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Abstract In this paper, we study the existence of the impulsive fractional
differential equation. Based on a previous paper [2], we give more accurate
condition to guarantee the impulsive fractional differential equation has at
least three solutions under certain assumptions by using variational methods
and critical point theory. Moreover, some recent results are generalized and
significantly improved.
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1. Introduction

In this paper, we will consider the following fractional differential equation with
impulsive effects

d
dt{ 0Dα−1

t (c0Dα
t u(t))− tD

α−1
T (ctD

α
Tu(t))}

+λf(t, u(t)) + µg(t, u(t)) = 0, t ∈ [0, T ], t 6= tk,

∆( Dα
t u)(tk) = Ik(u(tk)), t = tk, k = 1, 2, ...l,

u(0) = u(T ) = 0,

(1.1)

where α ∈ ( 1
2 , 1], 0Dα−1

t and tD
α−1
T represent the left and right Riemann-Liouville

fractional integrals of order 1 − α, c0Dα
t and c

tD
α
T represent the left and right

Caputo fractional derivative of order α, respectively. f, g : [0, T ]×R→ R are given
continuous functions, λ and µ are positive parameters, Ik : R→ R, k = 1, 2, ...l are
continuous functions and

( Dα
t u)(t) =

{
0Dα−1

t (c0Dα
t u)− tD

α−1
T (ctD

α
Tu)

}
(t),
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∆( Dα
t u)(tk) =

{
0Dα−1

t (c0Dα
t u)− tD

α−1
T (ctD

α
Tu)

}
(t+k )

−
{

0Dα−1
t (c0Dα

t u)− tD
α−1
T (ctD

α
Tu)

}
(t−k ),{

0Dα−1
t (c0Dα

t u)− tD
α−1
T (ctD

α
Tu)

}
(t+k ) = lim

t→t+k

{
0Dα−1

t (c0Dα
t u)− tD

α−1
T (ctD

α
Tu)

}
(tk),{

0Dα−1
t (c0Dα

t u)− tD
α−1
T (ctD

α
Tu)

}
(t−k ) = lim

t→t−k

{
0Dα−1

t (c0Dα
t u)− tD

α−1
T (ctD

α
Tu)

}
(tk),

for k = 1, · · · , l.
In recent years, more and more attention have been paid to the fractional dif-

ferential equations have obtained by many authors. By using variational methods
and some critical point theory, some interesting results on fractional differential
equations which have been presented to our vision, see [2–16] and the references
therein.

More precisely, in a recent paper [2], the authors have considered the following
fractional boundary problem without impulsive effects

d
dt{ 0Dα−1

t (c0Dα
t u(t))− tD

α−1
T (ctD

α
Tu(t))}

+λf(t, u(t)) + µg(t, u(t)) = 0, t ∈ [0, T ],

u(0) = u(T ) = 0,

(1.2)

the main result is as follows:

Theorem 1.1. [Theorem 3.1, [2]] Assume that there exist positive constants c, d
with

c < (
4dΩ

TΓ(2− α)
)
√
C(T, α), (1.3)

such that
(A1) F (t, ξ) ≥ 0, for each (t, ξ) ∈ ([0, T4 ]

⋃
[ 3T

4 , T ])× [0, d];

(A2)
∫ T
0

max|ξ|≤c F (t,ξ)dt

c2 <
| cos(πα)|

∫ 3T
4
T
4

F (t,d)dt

Ω2ωα,d
;

(A3) lim sup|ξ|→+∞
supt∈[0,T ] F (t,ξ)

ξ2 <
∫ T
0

max|ξ|≤c F (t,ξ)dt

2c2T .

Then, for every λ ∈ Λ and for every continuous function g : [0, T ]×R→ R such
that

lim sup
|ξ|→+∞

supt∈[0,T ]G(t, ξ)

ξ2
< +∞,

where F (t, ξ) =
∫ ξ

0
f(t, s)ds and G(t, ξ) =

∫ ξ
0
f(t, s)ds. Then there exists δ̄ such

that for each µ ∈ [0, δ̄], problem (1.2) admits at least three solutions.

In fact, Theorem 1.1 is not valid. In [2], the authors fixed c, d > 0 such that

ωα,d∫ 3T
4
T
4

F (t, d)dt
<

| cos(πα)|
Ω2

2
c2∫ T

0
max|u|≤c F (t, u)dt

, (1.4)

holds, where

ωα,d =
16d2

T 2Γ2(2− α)| cos(πα)|
C(T, α)
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and

C(T, α) : =

∫ T
4

0

t2−2αdt+

∫ 3T
4

T
4

[t1−α − (t− T

4
)1−α]2dt

+

∫ T

3T
4

[t1−α − (t− T

4
)1−α + (t− 3T

4
)1−α]2dt.

