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The Influence of Human Behavior on Heroin
Dynamics

Shu Fang1, Tailei Zhang1,† and Zhimin Li1

Abstract In this paper, considering the influence of human behavior on
heroin abuse, we establish a mathematical model to describe the spread of
heroin. When the basic reproduction number is less than one, the heroin-free
abuse equilibrium point is globally asymptotically stable. When the basic re-
production number is greater than one, the model has a unique heroin abuse
equilibrium point which is globally asymptotically stable, and the heroin-free
abuse equilibrium point is unstable. Finally, based on the partial rank corre-
lation coefficients (PRCCs) and numerical simulations, the dynamic behavior
of the model is further revealed. Our results show that human behavior can
reduce the heroin abuse level.
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1. Introduction

Heroin is an opioid drug made from morphine, a natural substance extracted from
the seed pods of various opium poppy plants grown in Southeast and South-West
Asia, Mexico and Colombia [1]. Heroin has become the most widely abused drug in
the world. Among all drugs, drug crimes involving heroin manufacture, smuggling
and abuse rank first. It is called the king of drugs in the world. Once one consumes
heroin, the drug treatment can be divided into three stages: detoxification, rehabil-
itation and social return. Buprenorphine and methadone maintenance therapy are
effective in the treatment of physical detoxification. Some studies have found that
despite the relatively advanced conditions and methods for drug treatment, the re-
lapse rate is still hovering 80%∼90% [2]. While social problems such as alcohol and
drug use have been referred to in terms of epidemics, little has been published on
the application of mathematical modelling methods to such problems [3]. Therefore,
the problem of heroin abuse has attracted more and more attention of the society.

In the last decades, various mathematical modelling techniques have been ex-
tended for the purpose of understanding and combating heroin addiction prob-
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lems [3–13]. Using the idea of warehouse modeling in infectious disease dynamics,
White and Comiskey applied infectious disease model to the study of drug users for
the first time and established a kind of ordinary differential equation mathematical
model of heroin drug transmission [3]. Subsequently, based on the literature [3],
Samanta suggested that the coefficients of the model should depend on some long-
term trends and seasonal changes of heroin epidemics. A non-autonomous heroin
drug transmission model with distributed delays was established, and the sufficient
conditions for the global asymptotic stability of the model were derived (see [4]).
In [5], Fang and Li studied global asymptotic properties for an age-structured model
of heroin use based on the principles of mathematical epidemiology where the inci-
dence rate depends on the age of susceptible individuals. In [6], Wangari and Stone
developed a model to test how heroin addiction spreads in society by using satura-
tion functions to represent limited therapeutic effects and successful detoxification
phenomena. The global stability of the model and an inherent backward bifurca-
tion are obtained. In [14], Gao and Wang studied the impact of human behavior on
cholera infection, local and global dynamics of the model are analyzed with respect
to the basic reproduction number. Then they extend the ODE model to a reaction
convection diffusion partial differential equation (PDE) model that accounts for the
movement of both human hosts and bacteria. However, the influence of human
behavior on heroin drug transmission and successful drug detoxification is rarely
investigated in mathematical models.

To better describe the dynamic behavior of heroin drug transmission, in this
paper, we consider the influence of human behavior on the transmission of heroin
drugs and the successful detoxification of heroin addicts. This paper is organized as
follows: In Section 1, we will establish a heroin abuse model. In Section 2, we will
prove the local stability and global asymptotic stability of the equilibrium point. In
Section 3, we will do numerical simulations and analyze the influence of parameters
on the model. Finally, we will make a summary for this article.

2. Model description

The total population is divided into three compartments: heroin susceptible indi-
viduals, untreated heroin addicts, and treated heroin addicts, whose population size
at time t was recorded as S (t), U1 (t), U2 (t). The model is established as follows:

dS
dt = Λ− β (U1)SU1 − µS+εU1+ηU2,

dU1

dt = β (U1)SU1 + kU2 − (p+ µ+ ε+ δ1)U1,

dU2

dt = pU1 − (µ+k + η + δ2)U2.

(2.1)

In (2.1), the total population satisfies N (t) = S (t)+U1 (t)+U2 (t). Λ is the number
of susceptible individuals to heroin from the general population. k is the proportion
of heroin addicts who relapse after cessation of treatment. η is the proportion of
successful detoxification among heroin addicts receiving treatment. According to
biological meaning we know k > η, because the rate of heroin relapse is higher
than the rate of successful detoxification. p is the proportion of heroin addicts
receiving treatment in detoxification centers. ε is the proportion of self-healing



The Influence of Human Behavior on Heroin Dynamics 145

among untreated heroin addicts. µ is the natural mortality rate of individuals in
population. δ1, δ2 are the removal rates of untreated heroin addicts and treated
heroin addicts. Assume that all parameters are non-negative.

