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Abundant Exact Explicit Solutions to a Modified
cKdV Equation∗
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Abstract In this paper, we construct abundant exact explicit solutions to
a modified cKdV equation by employing the three forms of (ω/g)-expansion
method, i.e., (g′/g2)-expansion method, (g′/g)-expansion method and (g′)-
expansion method. The solutions obtained are under different constraint con-
ditions and are in the form of hyperbolic, trigonometric and rational functions,
respectively, including kink (antikink) wave solutions, singular wave solutions
and periodic singular wave solutions which have potential applications in phys-
ical science and engineering.
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1. Introduction

It is well known that the investigation of nonlinear wave equations and their solu-
tions has been the field under discussion in different branches of engineering, physics
and mathematics [1,2]. Many famous models, such as the Korteweg-de Vries (KdV)
equation [3] and the Camassa-Holm (CH) eqation [4], have been proposed in dif-
ferent fields such as physics, chemistry, biology, mechanics, optics, etc. Among the
study of these nonlinear models, their traveling wave solutions have gained con-
siderate attention and a number of powerful methods have been developed to find
their exact traveling wave solutions, such as the inverse scattering method [5], the
Hirota’s bilinear method [6], the Bäcklund transformation method [7], the bifurca-
tion method of dynamical systems [8–18], the (g′/g)-expansion method [19] and so
on.

In this paper, we aim to consider the following modified coupled Korteweg-de
Vries (cKdV) equation [20],ut = vx − 3

2uux + αux,

vt = 1
4uxxx − vux −

1
2uvx + αvx,

(1.1)
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where α is a constant.

When α = 0, Eq.(1.1) is reduced to the cKdV equation, which is a general
example of N-component systems, energy dependent schrödinger operators and
bi-Hamiltonian structures for multi-component systems [20–23]. Many important
equations, such as classical Boussinesq equation and the systems governing sec-
ond harmonic generation, are connected to the cKdV equation through nonsin-
gular transformations [20], which potentially enables solutions of cKdV equations
to be interpreted in the context of these related equations. Therefore, because of
its great importance, we will further study the exact explicit traveling wave solu-
tions to Eq.(1.1). More preciously, we exploit the three forms of (ω/g)-expansion
method [24], i.e., (g′/g2)-expansion method, (g′/g)-expansion method and (g′)-
expansion method to obtain exact explicit expressions of traveling wave solutions
to Eq.(1.1).

The rest of the paper is organized as follows. Section 2 is devoted to the descrip-
tion of the (ω/g)-expansion method. In Section 3, we apply the three forms of (ω/g)-
expansion method to obtain exact explicit traveling wave solutions to Eq.(1.1). Fi-
nally, the paper ends with a brief conclusion.

2. Description of (ω/g)-expansion method

Suppose that a nonlinear equation, say in two independent variables x and t, is
given by

P (u, ux, ut, uxx, uxt, utt, · · · ) = 0, (2.1)

where u = u(x, t) is an unknown function, P is a polynomial of u and its various
partial derivatives. Now we briefly show the main steps of the (ω/g)-expansion
method.

Step 1 Suppose that u(x, t) = u(ξ) with ξ = x− ct, where c is a parameter to
be determined later, then from Eq.(2.1), one obtains

P (u, u′,−cu′, u′′,−cu′′, c2u′′, · · · ) = 0. (2.2)

Step 2 Suppose the solutions of Eq.(2.2) can be expressed by a polynomial of
(ω/g) as follows

u(ξ) =

n∑
i=0

ai

(
ω

g

)i
, an 6= 0, (2.3)

and ω, g satisfy the relation(
ω

g

)′
= b0 + b1

(
ω

g

)
+ b2

(
ω

g

)2

, (2.4)

where b0, b1 and b2 are arbitrary constants.

Step 3 By substituting Eq.(2.3) into Eq.(2.2), making use of (2.4), and setting
the coefficients of all powers of (ω/g) to be zeros, we will get a system of algebraic
equations, from which c and a1, a2, · · · , an can be obtained explicitly.

Step 4 Substituting c and a1, a2, · · · , an obtained in Step 3 into Eq.(2.3), one
get the possible solutions.
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3. Exact explicit traveling wave solutions to the
modified cKdV equation (1.1)

In this section, we will obtain exact explicit traveling wave solutions to Eq.(1.1)
by employing the three forms of (ω/g)-expansion method, i.e., (g′/g2)-expansion
method, (g′/g)-expansion method and (g′)-expansion method, which are resulted
from respectively taking

ω = g′/g, b1 = 0,

ω = g′, b0 = −µ, b1 = −λ, b2 = −1,

and

ω = gg′,

in Eq.(2.4). Note that the (g′/g)-expansion method is exactly the (G′/G)-expansion
method proposed by [19].