However, on the one hand, by (1.3), we have

ωα,d −
| cos(πα)|

Ω2
c2 >

16d2

T 2Γ2(2− α)
C(T, α)(

1

| cos(πα)|
− | cos(πα)|),

since C(T, α) > 0 and 1
| cos(πα)| − | cos(πα)| ≥ 0, so we immediately have

ωα,d >
| cos(πα)|

Ω2
c2. (1.5)

On the other hand, we intend to give a sharper estimate as shown by the following
counterexamples.

Example 1.1. Let α = 1, T = 1, by simple calculations, we know Ω = Tα−
1
2

Γ(α)
√

2α−1
=

1, C(T, α) = 1
2 , then (1.4) becomes c < 2

√
2d. If we take c > d, then we have

∫ 3T
4

T
4

F (t, d)dt <

∫ T

0

max
|u|≤c

F (t, u)dt. (1.6)

Thus, by (1.5) and (1.6), we have

ωα,d∫ 3T
4
T
4

F (t, d)dt
>

| cos(πα)|
Ω2

2
c2∫ T

0
max|u|≤c F (t, u)dt

,

which is a contradiction with (1.4).

Motivated by the above facts, in this paper, on the one hand, we give more
accurate condition (1.7) than (1.3). On the other hand, we take impulsive effects
into the system (1.2). Then by applying the variational methods and some critical
point theory, at least three solutions for the system (1.1) have also been obtained.
It is worth pointing out that the systems of [2] with impulsive effects have not been
considered yet. Now, we state our main results as follow:

Theorem 1.2. Assume that there exist positive constants c, d with

c < min{1, 4M2

T

√
M(T, α)}d, (1.7)

such that (A1) holds and
(A2∗)

lim sup
|u|→+∞

supt∈[0,T ] F (t, u)

u2
<
M2

2

∫ T
0

max|u|≤c F (t, u)dt

2c2M2
1 | cos(πα)|

.
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(A3∗) uIk(u) ≥ 0 and there exists e > 0 such that

Jk(u) ≤ e

| cos(πα)|
(1.8)

for all u ∈ R, k = 1, 2, ..., l.
Then, for every λ ∈ Λ1 and for every continuous function g : [0, T ] × R → R

such that

lim sup
|u|→+∞

supt∈[0,T ]G(t, u)

u2
< +∞,

there exists δ̄1 such that for each µ ∈ [0, δ̄1], problem (1.1) admits at least three
solutions.

The arrangement of the rest paper is as follows. In Section 2, some preliminaries
and results which are applied in the later paper are presented. In Section 3, the
main proof of theorems will be vividly showed.

2. Preliminaries

In this section, we recall some basic knowledge of the fractional calculus theory and
lemmas that we shall use in the rest of the paper. For more details, please refer to
the references [1, 4].

Definition 2.1. [1] Let f be a function defined on [a, b] and α > 0. The left and
right Riemann-Liouville fractional derivatives of order α for function f are denoted
by aD−αt f(t) and tD

−α
b f(t), respectively, are defined by

aD−αt f(t) =
dn

dtn aDα−n
t f(t) =

1

Γ(n− α)

∫ t

a

(t− s)n−α−1f(s)ds

and

tD
−α
b f(t) = (−1)n

dn

dtn tD
α−n
b f(t) =

(−1)n

Γ(n− α)

∫ b

t

(s− t)n−α−1f(s)ds,

provided the right-hand sides are pointwise defined on [a, b], where Γ is the gamma
function.

Definition 2.2. [1] Let f be a function defined on [a, b]. The left and right
Riemann-Liouville fractional derivatives of order α for function f are denoted by

aD−αt f(t) and tD
−α
b f(t), respectively, are defined by

aD−αt f(t) =
dn

dtn aDα−n
t f(t) =

1

Γ(n− α)

∫ t

a

(t− s)n−α−1f(s)ds

and

tD
−α
b f(t) = (−1)n

dn

dtn tD
α−n
b f(t) =

(−1)n

Γ(n− α)

∫ b

t

(s− t)n−α−1f(s)ds,

where t ∈ [a, b] and α > 0.
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Definition 2.3. [1] If α ∈ (n−1, n) and f ∈ ACn([a, b], R), then the left and right
Caputo fractional derivatives of order of a function f are denoted by c

aDα
t f(t) and

c
tD

α
b f(t), respectively, and are defined by

c
aDα

t f(t) = aDα−n
t

dn

dtn
f(t) =

1

Γ(n− α)

∫ t

a

(t− s)n−α−1f (n)(s)ds

and

c
tD

α
b f(t) = (−1)n tD

α−n
b

dn

dtn
f(t) =

(−1)n

Γ(n− α)

∫ b

t

(s− t)n−α−1f (n)(s)ds,

where t ∈ [a, b] and α > 0.