The function β (U1) is the proportion of a susceptible individual who is suc-
cessfully infected by untreated heroin addicts to become a new heroin addict. The
incorporation of heroin abuse is dependent on contact rates and host shedding rate.
We assume β (U1) = a− bm (U1), where a is the usual contact rate without consid-
ering the influence of human behavior, b is the maximum reduced contact rate due
to behavior change, and m (U1) is a saturation function to measure the impact of
the number of heroin user individuals. These parameters satisfy

a > b ≥ 0,m (U1) ∈ C1

(
0,

Λ

µ

)
,

with m′ (U1) ≥ 0,m (0) = 0, 0 ≤ m

(
Λ

µ

)
≤ 1.

In the epidemic model, we know that the number of people in the model can-
not be negative. Therefore, we will prove this practical conclusion by theoretical
deduction. First of all, we assume that S(0) ≥ 0, U1(0) > 0, U2(0) > 0 holds. The
following theorem shows the positivity of solutions.

Theorem 2.1. Any solution (S(t), U1(t), U2(t)) of model (2.1) is positive for all
t > 0.

Proof. Let (S(t), U1(t), U2(t)) be a solution of model (2.1). According to the exis-
tence and uniqueness of the solution, it is easy to see that on the maximum existence
interval (0, t∗) of solutions, there is S(t) > 0, U1(t) > 0, U2(t) > 0. Suppose the con-
clusion is not true, then there is a t1 > 0 such that min{S (t1) , U1(t1), U2(t1)} = 0,
and S(t) > 0, U1(t) > 0, U2(t) > 0 for all t ∈ (0, t∗). Next, we will discuss it in
three cases:

(1)S(t1)=0,
(2)U1(t1)=0,
(3)U2(t1)=0.
If (1) is valid, then we can get S′(t1) ≤ 0. However S′(t1) = Λ+εU1 (t1)+ηU2(t1)

> 0 can be obtained from the first equation of model (2.1), which leads to a con-
tradiction. If (2) is valid, from the second equation of model (2.1), we can get

U1(t) =U1(0) exp

[∫ t

0

[β (U1 (θ))S (θ)− (p+ µ+ε+δ1)]dθ

]
+ exp

[∫ t

0

[β (U1 (θ))S (θ)− (p+ µ+ε+δ1)]dθ

]
·
∫ t

0

kU2 (φ) exp

[
−
∫ t

0

[β (U1 (θ))S (θ)− (p+ µ+ε+δ1)]dθ

]
dφ,

then U1(t1) = U1(0) exp
[∫ t1

0
[β (U1 (θ))S (θ)− (p+ µ+ε+δ1)]dθ

]
> 0. If (3) is

valid, from the third equation of model (2.1), we can get

U2(t) =U2(0) exp [− (k + µ+η+δ2) t] + exp [− (k + µ+η+δ2) t]

·
∫ t

0

pU1(θ) exp [(k + µ+η+δ2) t]dθ,
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then U2(t1) = U2(0) exp [− (k + µ+η+δ2) t1] > 0.
In summary, t1 does not exist. Thus we get that S(t), U1(t) and U2(t) are

positive on (0, t∗).
The total population of model (2.1) satisfies the equation

dN

dt
= Λ− µN − δ1U1 − δ2U2 ≤ Λ− µN,

then

lim
t→+∞

supN (t) ≤ Λ

µ
.

This proves that t∗ = ∞. Then completes the proof.

Remark 2.1. When assuming initial data S(0) ≥ 0, U1(0) ≥ 0, U2(0) > 0 and
S(0) ≥ 0, U1(0) > 0, U2(0) ≥ 0 the same conclusion can be drawn. However, when
assuming initial data S(0) ≥ 0, U1(0) = U2(0) = 0, we will obtain a disease-free
solution (S (t) , 0, 0).

Therefore, the region

Ω =

{
(S,U1, U2) ∈ R3

+

∣∣∣∣0 ≤ S + U1 + U2 ≤ Λ

µ

}
,

is a positively invariant and attractive set for model (2.1).

3. Threshold and equilibrium point of the model

Obviously, model (2.1) always has a heroin-free abuse equilibrium pointE0
(

Λ
µ , 0, 0

)
.

According to the notation in [15], the matrices F (new infection terms) and V (re-
maining transition terms) are given [16], as follows

F =

 aΛ
µ k

0 0

 ,V =

p+ µ+ δ1 + ε 0

−p µ+ δ2 + k + η

 ,

V−1 =

 1
p+µ+δ1+ε 0

p
(p+µ+δ1+ε)(µ+δ2+k+η)

1
µ+δ2+k+η

 .