More preciously, substituting u(x, t) = u(ξ), v(x, t) = v(ξ) with ξ = x− ct into
Eq.(1.1), it follows,  cu′ + v′ − 3

2uu
′ + αu′ = 0,

cv′ + 1
4u
′′′ − vu′ − 1

2uv
′ + αv′ = 0.

(3.1)

Integrating the first equation of (3.1) once leads to

v =
3

4
u2 − (c+ α)u+ h1, (3.2)

where h1 is integral constant.
Substituting (3.2) into the second equation of (3.1) and integrating it once, it

follows that

u′′ − 2u3 + 6(c+ α)u2 − 4(c+ α)2u− 4h1u+ 4h2 = 0, (3.3)

where h2 is integral constant.
Considering the homogeneous balance between u′′ and u3 in Eq.(3.3) and ex-

ploiting (2.4), we derive that n = 1 in Eq.(2.3).

3.1. Exact explicit traveling wave solutions to Eq.(1.1) by
(g′/g2)-expansion method

As shown above, suppose

u(ξ) = a0 + a1

(
g′

g2

)
, (3.4)

with (
g′

g2

)′
= b0 + b2

(
g′

g2

)2

. (3.5)

Substituting Eq.(3.4) with Eq.(3.5) into Eq.(3.3), collecting all terms with the

same order of g′

g2 and setting the coefficients of all powers of g′

g2 to be zeros, one get
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a system of algebraic equations for a0, a1 and c as follows

2a1

(
b22 − a2

1

)
= 0,

6a2
1(c+ α− a0) = 0,

2a1

(
b0b2 − 3a2

0 + 6a0(c+ α)− 2(c+ α)2 − 2h1

)
= 0,

2
(
2h2 − 2a0

(
(c+ α)2 + h1

)
+ 3a2

0(c+ α)− a3
0

)
= 0.

Solving the algebraic equations above, one has

a1 = ±b2, c = a0 − α, h1 =
a2

0 + b0b2
2

, h2 = h1a0, (3.6)

where a0 is an arbitrary constant.

Substituting Eq.(3.6) and the general solution of Eq.(3.5) into Eq.(3.4), we there-
fore have the following theorem.

Theorem 3.1. For given constants b0, b2 and arbitrary constants a0, c1, one has

1. When b0b2 > 0, Eq.(1.1) has solutions

u(x, t) = a0 ±
√
b0b2 tan

(√
b0b2(x− (a0 − α)t) + c1

)
. (3.7)

2. When b0b2 < 0, Eq.(1.1) has solutions

u(x, t) = a0 ±
√
−b0b2 tanh

(√
−b0b2(x− (a0 − α)t) + c1

)
, (3.8)

and

u(x, t) = a0 ±
√
−b0b2 coth

(√
−b0b2(x− (a0 − α)t) + c1

)
. (3.9)

3. When b0 = 0, b2 6= 0, Eq.(1.1) has solutions

u(x, t) = a0 ±
b2

b2(x− (a0 − α)t) + c1
. (3.10)

Taking a0 = 3, α = 1, c1 = 0, we illustrate the profiles of the solutions (3.7)
with b0 = 1, b2 = 1 in Figures 1(a) and 1(b), the profiles of the solutions (3.8) with
b0 = −1, b2 = 1 in Figures 1(c) and 1(d), and the profiles of the solutions (3.9) with
b0 = −1, b2 = 1 in Figures 1(e) and 1(f), and the profiles of the solutions (3.10)
with b0 = 0, b2 = 1 in Figures 1(g) and 1(h).

3.2. Exact explicit traveling wave solutions to Eq.(1.1) by
(g′/g)-expansion method

Suppose

u(ξ) = a0 + a1

(
g′

g

)
, (3.11)

with

g′′ + λg′ + µg = 0. (3.12)
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Figure 1. The illustrations of the profiles of the solutions (a) (3.7) with plus sign; (b) (3.7) with minus
sign; (c) (3.8) with plus sign; (d) (3.8) with minus sign; (e) (3.9) with plus sign; (f) (3.9) with minus
sign; (g) (3.10) with plus sign; (h) (3.10) with minus sign.
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Substituting Eq.(3.11) with Eq.(3.12) into Eq.(3.3), one get a system of algebraic
equations for a0, a1 and c as follows

2a1

(
1− a2

1

)
= 0,

3a1 (λ− 2a0a1 + 2(c+ α)a1) = 0,

a1

(
λ2 + 2µ− 6a2

0 + 12a0(c+ α)− 4
(
(c+ α)2 + h1

))
= 0,

λµa1 + 4h2 − 4a0

(
(c+ α)2 + h1

)
+ 6a2

0(c+ α)− 2a3
0 = 0.