Proposition 2.1. [1] We have the following property of fractional integration∫ b

a

[ aD−γt f(t)]g(t)dt =

∫ b

a

[ tD
−γ
b g(t)]f(t)dt, γ > 0, (2.1)

provided that f ∈ Lp([a, b], R), g ∈ Lq([a, b], R) and p ≥ 1, q ≥ 1, 1
p + 1

q ≤ 1 + γ or

p 6= 1, q 6= 1, 1
p + 1

q = 1 + γ.

Definition 2.4. [1] The left and right Riemann-Liouville fractional integral oper-
ators have the property of a semigroup as follow

aD−γ1

t ( aD−γ2

t f(t)) = aD−γ1−γ2

t f(t)

and

tD
−γ1

b ( tD
−γ2

b f(t)) = tD
−γ1−γ2

b f(t),

where γ1, γ2 > 0, t ∈ [a, b] and f ∈ L1([a, b], R).

Proposition 2.2. [1] Let n ∈ N and n − 1 < γ ≤ n. If f ∈ ACn([a, b], R) or
f ∈ Cn([a, b], R), then

aD−γt (caDγ
t f(t)) = f(t)−

n−1∑
j=0

f (j)(a)

j!
(t− a)j

and

tD
−γ
b (ctD

γ
b f(t)) = f(t)−

n−1∑
j=0

(−1)jf (j)(b)

j!
(b− t)j ,

for t ∈ [a, b]. In particular, if 0 < γ ≤ 1 and f ∈ AC([a, b], R) or f ∈ C1([a, b], R),
then

aD−γt (caDγ
t f(t)) = f(t)− f(a)

and

tD
−γ
b (ctD

γ
b f(t)) = f(t)− f(b).

Then, by Definition 2.1 and Definition 2.4, we can transform problem (1.1) into
following equivalent form:

d
dt{ 0D−βt (u

′
(t))− tD

−β
T (u

′
(t))}+ λf(t, u) + µg(t, u) = 0, t ∈ [0, T ], t 6= tk,

∆( Dα
t u)(tk) = Ik(u(tk)), t = tk, k = 1, 2, ...l,

u(0) = u(T ) = 0,
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where β = 2(1−α) ∈ [0, 1). We denote that the function u AC([0, T ], R) is a solution
of the above system if :

(i) the map t 7→ 0D−βt (u
′
(t)) − tD

−β
T (u

′
(t)) is differentiable for almost every

t ∈ [0, T ], and
(ii)the function u satisfies the equations of the above system.
Next, we will introduce some basic notations and lemmas which used in later

paper. For any fixed t ∈ [0, T ] and 1 ≤ p <∞, define

‖u‖∞ = max
t∈[0,T ]

|u(t)|, ‖u‖Lp([0,t]) = (

∫ t

0

|u(s)|pds)
1
p , ‖u‖Lp = (

∫ T

0

|u(s)|pds)
1
p .

(2.2)
In order to establish a variational structure for the system (1.1), it is necessary to

construct suitable function spaces. Denote by C∞0 ([0, T ], R) the set of all functions
u ∈ C∞0 ([0, T ], R) and u(0) = u(T ) = 0.

Definition 2.5. Let 0 < α ≤ 1 and 1 ≤ p < ∞. The fractional derivative space
Eα,p0 is defined by the closure of C∞0 ([0, T ], R) with respect to the weighted norm

‖u‖α,p = (

∫ T

0

|c0Dα
t u(t)|pdt+

∫ T

0

|u(t)|pdt)
1
p , u ∈ Eα,p0 .

Lemma 2.1. Let 0 < α ≤ 1, 1 ≤ p <∞ and f ∈ Lp([0, T ], R). Then we have

‖ 0D−αξ f‖Lp([0,t]) ≤M∗‖f‖Lp([0,t]), ξ ∈ [0, t], t ∈ [0, T ], (2.3)

where 0D−αt is left Riemann-Liouville fractional integral of order α and

M∗ =


tα

Γ(α+1) , α ≤
1
p ,

tα

Γ(α)[q(α−1)+1]
1
q
, α > 1

p ,

where q satisfies 1
p + 1

q = 1.

