1}>0$ such that $g(y) \leq\left(g_{0}+\varepsilon\right) y, 0 \leq y \leq r_{1}$ for $y \in K \bigcap \partial \Omega_{r_{1}}$. From Lemma 2.3, we have

$$
\begin{aligned}
\left\|T_{\lambda} y\right\| & \leq \frac{\lambda}{\Gamma(\alpha)} \int_{0}^{1} s(1-s)^{\alpha-1} q_{2}(s)\left(g_{0}+\varepsilon\right) y(s) d s \\
& \leq \frac{\lambda}{\Gamma(\alpha)} \int_{0}^{1} s(1-s)^{\alpha-1} q_{2}(s) d s \cdot\left(g_{0}+\varepsilon\right)\|y\|<\|y\|
\end{aligned}
$$

On the other hand, there exists $H>r_{1}$, such that $g(y) \geq\left(g_{\infty}-\varepsilon\right) y, y \geq H$. Let $r_{2}=\max \left\{2 r_{1}, \frac{16 H}{\alpha-1}\right\}$, then

$$
y(t) \geq \frac{\alpha-1}{16}\|y\| \geq H, \quad y \in K \bigcap \partial \Omega_{r_{2}}, \quad t \in\left[\frac{1}{4}, \frac{3}{4}\right] .
$$

Thus $g(y) \geq\left(g_{\infty}-\varepsilon\right) y(t)$ for $y \in K \bigcap \partial \Omega_{r_{2}}, t \in\left[\frac{1}{4}, \frac{3}{4}\right]$.
So

$$
\begin{aligned}
\left\|T_{\lambda} y\right\| \geq T_{\lambda} y\left(\frac{1}{2}\right) & \geq \lambda \int_{\frac{1}{4}}^{\frac{3}{4}} G^{*}\left(\frac{1}{2}, s\right) q_{1}(s) g(y(s)) d s \\
& \geq \frac{\lambda(\alpha-1)^{2}}{64 \Gamma(\alpha)} \int_{\frac{1}{4}}^{\frac{3}{4}} s(1-s)^{\alpha-1} q_{1}(s) d s \cdot\left(g_{\infty}-\varepsilon\right)\|y\|>\|y\|
\end{aligned}
$$

Consequently, T_{λ} has a fixed point $y \in K \bigcap\left(\bar{\Omega}_{r_{2}} \backslash \Omega_{r_{1}}\right)$. Hence $u(t)=t^{\alpha-2} y(t)$ is the solution of (1.1).

If $g_{\infty}<g_{0}$, then $\frac{64 \Gamma(\alpha)}{(\alpha-1)^{2} \int_{\frac{1}{4}}^{\frac{3}{4}} s(1-s)^{\alpha-1} q_{1}(s) d s \cdot g_{0}}<\lambda<\frac{\Gamma(\alpha)}{\int_{0}^{1} s(1-s)^{\alpha-1} q_{2}(s) d s \cdot g_{\infty}}$. There exists $0<\varepsilon<g_{0}$ such that

$$
\frac{64 \Gamma(\alpha)}{(\alpha-1)^{2} \int_{\frac{1}{4}}^{\frac{3}{4}} s(1-s)^{\alpha-1} q_{1}(s) d s \cdot\left(g_{0}-\varepsilon\right)}<\lambda<\frac{\Gamma(\alpha)}{\int_{0}^{1} s(1-s)^{\alpha-1} q_{2}(s) d s \cdot\left(g_{\infty}+\varepsilon\right)}
$$