Solving the algebraic equations above, one has

a1 = 1, c = a0 − α−
λ

2
, h1 =

λ2 + 2µ− 6a2
0 + 12a0(c+ α)− 4(c+ α)2

4
,

h2 = a0

(
(c+ α)2 + h1

)
− 3

2
a2

0(c+ α) +
1

2
a3

0 −
λµ

4
,

(3.13)

or

a1 = −1, c = a0 − α+
λ

2
, h1 =

λ2 + 2µ− 6a2
0 + 12a0(c+ α)− 4(c+ α)2

4
,

h2 = a0

(
(c+ α)2 + h1

)
− 3

2
a2

0(c+ α) +
1

2
a3

0 +
λµ

4
,

(3.14)

where a0 is an arbitrary constant.

Substituting Eq.(3.13) or Eq.(3.14) and the general solution of Eq.(3.12) into
Eq.(3.11), we therefore have the following theorem.

Theorem 3.2. For given constants λ, µ and arbitrary constants a0, c1, c2, one has

1. When λ2 − 4µ > 0, Eq.(1.1) has solutions

u(x, t) = a0 −
λ

2
+

√
λ2 − 4µ

2
×

c1 sinh

(√
λ2−4µ

2

(
x− (a0 − α− λ

2 )t
))

+ c2 cosh

(√
λ2−4µ

2

(
x− (a0 − α− λ

2 )t
))

c1 cosh

(√
λ2−4µ

2

(
x− (a0 − α− λ

2 )t
))

+ c2 sinh

(√
λ2−4µ

2

(
x− (a0 − α− λ

2 )t
)) ,

(3.15)

or

u(x, t) = a0 +
λ

2
−
√
λ2 − 4µ

2
×

c1 sinh

(√
λ2−4µ

2

(
x− (a0 − α+ λ

2 )t
))

+ c2 cosh

(√
λ2−4µ

2

(
x− (a0 − α+ λ

2 )t
))

c1 cosh

(√
λ2−4µ

2

(
x− (a0 − α+ λ

2 )t
))

+ c2 sinh

(√
λ2−4µ

2 (x− (a0 − α+ λ
2 )t)

) .
(3.16)
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2. When λ2 − 4µ < 0, Eq.(1.1) has solutions

u(x, t) = a0 −
λ

2
+

√
4µ− λ2

2
×

−c1 sin

(√
4µ−λ2

2

(
x− (a0 − α− λ

2 )t
))

+ c2 cos

(√
4µ−λ2

2

(
x− (a0 − α− λ

2 )t
))

c1 cos

(√
4µ−λ2

2

(
x− (a0 − α− λ

2 )t
))

+ c2 sin

(√
4µ−λ2

2

(
x− (a0 − α− λ

2 )t
)) ,

(3.17)

or

u(x, t) = a0 +
λ

2
−
√

4µ− λ2

2
×

−c1 sin

(√
4µ−λ2

2

(
x− (a0 − α+ λ

2 )t
))

+ c2 cos

(√
4µ−λ2

2

(
x− (a0 − α+ λ

2 )t
))

c1 cos

(√
4µ−λ2

2

(
x− (a0 − α+ λ

2 )t
))

+ c2 sin

(√
4µ−λ2

2

(
x− (a0 − α+ λ

2 )t
)) .

(3.18)

3. When λ2 − 4µ = 0, Eq.(1.1) has solutions

u(x, t) = a0 −
λ

2
+

c2

c1 + c2
(
x− (a0 − α− λ

2 )t
) , (3.19)

or

u(x, t) = a0 +
λ

2
− c2

c1 + c2
(
x− (a0 − α+ λ

2 )t
) . (3.20)

Taking a0 = 3, α = 1, c1 = 1, c2 = −2, we illustrate the profiles of the solutions
(3.15) and (3.16) with λ = 3, µ = 1 in Figures 2(a) and 2(b), the profiles of the
solutions (3.17) and (3.18) with λ = 1, µ = 1 in Figures 2(c) and 2(d), and the
profiles of the solutions (3.19) and (3.20) with λ = 2, µ = 1 in Figures 2(e) and 2(f).

3.3. Exact explicit traveling wave solutions to Eq.(1.1) by (g′)-
expansion method

Suppose
u(ξ) = a0 + a1g

′, (3.21)

with
g′′ = b0 + b1g

′ + b2 (g′)
2
. (3.22)

Substituting Eq.(3.21) with Eq.(3.22) into Eq.(3.3), one get a system of algebraic
equations for a0, a1 and c as follows

2a1

(
b22 − a2

1

)
= 0,

3a1(b1b2 − 2a0a1 + 2(c+ α)a1) = 0,

a1

(
b21 + 2b0b2 − 6a2

0 + 12a0(c+ α)− 4
(
(c+ α)2 + h1

))
= 0,

a1b0b1 + 4h2 − 4a0

(
(c+ α)2 + h1

)
+ 6a2

0(c+ α)− 2a3
0 = 0.
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Figure 2. The illustrations of the profiles of the solutions (a) (3.15); (b) (3.16); (c) (3.17); (d) (3.18);
(e) (3.19); (f) (3.20).