Proof. If α > 1
p , from 1

p + 1
q = 1, we immediately obtain q(α − 1) + 1 =

1
p−1 (pα− 1) > 0 and by (2.3), we have

‖ 0D−αξ f‖Lp([0,t]) =
1

Γ(α)

(∫ t

0

|
∫ ξ

0

(ξ − τ)α−1f(τ)dτ |pdξ
) 1
p

,

since

|
∫ ξ

0

(ξ − τ)α−1f(τ)dτ | ≤
∫ ξ

0

(ξ − τ)α−1|f(τ)|dτ

≤ (

∫ ξ

0

[(ξ − τ)α−1]qdτ)
1
q ·
(∫ ξ

0

|f(τ)|pdτ
) 1
p

=
[ 1

q(α− 1) + 1
· ξq(α−1)+1

] 1
q ·
(∫ ξ

0

|f(τ)|pdτ
) 1
p

≤ tα−1+ 1
q

[q(α− 1) + 1]
1
q

·
(∫ t

0

|f(τ)|pdτ
) 1
p

,
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so

‖ 0D−αξ f‖Lp([0,t]) ≤
1

Γ(α)
· tα−1+ 1

q

[q(α− 1) + 1]
1
q

·
[ ∫ t

0

(

∫ t

0

|f(τ)|pdτ)dξ
] 1
p

=
1

Γ(α)
· tα−1+ 1

q

[q(α− 1) + 1]
1
q

· t
1
p ·
(∫ t

0

|f(τ)|pdτ
) 1
p

=
tα

Γ(α)[q(α− 1) + 1]
1
q

‖f‖Lp([0,t]).

If α ≤ 1
p , by Lemma 3.1 of [4], we have

‖ 0D−αξ f‖Lp([0,t]) ≤
tα

Γ(α+ 1)
‖f‖Lp([0,t]).

Let

M∗ =


tα

Γ(α+1) , α ≤
1
p ,

tα

Γ(α)[q(α−1)+1]
1
q
, α > 1

p ,

we obtain ‖ 0D−αξ f‖Lp([0,t]) ≤M∗‖f‖Lp([0,t]).

Remark 2.1. (i) When 1
2 < α ≤ 1 and p ≥ 2, we have M∗ = tα

Γ(α)[q(α−1)+1]
1
q
.

(ii) When α > 1
p , it is clear to see 1

[q(α−1)+1]
1
q
< 1

α . So M∗ in our paper is better

than the Lemma 3.1 of [4], which is defined as M∗ = tα

Γ(α+1) , thus we improve and

extend some previous results.

Lemma 2.2. Let 1
2 < α ≤ 1, p ≥ 2 and 1

p + 1
q = 1, for any u ∈ Eα,p0 , we have

‖u‖Lp ≤
Tα

Γ(α)[q(α− 1) + 1]
1
q

(∫ T

0

|c0Dα
t u(t)|pdt

) 1
p

(2.4)

and

‖u‖∞ ≤
Tα−

1
p

Γ(α)[q(α− 1) + 1]
1
q

(∫ T

0

|c0Dα
t u(t)|pdt

) 1
p

. (2.5)

Proof. By Lemma 2.1, as the similar proof of Proposition 3.2 of [4], we immedi-
ately know (2.4) and (2.5) hold.

Corollary 2.1. Let u ∈ Eα,20 , p = 2, then we have

‖u‖L2 ≤ Tα

Γ(α)(2α− 1)
1
2

(∫ T

0

|c0Dα
t u(t)|2dt

) 1
2

= M1

(∫ T

0

|c0Dα
t u(t)|2dt

) 1
2

(2.6)

and

‖u‖∞ ≤
Tα−

1
2

Γ(α)(2α− 1)
1
2

(∫ T

0

|c0Dα
t u(t)|2dt

) 1
2

= M2

(∫ T

0

|c0Dα
t u(t)|2dt

) 1
2

, (2.7)

where M1 = Tα

Γ(α)(2α−1)
1
2

and M2 = Tα−
1
2

Γ(α)(2α−1)
1
2
.
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In this paper, we treat the system (1.1) in the reflexive and separable Banach
space Eα = Eα,20 for 0 < α ≤ 1 and consider Eα with respect to the norm

‖u‖α := (

∫ T

0

|c0Dα
t u(t)|2dt) 1

2 = ‖c0Dα
t u(t)‖L2 ,

which is equivalent to the norm ‖u‖α,2 = (
∫ T

0
|c0Dα

t u(t)|2dt +
∫ T

0
|u(t)|2dt) 1

2 for
u ∈ Eα.