Now turning to g_{0} and g_{∞}, there exists $r_{1}>0$ such that $g(y) \geq\left(g_{0}-\varepsilon\right) y, 0 \leq y \leq r_{1}$, so $g(y(t)) \geq\left(g_{0}-\varepsilon\right) y(t)$ for $y \in K \bigcap \partial \Omega_{r_{1}}, t \in\left[\frac{1}{4}, \frac{3}{4}\right]$.
Hence

$$
\begin{aligned}
\left\|T_{\lambda} y\right\| \geq T_{\lambda} y\left(\frac{1}{2}\right) & \geq \lambda \int_{\frac{1}{4}}^{\frac{3}{4}} G^{*}\left(\frac{1}{2}, s\right) q_{1}(s) g(y(s)) d s \\
& \geq \lambda \int_{\frac{1}{4}}^{\frac{3}{4}} G^{*}\left(\frac{1}{2}, s\right) q_{1}(s) \cdot\left(g_{0}-\varepsilon\right) y(s) d s \\
& \geq \frac{\lambda(\alpha-1)^{2}}{64 \Gamma(\alpha)} \int_{\frac{1}{4}}^{\frac{3}{4}} s(1-s)^{\alpha-1} q_{1}(s) d s \cdot\left(g_{0}-\varepsilon\right)\|y\|>\|y\|
\end{aligned}
$$

On the other hand, there exists $H>r_{1}$ such that $g(y) \leq\left(g_{\infty}+\varepsilon\right) y, y \geq H$. Let $r_{2}=\max \left\{2 r_{1}, \frac{16 H}{\alpha-1}\right\}$, then

$$
y(t) \geq \frac{\alpha-1}{16}\|y\| \geq H \text { for } y \in K \bigcap \partial \Omega_{r_{2}}, t \in[0,1] .
$$

Thus $g(y(t)) \leq\left(g_{\infty}+\varepsilon\right) y(t)$ for $y \in K \bigcap \partial \Omega_{r_{2}}, t \in[0,1]$. From Lemma 2.3, we have

$$
\begin{aligned}
\left\|T_{\lambda} y(t)\right\| & \leq \frac{\lambda}{\Gamma(\alpha)} \int_{0}^{1} s(1-s)^{\alpha-1} q_{2}(s) g(y(s)) d s \\
& \leq \frac{\lambda}{\Gamma(\alpha)} \int_{0}^{1} s(1-s)^{\alpha-1} q_{2}(s) d s \cdot\left(g_{\infty}+\varepsilon\right)\|y\|<\|y\|
\end{aligned}
$$

Consequently, T_{λ} has a fixed point $y \in K \bigcap\left(\bar{\Omega}_{r_{2}} \backslash \Omega_{r_{1}}\right)$. Hence $u(t)=t^{\alpha-2} y(t)$ is the solution of (1.1)

Example 3.1. Consider the boundary value problem

$$
\left\{\begin{array}{l}
D_{0+}^{\alpha} u(t)+\lambda\left(u^{a}(t)+u^{b}(t)\right)=0,0<a<1<b<\frac{1}{2-\alpha}, 1<\alpha<2 \tag{3.1}\\
u(0)=0, u(1)=0
\end{array}\right.
$$

Then problem (3.1) has two positive solutions u_{1} and u_{2} for each $0<\lambda<\lambda_{0}$, where λ_{0} is some positive constant.

Proof. We will apply Theorem $1.1(\mathrm{ii})$ to this end, we take $f(t, u)=u^{a}+u^{b}$, then $f\left(t, t^{\alpha-2} y\right)=t^{a(\alpha-2)} y^{a}+t^{b(\alpha-2)} y^{b}$. Let $q_{1}(t)=t^{a(\alpha-2)}, q_{2}(t)=t^{b(\alpha-2)}$ and $g(y)=y^{a}+y^{b}$, then

$$
q_{1}(t) g(y) \leq f\left(t, t^{\alpha-2} y\right) \leq q_{2}(t) g(y)
$$

and $q_{1}, q_{2} \in C(0,1), g \in C((0,+\infty),(0,+\infty))$, thus condition (A) is satisfied. Note $g_{0}=\infty, g_{\infty}=\infty$, so $i_{\infty}=2$. Since

