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Stationary Distribution and Extinction of
Stochastic Beddington-DeAngelis Predator-prey

Model with Distributed Delay

Mingyu Song1, Wenjie Zuo1,†, Daqing Jiang1,2 and Tasawar Hayat2

Abstract In this paper, we consider the dynamics of the stochastic Beddington-
DeAngelis predator-prey model with distributed delay. First, we adopt the
linear chain technique to transfer the stochastic system with strong kernel
into an equivalent degenerated stochastic system made up four equations.
Then we give the existence and uniqueness of the global positive solution.
Next, sufficient conditions for persistence and extinction of two species are ob-
tained. Particularly, the existence of the stationary distribution is established
by constructing a suitable Lyapunov function. Finally, numerical simulations
illustrate our theoretical results. It shows that the system still maintains the
stability for the smaller white noises, but the stronger white noises will lead
to the extinction of one or two species.
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1. Introduction

Predator-prey systems describing the dynamic relationship between two species
have long been and will continue to be the focus in an existing ecosystem. Predator-
dependent functional response is the significant component describing the predator-
prey relationship (see [1–3]). Particularly, the Beddington-DeAngelis functional
response plays an important role in feeding over a range of predator-prey abundances
[4–7]. Cantrell et al. [8] and Hwang [9] studied a classical predator-prey system with
Beddington-DeAngelis response as follows:

dx

dt
= b1x

(
1− x

k

)
− a12xy

m1 +m2x+m3y
,

dy

dt
= −b2y +

a21xy

m1 +m2x+m3y
,

(1.1)

where x(t) and y(t) denote the prey and predator densities at time t respectively.
And b1 and k are intrinsic growth rate of the prey and carrying capacity of the envi-
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ronment in the absence of predator, b2 is the death rate of the predator. The preda-
tor consumes the prey with Beddington-DeAngelis functional response a12xy

m1+m2x+m3y

and contributes to its growth rate a21xy
m1+m2x+m3y

. All parameters are assumed to be
positive.

It is known that [8, 9] , if b2 ≥ a21k
m1+km2

, then system (1.1) has two boundary
equilibria (0, 0), (k, 0). And (k, 0) is globally asymptotically stable. If 0 < b2 <

a21k
m1+km2

, then system (1.1) has three nonnegative equilibria (0, 0), (k, 0) and (x∗, y∗),
where (x∗, y∗) is positive and satisfies the following equation:

b1a21
m3ka12

x2
∗ −

(
b2m2 +

b1a21
m3a12

− a21

)
x∗ − b2m1 = 0,

y∗ =
(a21 − b2m2)x

∗ − b2m1

b2m3
.

And the local and global asymptotic stabilities of (x∗, y∗) coincide.
On the other hand, the growth of biological organisms may depend on the pop-

ulation density of previous time. Distributed delay has been widely introduced into
equations used in mathematical biology (see [10–13]). Some authors (see e.g. [10,14])
studied the stability and the bifurcation of a predator-prey model with distributed
delay. A classical Beddington-DeAngelis predator-prey system with distributed de-
lay is as follows: 

dx

dt
= b1x

(
1− x

k

)
− a12xy

m1+m2x+m3y
,

dy

dt
= −b2y + a21

∫ t

−∞
K(t−s)x(s)y(s)

m1+m2x(s)+m3y(s)
ds.

(1.2)

In addition, in the natural environment, the growth rate of biological population
is inevitably affected by white noises. In some cases, white noise will have a huge
impact on the size of the biological population and the evolution of biological pop-
ulation. Some researchers [15–18] studied stationary distribution and extinction of
a kind of predator-prey model with stochastic disturbance.

In this article, we assume that the intrinsic growth rates b1 and b2 of the prey
and the predator are disturbed with:

b1 → b1 + α1Ḃ1(t), b2 → b2 + α2Ḃ2(t),

where B1(t), B2(t) are independent Brownian motion, α2
1 and α2

2 represent the
intensity of the white noises, respectively. Then system (1.2) can be transformed
into the following stochastic model:

dx =
(
b1x

(
1− x

k

)
− a12xy

m1+m2x+m3y

)
dt+ α1xdB1(t),

dy =
(
−b2y + a21

∫ t

−∞
K(t−s)x(s)y(s)

m1+m2x(s)+m3y(s)
ds
)
dt− α2ydB2(t).

(1.3)

We focus on two well-known ones: the strong kernel and the weak kernel, re-
spectively, represented by

(1) K(t) = σ2te−σt , (2) K(t) = σe−σt.

These two kinds of kernels have been widely used in many fields of biological system,
such as population system [19], neutral network [20,21] and epidemiology [22].
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In this article, we mainly focus on establishing sharp sufficient conditions for
the existence of a stationary distribution of system (1.3). As far as we know, there
have been some results on the stationary distribution of stochastic system with
discrete delay (see [23,24]). However, there is only a little work on the existence of
the stationary distribution of stochastic system with distributed delay, for instance,
a Logistic model with distributed delay [25], a cooperative Lotka-Volterra system
with distributed delay [26], stochastic recurrent neural networks with discrete and
distributed delay [27], a predator-prey system with distributed delay [28].