Lemma 2.3 (Proposition 4.1, [4]). If 1
2 < α ≤ 1, then for any u ∈ Eα0 , one has

| cos(πα)|‖u‖2α ≤ −
∫ T

0

c
0Dα

t u(t)ctD
α
Tu(t)dt ≤ 1

| cos(πα)|
‖u‖2α. (2.8)

Lemma 2.4. Let 0 < α ≤ 1 and 1 ≤ p < ∞. The fractional derivative space Eα,p0

is a reflexive and separable Banach space.

Definition 2.6. A function u ∈ Eα0 is called a weak solution of the system (1.1) if∫ T

0

−c0Dα
t u(t)ctD

α
Tu(t)dt+

l∑
k=1

Ik(u(tk))v(tk)−λ
∫ T

0

f(t, u(t))dt−µ
∫ T

0

g(t, u(t))dt = 0,

for all v(t) ∈ Eα0 .

Lemma 2.5. The function u(t) ∈ Eα0 is a classical solution of (1.1) if and only if
u is a weak solution of (1.1).

Proof. The proof is similar to the proof of Lemma 2.1 in [2], we omit it here.
Then, since f, g : [0, T ]×R→ R are continuous functions, we let

F (t, u) =

∫ u

0

f(t, u)ds,G(t, u) =

∫ u

0

g(t, u)ds, Jk(u) =

∫ u

0

Ik(s)ds

for all (t, u) ∈ [0, T ] × R. Here, Gc :=
∫ T

0
max|u|≤cG(t, u)dt for c > 0 and Gd :=

inf [0,T ]×[0,d]G for d > 0. Obviously, Gc ≥ 0 and Gd ≤ 0.
Consider the functional Υλ : Eα0 → R, defined by

Υλ(u) := Φ(u)− λΨ(u), u ∈ Eα0 , (2.9)

where

Φ(u) := −
∫ T

0

c
0Dα

t u(t)ctD
α
Tu(t)dt+

l∑
k=1

Jk(u(tk)) (2.10)

and

Ψ(u) :=

∫ T

0

[F (t, u(t)) +
µ

λ
G(t, u(t))]dt. (2.11)

Obviously, Φ and Ψ are Gâteaux differentiable functionals whose Gâteaux deriva-
tives at the point u ∈ Eα0 are as follow:

Φ
′
(u)(v) = −

∫ T

0

(
c
0Dα

t u(t)ctD
α
T v(t) + c

tD
α
Tu(t)c0Dα

t v(t)
)
dt+

l∑
k=1

Ik(u(tk))v(tk),
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Ψ
′
(u)(v) =

∫ T

0

[f(t, u(t)) +
µ

λ
g(t, u(t))]dt.

Then the critical point of Φ− λΨ is a exactly solution of the system of (1.1).
Now, we give the following critical point theorem which is powerful tool to verify

our main results in this paper.

Theorem 2.1. [Theorem 3.1, [17]] Let X be a reflexive real Banach space; Φ : X →
R be a coercive, continuously Gâteaux differentiable and sequentially weakly lower
semicontinuous functional whose Gâteaux derivative admits a continuous inverse
on X∗; Ψ : X → R be a continuously Gâteaux differentiable functional whose
Gâteaux derivative is compact such that Φ(0) = Ψ(0) = 0. Assume that there exist
r > 0 and x̄ ∈ X, with r < Φ(x̄), such that

(B1)
supΦ(x)≤r Ψ(x)

r < Ψ(x̄)
Φ(x̄) ;

(B2) for each λ ∈ Λr :=] Φ(x̄)
Ψ(x̄) ,

r
supΦ(x)≤r Ψ(x) [ the functional Υλ := Φ − λΨ is

coercive.
Then, for each λ ∈ Λr the functional Υr has at least three distinct critical points in
X.