$$
\begin{aligned}
\frac{1}{\Gamma(\alpha)} \int_{0}^{1} s(1-s)^{\alpha-1} q_{2}(s) d s & =\frac{1}{\Gamma(\alpha)} \int_{0}^{1} s(1-s)^{\alpha-1} s^{b(\alpha-2)} d s \\
& =\frac{1}{\Gamma(\alpha)} \int_{0}^{1} s^{(2+b(\alpha-2))-1}(1-s)^{\alpha-1} d s \\
& =\frac{1}{\Gamma(\alpha)} \frac{\Gamma(2+b(\alpha-2)) \Gamma(\alpha)}{\Gamma(2+b(\alpha-2)+\alpha)}=\frac{\Gamma(2+b(\alpha-2))}{\Gamma(2+b(\alpha-2)+\alpha)}
\end{aligned}
$$

and

$$
\left.M(1)=\max _{0 \leq y \leq 1}\{g(y(s))\}=\max _{0 \leq y \leq 1}\left\{y^{a}+y^{b}\right)\right\}=2
$$

So

$$
\lambda_{0}=\left\{\frac{1}{\Gamma(\alpha)} \int_{0}^{1} s(1-s)^{\alpha-1} q_{2}(s) d s \cdot M(1)\right\}^{-1}=\left[\frac{2 \Gamma(2+b(\alpha-2))}{\Gamma(2+b(\alpha-2)+\alpha)}\right]^{-1}
$$

Then from $0<\lambda<\lambda_{0}$, we have $\left\|T_{\lambda} y\right\|<\|y\|$. The result is now from Theorem 1.1(ii). In particular, if $\alpha \rightarrow 2$, then $\lambda_{0} \rightarrow 3$.

References

[1] Z. B. Bai and H. S. Lü, Positive solutions for boundary value problems of nonlinear fractional differential equation, J. Math. Anal. Appl., 2005, 311, 495505.
[2] Y. J. Cui, Uniqueness of solution for boundary value problems for fractional differential equations, Applied Mathematics Letters, 2016, 51, 48-54.
[3] K. Deimling, Nonlinear Functional Analysis, Applied Mathematics Letters, Srringer, Berlin, 1985.
[4] J. Henderson and H. Y. Wang, Positive solutions for nonlinear eigenvalue problems, J. Math. Anal. Appl., 1997, 208, 252-259.
[5] D. Q. Jiang and C. J. Yuan, The positive properties of the Green function for Dirichlet-type boundary value problems of nonlinear fractional differential equations and its application, Nonlinear Analysis, 2010, 72, 710-719.
[6] V. Lakshmikantham and A. S. Vatsala, Basic theory of fractional differential equations, Nonlinear Analysis, 2008, 69, 2677-2682.
[7] L. Peng and Y. Zhou, Bifurcation from interval and positive solutions of the three-point boundary value problem for fractional differential equations, Applied Mathematics and Computation, 2015, 257, 458-466.
[8] A. Wan and D. Jiang, Existence of positive periodic solutions for functional differential equations, J. Math., 2002, 561, 193-202.
[9] H. Y. Wang, Positive periodic solutions of functional differential equations, J. Differential Equations, 2004, 202, 354-366.
[10] Y. X. Wu, Existence nonexistence and multiplicity of periodic solutions for a kind of functional differential equation with parameter, Nonlinear Analysis, 2009, 70, 433-443.
[11] S .Q. Zhang, The existence of a positive solution for a nonlinear fractional differential equation, J. Math. Anal. Appl., 2000, 252, 804-812.

[^0]: ${ }^{\dagger}$ the corresponding author.
 hanxiaoling9@163.com(X. Han), zhoushaolin@nwnu.edu.cn(S. Zhou), 1258038557@qq.com(R. An)
 ${ }^{1}$ Department of Mathematics and Statistics, Northwest Normal University, Lanzhou, Gansu 730070, China
 *Supported by National Natural Science Foundation of China (11561603).