It follows that the spectral radius of FV−1 is

ρ
(
FV−1

)
=

aΛ

µ (p+ µ+ δ1 + ε)
+

pk

(p+ µ+ δ1 + ε) (µ+ δ2 + k + η)
.

Thus, the basic reproduction number of model (2.1) is given by

R0 =
aΛ

µ (p+ µ+ δ1 + ε)
+

pk

(p+ µ+ δ1 + ε) (µ+ δ2 + k + η)
.

Remark 3.1. Note that the basic reproduction number R0 is independent of b.
This is due to our model assumption that behavior change only starts when the
heroin has already started and R0 is calculated at the heroin-free abuse state. An
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implication is that behavior change alone is usually not sufficient to terminate heroin
abuse outbreak. Nevertheless, the behavior change alone cannot drive an endemic
disease extinct, but it plays a significant role in reducing the number of infected
persons and its proportion to the total population (see [17]). We will demonstrate
this for our heroin model in the numerical simulation.

Again, if model (2.1) has a heroin abuse equilibrium point E∗ (S∗, U∗
1 , U

∗
2 ), then

S∗, U∗
1 and U∗

2 satisfy the following algebraic equations
Λ− β (U∗

1 )S
∗U∗

1 − µS∗+εU∗
1+ηU∗

2 = 0,

β (U∗
1 )S

∗U∗
1 + kU∗

2 − (p+ µ+ ε+ δ1)U
∗
1 = 0,

pU∗
1 − (µ+k + η + δ2)U

∗
2 = 0.

(3.1)

From the last equation of (3.1), we have

U∗
2 =

pU∗
1

µ+k + η + δ2
. (3.2)

Adding up the first two equations of (3.1) yield

S∗ =
Λ− (p+ µ+ δ1)U

∗
1+(η + k)U∗

2

µ
,

thus,

S∗ =
Λ

µ
− (p+ µ+ δ1) (µ+ δ2)+ (µ+ δ1) (η + k)

µ (µ+k + η + δ2)
U∗
1 .

To ensure S∗ > 0, we need

U∗
1 <

Λ (µ+k + η + δ2)

(p+ µ+ δ1) (µ+ δ2)+ (µ+ δ1) (η + k)
.

When U∗
1 ̸= 0, from the second equation of (3.1) and (3.2), we get

S∗ =
(p+ µ+ ε+ δ1)U

∗
1 − kU∗

2

β (U∗
1 )U

∗
1

=
(p+ µ+ ε+ δ1) (µ+k + η + δ2)− pk

β (U∗
1 ) (µ+k + η + δ2)

.

So

Λ

µ
− (p+ µ+ δ1) (µ+ δ2)+ (µ+ δ1) (η + k)

µ (µ+k + η + δ2)
U∗
1

=
(p+ µ+ ε+ δ1) (µ+k + η + δ2)− pk

β (U∗
1 ) (µ+k + η + δ2)

. (3.3)

Set

F (U1) =
Λ

µ
− (p+ µ+ δ1) (µ+ δ2)+ (µ+ δ1) (η + k)

µ (µ+k + η + δ2)
U∗
1 ,

G (U1) =
(p+ µ+ ε+ δ1) (µ+k + η + δ2)− pk

β (U1) (µ+k + η + δ2)
.
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When 0 < U1 < Λ(µ+k+η+δ2)
(p+µ+δ1)(µ+δ2)+(µ+δ1)(η+k) , F (U1) is strictly decreasing and

F (0) =
Λ

µ
, F

(
Λ (µ+k + η + δ2)

(p+ µ+ δ1) (µ+ δ2)+ (µ+ δ1) (η + k)

)
= 0.

According to the monotonicity of β (U1), function G (U1) is strictly increasing and

lim
U∗

1 →0
G (U∗

1 ) =
(p+ µ+ ε+ δ1) (µ+k + η + δ2)− pk

a (µ+k + η + δ2)
.

Therefore, when R0 > 1, we have

Λ

µ
>

(p+ µ+ ε+ δ1) (µ+k + η + δ2)− pk

a (µ+k + η + δ2)
.

Equation (3.3) exists a unique positive root U∗
1 in the interval

0 < U∗
1 <

Λ (µ+k + η + δ2)

(p+ µ+ δ1) (µ+ δ2)+ (µ+ δ1) (η + k)
<

Λ

µ
.

When R0 ≤ 1, Equation (3.3) does not have any positive root. Then model (2.1)
does not have heroin abuse equilibrium point, so we have the following result.