3. Main results

In this section, we will prove our main results. For convenience, we let

M(T, α) : =

∫ T
4

0

t2−2αdt+

∫ 3T
4

T
4

[t1−α − (t− T

4
)1−α]2dt

+

∫ T

3T
4

[t1−α − (t− T

4
)1−α + (t− 3T

4
)1−α]2dt,

ω∗α,d :=
1

| cos(πα)|

[16d2

T 2
M(T, α) + el

]
,

r :=
| cos(πα)|
M2

2

c2,

Assume that

ω∗α,d∫ 3T
4
T
4

F (t, d)dt
<

| cos(πα)|
M2

2
c2∫ T

0
max|u|≤c F (t, u)dt

(3.1)

and let

λ ∈ Λ1 :=
] ω∗α,d∫ 3T

4
T
4

F (t, d)dt
,

c2| cos(πα)|
M2

2

∫ T
0

max|u|≤c F (t, u)dt

[
, (3.2)

put

δ := min
{c2| cos(πα)| − λ

∫ T
0

max|u|≤c F (t, u)dt

M2
2Gc

,
ω∗α,d − λ

∫ 3T
4
T
4

F (t, d)dt

TGd

}
(3.3)

and

δ̄1 := min
{
δ,

1

max{0, 2M2
1

| cos(πα)| lim supu→∞
supt∈[0,T ]G(t,u)

u2 }

}
. (3.4)
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Proof of Theorem 1.2. To complete this proof, we will apply Theorem 2.1 to
prove Theorem 1.2. Firstly, we can clearly see Φ(0) = Ψ(0) = 0, Φ is a nonnega-
tive Gâteaux differentiable and its Gâteaux derivative has a continuous inverse on
(Eα0 )∗. Indeed, let un ⇀ u weakly in Eα0 , we easily have that

lim inf
n→∞

Φ(un) = lim inf
n→∞

[
−
∫ T

0

c
0Dα

t un(t)ctD
α
Tun(t)dt+

l∑
k=1

Jk(un(tk))
]

≥ −
∫ T

0

c
0Dα

t u(t)ctD
α
Tu(t)dt+

l∑
k=1

Jk(u(tk))

= Φ(u),

so Φ is weakly sequentially lower semicontinuous. Moreover, by (A3∗), we have

0 ≤ Jk(u) ≤ e

| cos(πα)|
. (3.5)

So, by (2.8) and (3.5), we have

Φ(u) = −
∫ T

0

c
0Dα

t u(t)ctD
α
Tu(t)dt+

l∑
k=1

Jk(u(tk))

≥ | cos(πα)|‖u‖2α → +∞

as ‖u‖α → +∞, that is to say, Φ is coercive. By similar asserts, Ψ defined in (2.11)
is a continuously Gâteaux differentiable functional whose Gâteaux derivative is
compact.

Next, we intend to verify (B1) and (B2) of Theorem 2.1 hold.
Let τ(t) be the function given by

τ(t) :=


4Γ(2−α)d

T t, t ∈ [0, T4 ],

Γ(2− α)d, t ∈ [T4 ,
3T
4 ],

4Γ(2−α)d
T (T − t), t ∈ [ 3T

4 , T ].

(3.6)

It is obvious that τ(0) = τ(T ) = 0 and τ ∈ L2([0, T ]). Moreover, we have

τ
′
(t) :=


4Γ(2−α)d

T , t ∈ (0, T4 ),

0, t ∈ (T4 ,
3T
4 ),

− 4Γ(2−α)d
T , t ∈ ( 3T

4 , T ).

(3.7)

Then we can directly calculate the left Caputo fractional derivative of order α for
τ(t).

If t ∈ [0, T4 ], we have

c
0Dα

t τ(t) =
1

Γ(1− α)

∫ t

0

(t− s)−ατ
′
(s)ds

=
1

Γ(1− α)

∫ t

0

(t− s)−α 4Γ(2− α)d

T
ds
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=
4d

T
t1−α.

If t ∈ (T4 ,
3T
4 ], we have

c
0Dα

t τ(t) =
1

Γ(1− α)

∫ t

0

(t− s)−ατ
′
(s)ds

=
1

Γ(1− α)

[ ∫ T
4

0

(t− s)−α 4Γ(2− α)d

T
ds+

∫ t

T
4

(t− s)−α0ds
]

=
4d(t1−α − (t− T

4 )1−α)

T
.

If t ∈ ( 3T
4 , T ], we have

c
0Dα

t τ(t) =
1

Γ(1− α)

∫ t

0

(t− s)−ατ
′
(s)ds

=
1

Γ(1− α)

[ ∫ T
4

0

(t− s)−α 4Γ(2− α)d

T
ds+

∫ 3T
4

T
4

(t− s)−α0ds

−
∫ t

3T
4

(t− s)−α 4Γ(2− α)d

T
ds
]

=
4d[t1−α − (t− T

4 )1−α − (t− 3T
4 )1−α]

T
.