Solving the algebraic equations above, one has

a1 = b2, c = a0 − α−
b1
2
, h1 =

b21 + 2b0b2 − 6a2
0 + 12a0(c+ α)− 4(c+ α)2

4
,

h2 = a0

(
(c+ α)2 + h1

)
− 3

2
a2

0(c+ α) +
1

2
a3

0 −
b0b1b2

4
,

(3.23)

or

a1 = −b2, c = a0 − α+
b1
2
, h1 =

b21 + 2b0b2 − 6a2
0 + 12a0(c+ α)− 4(c+ α)2

4
,

h2 = a0

(
(c+ α)2 + h1

)
− 3

2
a2

0(c+ α) +
1

2
a3

0 +
b0b1b2

4
,

(3.24)

where a0 is an arbitrary constant.
Substituting Eq.(3.23) or Eq.(3.24) and the general solution of Eq.(3.22) into

Eq.(3.21), we therefore have the following theorem.

Theorem 3.3. For given constants b0, b1, b2 and arbitrary constants a0, c1, one has
1. When b21 − 4b0b2 > 0, Eq.(1.1) has solutions

u(x, t) = a0 −
b1
2

+
1

2

√
b21 − 4b0b2 tanh

(
−
√
b21 − 4b0b2

2

(
x− (a0 − α−

b1
2

)t

)
+ c1

)
,

(3.25)

u(x, t) = a0 −
b1
2

+
1

2

√
b21 − 4b0b2 coth

(
−
√
b21 − 4b0b2

2

(
x− (a0 − α−

b1
2

)t

)
+ c1

)
,

(3.26)
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or

u(x, t) = a0 +
b1
2
− 1

2

√
b21 − 4b0b2 tanh

(
−
√
b21 − 4b0b2

2

(
x− (a0 − α+

b1
2

)t

)
+ c1

)
,

(3.27)

u(x, t) = a0 +
b1
2
− 1

2

√
b21 − 4b0b2 coth

(
−
√
b21 − 4b0b2

2

(
x− (a0 − α+

b1
2

)t

)
+ c1

)
.

(3.28)

2. When b21 − 4b0b2 < 0, Eq.(1.1) has solutions

u(x, t) = a0 −
b1
2

+
1

2

√
4b0b2 − b21 tan

(
−
√

4b0b2 − b21
2

(
x− (a0 − α−

b1
2

)t

)
+ c1

)
,

(3.29)

or

u(x, t) = a0 +
b1
2
− 1

2

√
4b0b2 − b21 tan

(
−
√

4b0b2 − b21
2

(
x− (a0 − α+

b1
2

)t

)
+ c1

)
.

(3.30)

3. When b21 − 4b0b2 = 0, Eq.(1.1) has solutions

u(x, t) = a0 −
b1
2
− 1

x− (a0 − α− b1
2 )t+ c1

, (3.31)

or

u(x, t) = a0 +
b1
2

+
1

x− (a0 − α− b1
2 )t+ c1

. (3.32)

Taking a0 = 3, α = 1, c1 = 0, we illustrate the profiles of the solutions (3.25)
and (3.26) with b0 = 1, b1 = 3, b2 = 1 in Figures 3(a) and 3(b), the profiles of
the solutions (3.27) and (3.28) with b0 = 1, b1 = 3, b2 = 1 in Figures 3(c) and
3(d), and the profiles of the solutions (3.29) and (3.30) with b0 = 1, b1 = 1, b2 = 1
in Figures 3(e) and 3(f), and the profiles of the solutions (3.31) and (3.32) with
b0 = 1, b1 = 2, b2 = 1 in Figures 3(g) and 3(h).

Remark 3.1. We have employed the software Mathematica to check the correct-
ness of the above traveling wave solutions. In addition, all the solutions are newly
obtained. Furthermore, it is worth to mention that the solutions in the form of
coth, such as (3.9), (3.26) and (3.28), are not given in the original (ω/g)-expansion
method [24].

4. Conclusion

In this paper, three forms of (ω/g)-expansion method are successfully exploited
to construct abundant exact explicit traveling wave solutions to a modified cKdV
equation (1.1) under different constraint conditions. The solutions obtained include
kink (antikink) wave solutions, singular wave solutions and periodic singular wave
solutions, which are in the form of hyperbolic, trigonometric and rational functions,
respectively.
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Figure 3. The illustrations of the profiles of the solutions (a) (3.25); (b) (3.26); (c) (3.27); (d) (3.28);
(e) (3.29); (f) (3.30); (g) (3.31); (h) (3.32).
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