Theorem 3.1. Model (2.1) has a heroin-free abuse equilibrium point E0
(

Λ
µ , 0, 0

)
.

When R0 > 1, there is only one heroin abuse equilibrium point E∗ (S∗, U∗
1 , U

∗
2 )

besides E0, where U∗
2 =

pU∗
1

µ+k+η+δ2
, S∗=Λ

µ − (p+µ+δ1)(µ+δ2)+(µ+δ1)(η+k)
µ(µ+k+η+δ2)

U∗
1 , U

∗
1 is the

unique positive root of equation (3.3) in the interval
(
0, Λ(µ+k+η+δ2)

(p+µ+δ1)(µ+δ2)+(µ+δ1)(η+k)

)
.

4. Stability of the heroin-free abuse equilibrium

In this section, we investigate the global asymptotic stability of the heroin-free abuse
equilibrium point E0.

Theorem 4.1. If R0 < 1, the heroin-free abuse equilibrium point E0 is locally
asymptotically stable. If R0 > 1, E0 is unstable.

Proof. Linearizing model (2.1) at E0, we get

J
(
E0

)
=


−µ −aΛ

µ + ε η

0 aΛ
µ − (p+ µ+ ε+ δ1) k

0 p − (η + µ+ k + δ2)

 .

Let λ1, λ2 and λ3 denote the eigenvalues of J
(
E0

)
, where λ1 = −µ < 0. It is easy

to verify that λ2 and λ3 satisfy the equation

λ2 − c1λ− c2 = 0, (4.1)

where

c1 =
aΛ

µ
− (p+ µ+ ε+ δ1)− (η + µ+ k + δ2) ,
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c2 =

[
aΛ

µ
− (p+ µ+ ε+ δ1)

]
(η + µ+ k + δ2) + pk.

If R0 ≤ 1, then c1 < 0 and

c2 =

[
aΛ

µ
− (p+ µ+ ε+ δ1)

]
(η + µ+ k + δ2) + pk

= (η + µ+ k + δ2) (p+ µ+ ε+ δ1) (R0 − 1) ≤ 0.

Thus if R0 < 1, characteristic equation (4.1) has no roots with non-negative real
parts. According to the Routh−Hurwitz criterion [18], we obtain the heroin-free
abuse equilibrium point E0 is locally asymptotically stable in the interior of Ω. If
R0 > 1, we have c2 > 0. That is, characteristic equation (4.1) has a root with
positive real part. So, the heroin-free abuse equilibrium point E0 is unstable. This
completes the proof of Theorem 4.1.

Theorem 4.2. If R0 < 1, the heroin-free abuse equilibrium point E0 is globally
asymptotically stable. If R0 = 1, the heroin-free abuse equilibrium point E0 is
globally attractive.

Proof. Define the following Lyapunov function

V (U1, U2) = U1 +
k

(η + µ+ k + δ2)
U2.

The derivative along model (2.1) is

dV

dt
=

dU1

dt
+

k

(η + µ+ k + δ2)

dU2

dt

= β (U1)SU1 −
[
(p+ µ+ ε+ δ1)−

pk

(η + µ+ k + δ2)

]
U1

≤ U1

[
aΛ

µ
+

pk

(η + µ+ k + δ2)
− (p+ µ+ ε+ δ1)

]
,

thus

dV

dt
≤ U1

[
aΛ

µ
+

pk

(η + µ+ k + δ2)
− (p+ µ+ ε+ δ1)

]
= U1 (p+ µ+ ε+ δ1) (R0 − 1) .

If R0 < 1, then dV
dt ≤ 0. So omega limit point of trajectory is in the set

M1 =
{
(S,U1, U2)

∣∣dV
dt = 0

}
= {(S,U1, U2) |U1 = 0}. The solution of model (2.1)

in set M1 satisfies U2 (t) = U2 (0) e
−(η+µ+k+δ2)t. When t → +∞, we have U2 → 0.

In the similar way we have S → Λ
µ as t → +∞. Thus

{
E0

}
is maximum omega

limit point of model (2.1) in the interior M1. According to the LaSalle’s Invariant
Principle [19], E0 is globally attractive. Next, we discuss the case of R0 = 1,

dV

dt
=

dU1

dt
+

k

(η + µ+ k + δ2)

dU2

dt

= β (U1)SU1 −
[
(p+ µ+ ε+ δ1)−

pk

(η + µ+ k + δ2)

]
U1
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≤ β (U1)SU1 −
Λ

µ
β (U1)U1 + (R0 − 1)U1

= β (U1)U1

(
S − Λ

µ

)
≤ 0.