That is

c
0Dα

t τ(t) =


4d
T t

1−α, t ∈ [0, T4 ],
4d(t1−α−(t−T4 )1−α)

T , t ∈ (T4 ,
3T
4 ],

4d[t1−α−(t−T4 )1−α−(t− 3T
4 )1−α]

T , t ∈ ( 3T
4 , T ].

(3.8)

Then

‖τ(t)‖2α =

∫ T

0

(c0Dα
t τ(t))2dt

=

∫ T
4

0

(4d

T
t1−α

)2

dt+

∫ 3T
4

T
4

[4d(t1−α − (t− T
4 )1−α)

T

]2
dt

+

∫ T

3T
4

[4d[t1−α − (t− T
4 )1−α − (t− 3T

4 )1−α]

T

]2
dt

=
16d2

T 2

{∫ T
4

0

t2−2αdt+

∫ 3T
4

T
4

[t1−α − (t− T

4
)1−α]2dt

+

∫ T

3T
4

[t1−α − (t− T

4
)1−α + (t− 3T

4
)1−α]2dt

}
=

16d2

T 2
M(T, α).

Next, by (2.10) and (3.5), we have

Φ(τ) = −
∫ T

0

c
0Dα

t τ(t)ctD
α
T τ(t)dt+

l∑
k=1

Jk(τ(tk))
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≤
( 1

| cos(πα)|

)
‖τ‖2α +

el

| cos(πα)|

=
1

| cos(πα)|

[16d2

T 2
M(T, α) + el

]
:= ω∗α,d.

Since 0 ≤ τ(t) ≤ d for t ∈ [0, T ], by (A1) and (2.11), we have

Ψ(τ) =

∫ T

0

[F (t, τ(t)) +
µ

λ
G(t, τ(t))]dt

≥
∫ 3T

4

T
4

F (t, d)dt+
µ

λ

∫ T

0

G(t, τ(t))dt

≥
∫ 3T

4

T
4

F (t, d)dt+
µ

λ
TGd.

So, we have

Ψ(τ)

Φ(τ)
≥

∫ 3T
4
T
4

F (t, d)dt+ µ
λTGd

ω∗α,d
.

Hence, if Gd = 0, that is
Ψ(τ)

Φ(τ)
>

1

λ
. (3.9)

If Gd < 0, then the same relation holds since

µ <
ω∗α,d − λ

∫ 3T
4
T
4

F (t, d)dt

TGd
.

On the other hand, from (1.7), we have

Φ(τ) ≥ | cos(πα)|‖τ‖2α =
16d2| cos(πα)|

T 2
M(T, α) > r. (3.10)

Then for all u ∈ Eα0 , with Φ(u) ≤ r, by (2.8) and (3.5), we have

| cos(πα)|‖u‖2α ≤ Φ(u) ≤ r,

which yields

‖u‖2α ≤
r

| cos(πα)|
.

Then, by (2.2) and (2.7), we have

|u| ≤M2

√
r

| cos(πα)|
= c, t ∈ [0, T ].

By (2.11), we have

Ψ(u) =

∫ T

0

[F (t, u(t)) +
µ

λ
G(t, u(t))]dt

≤
∫ T

0

max
|u|≤c

F (t, u)dt+
µ

λ

∫ T

0

max
|u|≤c

G(t, u)dt.
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Therefore

supΦ(u)≤r Ψ(u)

r
≤
∫ T

0
max|u|≤c F (t, u)dt+ µ

λ

∫ T
0

max|u|≤cG(t, u)dt
| cos(πα)|
M2

2
c2

≤ M2
2

c2| cos(πα)|
(

∫ T

0

max
|u|≤c

F (t, u)dt+
µ

λ
Gc).

If Gc = 0, it is obvious that

supΦ(u)≤r Ψ(u)

r
<

1

λ
. (3.11)

If Gc > 0, we also know (3.11) holds since

µ <
c2| cos(πα)| − λ

∫ T
0

max|u|≤c F (t, u)dt

M2
2Gc

.

Together with (3.9) and (3.11), the condition (B1) of Theorem 2.1 holds. Then, the
coercive of function Υλ will be verified as follow.

Case 1. If

lim sup
|u|→+∞

supt∈[0,T ] F (t, u)

u2
> 0,

there exist a ε > 0 such that

lim sup
|u|→+∞

supt∈[0,T ] F (t, u)

u2
< ε <

M2
2

∫ T
0

max|u|≤c F (t, u)dt

2c2M2
1

, (3.12)

so, there exists a function fε ∈ L1([0, T ]) such that F (t, u) ≤ εu2 + fε(t) for each
(t, u) ∈ [0, T ]×R. Since

λ <
c2| cos(πα)|

M2
2

∫ T
0

max|u|≤c F (t, u)dt
,

by (2.6), we immediately have

λ
∫ T

0
F (t, u)dt ≤ λ

(
ε
∫ T

0
u(t)2dt+

∫ T
0
fε(t)dt

)
< c2| cos(πα)|

M2
2

∫ T
0

max|u|≤c F (t,u)dt

(
εM2

1 ‖u‖2α + ‖fε‖L1([0,T ])

)
.

(3.13)

Since µ < δ̄1, that is

lim sup
|u|→+∞

supt∈[0,T ]G(t, u)

u2
<
| cos(πα)|

2µM2
1

,

then, there exist a function fµ ∈ L1([0, T ]) such that

G(t, u) ≤ | cos(πα)|
2µM2

1

u2 + fµ(t)
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for each (t, u) ∈ [0, T ]×R. By (2.6), we have∫ T
0
G(t, u)dt ≤ | cos(πα)|

2µM2
1

∫ T
0
u(t)2dt+

∫ T
0
fµ(t)dt

≤ | cos(πα)|
2µ ‖u‖2α + ‖fµ‖L1([0,T ]).

(3.14)

Combining (2.11), (3.5) and (3.12)-(3.14), we immediately have

Υλ(u) = Φ(u)− λΨ(u)

= −
∫ T

0

c
0Dα

t u(t)ctD
α
Tu(t)dt+

l∑
k=1

Jk(u(tk))− λ(

∫ T

0

[F (t, u(t)) +
µ

λ
G(t, u(t))]dt)

≥ | cos(πα)|‖u‖2α − λ
∫ T

0

F (t, u(t))dt− µ
∫ T

0

G(t, u(t))dt

≥ | cos(πα)|‖u‖2α −
c2| cos(πα)|

M2
2

∫ T
0

max|u|≤c F (t, u)dt

(
εM2

1 ‖u‖2α + ‖fε‖L1([0,T ])

)
− | cos(πα)|

2
‖u‖2α − µ‖fµ‖L1([0,T ])

= | cos(πα)|
(1

2
− c2M2

1

M2
2

∫ T
0

max|u|≤c F (t, u)dt
ε
)
‖u‖2α

− c2| cos(πα)|
M2

2

∫ T
0

max|u|≤c F (t, u)dt
‖fε‖L1([0,T ]) − µ‖fµ‖L1([0,T ]).

Case 2. If

lim sup
|u|→+∞

supt∈[0,T ] F (t, u)

u2
≤ 0,

there exist a function fε ∈ L1([0, T ]) such that F (t, u) ≤ εu2 + fε(t) for each
(t, u) ∈ [0, T ]×R. By the same proof as the Case 1., we obtain

Υλ(u) ≥ | cos(πα)|‖u‖2α

− c2| cos(πα)|
M2

2

∫ T
0

max|u|≤c F (t, u)dt
‖fε‖L1([0,T ]) − µ‖fµ‖L1([0,T ]).

The above two cases imply that lim‖u‖α→+∞(Φ(u)−λΨ(u)) = +∞, so Φ(u)−λΨ(u)
is coercive and the condition (B2) of Theorem 2.1 holds. Thus, we deduce that for
each λ ∈ Λ1, Theorem 2.1 ensures the functional Υλ has at least three solutions in
Eα.

Remark 3.1. If g(t, u) = 0 and Ik(u(tk)) = 0, then the system (1.1) become the
following form 

d
dt{ 0Dα−1

t (c0Dα
t u(t))− tD

α−1
T (ctD

α
Tu(t))}

+λf(t, u(t)) = 0, t ∈ [0, T ],

u(0) = u(T ) = 0,

(1.1∗)

Our result is a generalization of [3] and [4]. In this case, the functionals are defines
as follow:

Φ(u) := −
∫ T

0

c
0Dα

t u(t)ctD
α
Tu(t)dt
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and

Ψ(u) :=

∫ T

0

[F (t, u(t))− λ
l∑

k=1

Jk(u(tk))].

Then, by the similar proof as Theorem 1.2, we will obtain at least three solutions
for the system (1.1∗).
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