Thus M2 =
{
(S,U1, U2)

∣∣dV
dt = 0

}
=

{
(S,U1, U2)

∣∣∣S = Λ
µ or U1=0

}
. We know that{

E0
}
is maximum omega limit point of model (2.1) in the interior M2. In summary,

by the LaSalle’s Invariant Principle, E0 is globally attractive. Thus, if R0 ≤ 1, E0

is globally attractive in Ω. This completes the proof of Theorem 4.2.

5. Stability of the heroin abuse equilibrium

Now we investigate the global asymptotic stability of E∗ when R0 > 1.

Theorem 5.1. If R0 > 1, the heroin abuse equilibrium point E∗ is locally asymp-
totically stable.

Proof. Linearizing model (2.1) at E∗, we get

J (E∗) =


−β (U∗

1 )U
∗
1 − µ −β′ (U∗

1 )U
∗
1S

∗ − β (U∗
1 )S

∗ + ε η

β (U∗
1 )U

∗
1 ζ k

0 p − (η + µ+ k + δ2)

 ,

where
ζ = β′ (U∗

1 )U
∗
1S

∗ + β (U∗
1 )S

∗ − (p+ µ+ ε+ δ1) .

From the equations (3.1), we have

β (U∗
1 )S

∗ = (p+ µ+ ε+ δ1)−
pk

(µ+ k + η + δ2)
.

Then we write the characteristic equation as

λ3 + a1λ
2 + a2λ+ a3 = 0, (5.1)

where

a1 =β (U∗
1 )U

∗
1 + µ− β′ (U∗

1 )U
∗
1S

∗ +
pk

(µ+ k + η + δ2)
+ (η + µ+ k + δ2) ,

a2 =(β (U∗
1 )U

∗
1 + µ)

(
pk

(µ+ k + η + δ2)
− β′ (U∗

1 )U
∗
1S

∗
)

+

(
pk

(µ+ k + η + δ2)
− β′ (U∗

1 )U
∗
1S

∗
)
(η + µ+ k + δ2)

+ (β (U∗
1 )U

∗
1 + µ) (η + µ+ k + δ2)− pk

+ β (U∗
1 )U

∗
1

[
β′ (U∗

1 )U
∗
1S

∗ + (p+ µ+ δ1)−
pk

(µ+ k + η + δ2)

]
=− µβ′ (U∗

1 )U
∗
1S

∗ + β (U∗
1 )U

∗
1 (p+ µ+ δ1) +

µpk

(µ+ k + η + δ2)

− β′ (U∗
1 )U

∗
1S

∗ (η + µ+ k + δ2) + (β (U∗
1 )U

∗
1 + µ) (η + µ+ k + δ2) ,
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a3 =(β (U∗
1 )U

∗
1 + µ)

(
pk

(µ+ k + η + δ2)
− β′ (U∗

1 )U
∗
1S

∗
)
(η + µ+ k + δ2)

+ pηβ (U∗
1 )U

∗
1 − pk (β (U∗

1 )U
∗
1 + µ) + β (U∗

1 )U
∗
1

(η + µ+ k + δ2)

[
β′ (U∗

1 )U
∗
1S

∗ + (p+ µ+ δ1)−
pk

(µ+ k + η + δ2)

]
=− µβ′ (U∗

1 )U
∗
1S

∗ (η + µ+ k + δ2) + pηβ (U∗
1 )U

∗
1

+ β (U∗
1 )U

∗
1 (η + µ+ k + δ2)

[
(p+ µ+ δ1)−

pk

(µ+ k + η + δ2)

]
,

and

a1a2 − a3 =

[
β (U∗

1 )U
∗
1 + µ− β′ (U∗

1 )U
∗
1S

∗ +
pk

(µ+ k + η + δ2)

+ (η + µ+ k + δ2)] [−µβ′ (U∗
1 )U

∗
1S

∗+
µpk

(µ+ k + η + δ2)

− β′ (U∗
1 )U

∗
1S

∗ (η + µ+ k + δ2) + β (U∗
1 )U

∗
1 (p+ µ+ δ1)

+ (β (U∗
1 )U

∗
1 + µ) (η + µ+ k + δ2)] + µβ′ (U∗

1 )U
∗
1S

(η + µ+ k + δ2)− pηβ (U∗
1 )U

∗
1 − β (U∗

1 )U
∗
1

(η + µ+ k + δ2)

[
(p+ µ+ δ1)−

pk

(µ+ k + η + δ2)

]
= [β (U∗

1 )U
∗
1 − β′ (U∗

1 )U
∗
1S

∗ +(η + µ+ k + δ2)]

[−µβ′ (U∗
1 )U

∗
1S

∗ − β′ (U∗
1 )U

∗
1S

∗ (η + µ+ k + δ2)

+
µpk

(µ+ k + η + δ2)
+ (β (U∗

1 )U
∗
1 + µ) (η + µ+ k + δ2)]

+ µ [−µβ′ (U∗
1 )U

∗
1S

∗ + β (U∗
1 )U

∗
1 (p+ µ+ δ1) +

µpk

(µ+ k + η + δ2)

+ (β (U∗
1 )U

∗
1 + µ) (η + µ+ k + δ2)] + β (U∗

1 )U
∗
1 (p+ µ+ δ1)[

β (U∗
1 )U

∗
1 − β′ (U∗

1 )U
∗
1S

∗ +
pk

(µ+ k + η + δ2)

]
+ β (U∗

1 )U
∗
1

(η + µ+ k + δ2)
pk

(µ+ k + η + δ2)
+

pk

(µ+ k + η + δ2)
[−µβ′ (U∗

1 )U
∗
1S

∗

− β′ (U∗
1 )U

∗
1S

∗ (η + µ+ k + δ2) +
µpk

(µ+ k + η + δ2)

]
+ pβ (U∗

1 )U
∗
1 (k − η) + µpk.

We know

β′ (U∗
1 ) = −bm′ (U∗

1 ) < 0, k > η,

(p+ µ+ δ1)− pk
(µ+k+η+δ2)

= (µ+δ1)(µ+k+η+δ2)+p(µ+η+δ2)
(µ+k+η+δ2)

> 0.

Thus, a1 > 0, a2 > 0, a3 > 0, a1a2 − a3 > 0. According to the Routh−Hurwitz
criterion, we obtain E∗ is locally asymptotically stable. This completes the proof
of Theorem 5.1.
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Theorem 5.2. If R0 > 1, the heroin abuse equilibrium point E∗ is globally asymp-
totically stable in the interior of Ω, provided that

sup
{
S (β (U1)U1)

′
: S ≥ 0, U1 ≥ 0, S + U1 ≤ N

}
≤ ε.

Proof. The Jacobian matrix associated with the linearized system of (2.1) is

J =


−β (U1)U1 − µ −β′ (U1)U1S − β (U1)S + ε η

β (U1)U1 β′ (U1)U1S + β (U1)S − (p+ µ+ ε+ δ1) k

0 p − (η + µ+ k + δ2)

 ,

and its second additive compound matrix is

J[2] =


j11 k −η

p j22 −β′ (U1)U1S − β (U1)S + ε

0 β (U1)U1 j33

 ,

where

j11 = −β (U1)U1 − µ+ β′ (U1)U1S + β (U1)S − (p+ µ+ ε+ δ1) ,

j22 = −β (U1)U1 − µ− (η + µ+ k + δ2) ,

j33 = β′ (U1)U1S + β (U1)S − (p+ µ+ ε+ δ1)− (η + µ+ k + δ2) .

We now take P = diag
[
1, U1

U2
, U1

U2

]
, then PfP

−1 = diag
[
0,

U ′
1

U1
− U ′

2

U2
,
U ′

1

U1
− U ′

2

U2

]
,

where f denotes the vector field of (2.1). Thus, we have

PJ[2]P−1 =


j11 kU2

U1
−ηU2

U1

pU1

U2
j22 −β′ (U1)U1S − β (U1)S + ε

0 β (U1)U1 j33

 .

So the matrix Q = PfP
−1 +PJ[2]P−1 can be written in the following block form

Q =

Q11 Q12

Q21 Q22

 ,

where

Q11 = −β (U1)U1 − µ+ β′ (U1)U1S + β (U1)S − (p+ µ+ ε+ δ1) ,

Q12 =
[
kU2

U1
−ηU2

U1

]
,Q21 =

pU1

U2

0

 ,Q22 =

 q11 q12

q21 q22

 ,

with

q11 = −β (U1)U1 − µ− (η + µ+ k + δ2) +
U ′

1

U1
− U ′

2

U2
,

q12 = −β′ (U1)U1S − β (U1)S + ε,

q21 = β (U1)U1,

q22 = β′ (U1)U1S + β (U1)S − (p+ µ+ ε+ δ1)− (η + µ+ k + δ2) +
U ′

1

U1
− U ′

2

U2
.
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The vector norm |·| in R3 is chosen as |(x1, x2, x3)| = max {|x1| , |x2| , |x3|}. One can
verify that the Lozinskii measure M (Q) with respect to this norm can be estimated
as

M (Q) ≤ sup {g1, g2} ,

where

g1 = M1 (Q11) + |Q12| ,

g2 = |Q21|+M1 (Q22) .

Here |Q12| and |Q21| are matrix norms induced by the l1 vector norm, M1 denotes
the Lozinskii measure with respect to the l1 vector norm (see [20]). For a generic
matrix, we have A = (aij), then

|A| = max
1≤k≤n

n∑
j=1

|ajk|,

M1 (A) = max
1≤k≤n

akk +
n∑

j=1(j ̸=k)

|ajk|

 .

If S (β (U1)U1)
′
< ε, we have q12 = −β′ (U1)U1S−β (U1)S+ε = −S (β (U1)U1)

′
+

ε > 0, and hence |q12| = q12. More specifically,

g1 =Q11 + |Q12|
=− β (U1)U1 − µ+ β′ (U1)U1S + β (U1)S

− (p+ µ+ ε+ δ1) + k
U2

U1
,

g2 = |Q21|+max {q11 + |q21| , |q12|+ q22}

≤p
U1

U2
+max

{
−µ− (η + µ+ k + δ2) +

U ′
1

U1
− U ′

2

U2
,

− (p+ µ+ δ1)− (η + µ+ k + δ2) +
U ′
1

U1
− U ′

2

U2

}
.

Since

U ′
1 = β (U1)SU1 + kU2 − (p+ µ+ ε+ δ1)U1,

U ′
2 = pU1 − (µ+k + η + δ2)U2,

we have

− (p+ µ+ ε+ δ1) =
U ′

1

U1
− kU2

U1
− β (U1)S,

− (µ+k + η + δ2) =
U ′

2

U2
− pU1

U2
.

This leads to

g1 = Q11 + |Q12|

= −β (U1)U1 − µ+ β′ (U1)U1S +
U ′
1

U1

≤ U ′
1

U1
− µ, (5.2)
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and

g2 = |Q21|+max {q11 + |q21| , |q12|+ q22}

≤ p
U1

U2
+max

{
−µ− pU1

U2
+

U ′
1

U1
,− (p+ µ+ δ1)−

pU1

U2
+

U ′
1

U1

}
≤ U ′

1

U1
− µ. (5.3)

Thus, (5.2) and (5.3) yield

M (Q) ≤ U ′
1

U1
− µ.

It follows from 0 ≤ U1 ≤ Λ
µ that

ln (U1 (t)− lnU1 (0))

t
≤ µ

2
,

for t large sufficiently. We then obtain

1

t

∫ t

0

M (Q) ds ≤ 1

t

∫ t

0

(
U ′
1

U1
− µ

)
ds

=
ln (U1 (t))− ln (U1 (0))

t
− µ

≤ −µ

2
,

if t is large enough. According to Theorem D.1 in [14], we have come to the conclu-
sion that E∗ is globally asymptotically stable in the interior of Ω. This completes
the proof of Theorem 5.2.

6. Numerical simulation

In this section, some numerical results of model (2.1) are presented for supporting
the analytic results obtained above. Some typical examples of m (U1) with such
properties are 1 − c/ (c+ Un

1 ) with c > 0 and n > 0, 1 − e−cU1 with c > 0, and
µU1

Λ . Then we choose m (U1) =
µU1

Λ , and S (0) = 3, U1 (0) = 2, U2 (0) = 3. Further
numerical simulation of the model.

6.1 Numerical simulation

(1) The model parameters are taken as: Λ = 0.6, a = 0.5, b = 0.2, µ = 0.3,
ε = 0.3, η = 0.2, k = 0.8, δ1 = 0.6, δ2 = 0.3, p = 0.6, then R0 = 0.7222 < 1.
The solution curve of model (2.1) tends to be heroin-free abuse equilibrium point
E0 (1.97, 0.00, 0.00), Theorem 4.2 is verified (see Figure 1(a)).

(2) The model parameters are taken as: Λ = 1.6, a = 0.6, b = 0.3, µ = 0.3,
ε = 0.3, η = 0.2, k = 0.8, δ1 = 0.6, δ2 = 0.3, p = 0.6, then R0 = 1.944 > 1.
The solution curve of model (2.1) tends to be heroin abuse equilibrium point
E∗ (1.96, 1.62, 0.61), Theorem 5.2 is verified (see Figure 1(b)).
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(3) We take b = 0 re-simulate the data. Then R0 = 0.7222 < 1, heroin-free
abuse equilibrium point E0 is the same as Figure 1(a)(see Figure 1(c)). What’s
more R0 = 1.944 > 1, the solution curve of model (2.1) tends to be heroin abuse
equilibrium point E∗ (1.67, 1.76, 0.66), (see Figure 1(d)). According to Figure 1,
we can find that human behavior change alone cannot eliminate the heroin abuse,
but can significantly reduce the heroin outbreak level and larger behavior change
leads to increase heroin susceptible individuals and decrease the number of heroin
addicts.
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Figure 1. Illustration of time series of the solution of the model.

6.2 Sensitivity analysis of parameters

(1)The theoretical analysis shows that the basic reproduction number is the
main factor affecting the epidemic of the disease. The basic reproduction number
of the heroin transmission model established in this paper

R0 =
aΛ

µ (p+ µ+ δ1 + ε)
+

pk

(p+ µ+ δ1 + ε) (µ+ δ2 + k + η)
.

In order to detect its dependence on parameters, based on the partial rank
correlation coefficients (PRCCs) to make sensitivity analysis of parameters to de-
termine the impact of parameters on basic reproduction number (see [21]). As
can be seen from Figure 2, the proportion of heroin addicts receiving treatment in
detoxification centers p has the greatest impact on R0. The second is the contact
rate a which normally without take into account human behavior. The third is
the proportion of untreated heroin addicts recovering from their own illness ε. The
fourth is the proportion of heroin addicts who relapse after cessation of treatment k.
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Figure 2. PRCCs results for the dependence of R0 on each parameter.

(2)Figure 3(a) represents the effect of varying parameter a on the heroin user
U1 (t). Figure 3(b) represents the influence of parameter b on the value of U1 (t).
The effect of varying parameter p on the heroin user U1 (t) as shown in Figure 3(c).
It can be seen from Figure 3(d) that the effect of varying parameter ε on the value
of U1 (t). All other parameter values in each figure are the same as Figure 1(b).
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Figure 3. The effect of varying parameter’s change on the heroin user U1 (t).

In real life, some strategies are given to control the heroin transmission in this
model.

(i)Fundamental in our assumption is that people are well informed of the devel-
opment and severity of the heroin outbreak, made possible by the media coverage
and reports from various resources, thus will do a good job of protective measures
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for the susceptible people in order to reduce contact with other individuals, espe-
cially with those high-risk groups. Generally, it is to minimize the risk of heroin
infection among susceptible people as far as possible, which decrease contact rate
a and increase the maximum reduced contact rate b, so this result can be reflected
from Figure 3(a) and Figure 3(b).

(ii)With the development of society, the medical facilities in drug rehabilitation
centers have been improved to a certain extent, the family and social environment
of heroin addicts has been improved. So that the heroin addicts can get better
treatment, that is, we can enhance the rate of addicts receiving treatment in detox-
ification centers p to control the spread of heroin. This result can be reflected in
Figure 3(c).

(iii)In the early stage of drug abuse, some heroin addicts will realize through
themselves or the outside world that continuing to use drugs will lose their labor
force, cause economic constraints and even lead to the separation of their wife
and children. Then they will be strongly persuaded by their hearts, under the
actively understand attitude by family members and the guidance of public opinion
to detoxify themselves which has played a role in controlling the spread of heroin.
That is, we can enhance the rate of untreated heroin addicts recovering from their
own illness ε to reduce the transmission of heroin. This result can be reflected in
Figure 3(d).

7. Discussion

In this paper, we focused on a deterministic system of heroin transmission with
treatment. A goal of this article is to improve our quantitative understanding of
the impact of human behavior on disease dynamics. Particularly, we incorporate
human behavior into mathematical modeling of heroin abuse. Therefore, in our
system, we consider not only the influence of human behavior on heroin transmission
and the influence of heroin addict’s self-healing and successful drug treatment on
heroin transmission. The existence and stability of heroin-free abuse equilibrium
and heroin abuse equilibrium were analyzed theoretically, and the theoretical results
were verified by numerical simulation. Through partial rank correlation coefficients
(PRCCs), the effects of different parameters on heroin transmission were obtained.
Therefore, we can get a conclusion that increasing addicts receiving treatment in
detoxification centers p, untreated heroin addicts recovering from their own illness
ε and decreasing contact rate a which normally without take into account human
behavior, heroin addicts who relapse after cessation of treatment k can control the
spread of the heroin abuse. Hence, through science and technology information
technology to increase people’s awareness of heroin, so that people can understand
the details of heroin transmission and the harmful of abuse to the body can inhibit
the spread and outbreak of heroin. What’s more, we can raise the level of medical
care as soon as possible. Our results show that human behavior can reduce the
number of heroin abuse. In practice, the movement of humans is not random
but strongly affected by socioeconomic factors, age structure factors and gender
differences factors. The model did not include such factors, which is the direction
of our follow up study.
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