The rest of this paper is organized as follows. In the next section, we give the
main results of the stochastic system (1.3) in the strong kernel case. Sections 3-5
give the detailed proof. In Section 6, we give the results in the weak kernel case.
Finally, numerical simulations are given to verify our results.

Throughout this paper, unless otherwise specified, we suppose( Ω, {Ft}t≥0, P )
is a complete probability space with {Ft}t≥0 satisfying the usual conditions. Define

R4
+ = { (x, y, u, w) ∈ R4 : x > 0, y > 0, u > 0, w > 0 }.

2. Main results in the strong kernel case

Define

u(t) =

∫ t

−∞
σ2(t− s)e−σ(t−s) x(s)y(s)

m1 +m2x(s) +m3y(s)
ds,

w(t) =

∫ t

−∞
σe−σ(t−s) x(s)y(s)

m1 +m2x(s) +m3y(s)
ds.

Then by the linear chain technique, system (1.3) can be transformed into the fol-
lowing system:

dx =
(
b1x

(
1− x

k

)
− a12xy

m1+m2x+m3y

)
dt+ α1xdB1(t),

dy = (−b2y + a21u)dt− α2ydB2(t),

du = σ(w − u)dt,

dw = σ
(

xy
m1+m2x+m3y

− w
)
dt.

(2.1)

Theorem 2.1. For any given initial value (x(0), y(0), u(0), w(0)) ∈ R4
+, there

exists a unique positive solution (x(t), y(t), u(t), w(t)) of system (2.1) on t ≥ 0 and
the solution will remain in R4

+ with probability one.

Theorem 2.2. Let (x(t), y(t), u(t), w(t)) be a solution of system (2.1) with any
initial value (x(0), y(0), u(0), w(0)) ∈ R4

+. Then the following results are true:

(1) If b1 <
α2

1

2 , then lim
t→∞

x(t) = 0 a.s.

(2) If b1 >
α2

1

2 , then for almost all ω ∈ Ω, we have

lim sup
t→∞

1

t
ln

(√
k

a21b2(m1 +m2k)
y(t) +

1

σ
u(t) +

1

σ
w(t)

)
≤ µ,
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where µ = min{b2, σ}(
√
R0− 1)I{R0≤1}+max{b2, σ}(

√
R0− 1)I{R0≥1}+α1b2

√
R0

2b1

and R0 = a21k
b2(m1+m2k)

. Especially, if µ < 0, then the predator population y will die

out exponentially with probability one, i,e. ,

lim
t→∞

y(t) = 0 a.s.

Moreover, the distribution of x(t) converges weakly to the measure which has the
density

π(u) = Qα−2
1 u

−2+
2b1
α2
1 e

− 2b1
kα2

1 , u ∈ (0,∞),

where Q = [α−2
1 (

kα2
1

2b1
)
−1+

2b1
α2
1 Γ( 2b1

α2
1
− 1)]−1 satisfying

∫∞
0

π(u)du = 1.

Theorem 2.3. Assume that b1 >
α2

1

2 , b2 >
α2

2

2 , and RS
0 =

a21k(1−
α2
1

2b1
)4

(m1+m2k)(b2+
α2
2
2 )

> 1.

Then system (2.1) exists a solution P ∗(t) ≜ (x∗(t), y∗(t), u∗(t), w∗(t)), which is a
stationary Markov process.

3. Materials and method

3.1. Proof of Theorem 2.1

Since the coefficients of the system (2.1) satisfy local Lipschitz condition for any
given initial value (x(0), y(0), u(0), w(0)) ∈ R4

+, there exists a unique maximal local
solution (x(t), y(t), u(t), w(t)) on t ∈ (0, τe), where τe is the explosion time. Next,
we claim that τe = ∞. We employ similar method of Theorem 3.1 of Mao et al. [29].
The key step is to construct a nonnegative C2-function Ṽ : R4

+ → R+ such that

lim inf
k→∞,(x,y,u,w)∈R4

+\Dk

Ṽ(x, y, u, w) = +∞ and LṼ(x, y, u, w) ≤ M,

where Dk = ( 1k , k)× ( 1k , k)× ( 1k , k)× ( 1k , k), and M is a positive constant.
Define

Ṽ(x, y, u, w) = 1
a12

(x− 1− lnx) + 1
a21

(y − 1− ln y) + 1
σ (u− 1− lnu)

+ 1
σ (w − 1− lnw).

The nonnegativity of Ṽ(x, y, u, w) can be verified from

x− 1− lnx ≥ 0, for x > 0.

First

inf
(x,y,u,w)∈R4

+\Dk

Ṽ(x, y, u, w) → +∞, as k → +∞,

which is clearly established since

x− 1− lnx → +∞, as x → 0+, and x− 1− lnx → +∞ as x → +∞.
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Next we claim that there exists a positive constant M such that LṼ(x, y, u, w) ≤ M .
Making use of Itô formula, we obtain

dṼ(x, y, u, w) = LṼ(x, y, u, w)dt+ α1(x− 1)dB1(t)− α2(y − 1)dB2(t),

where L : R4
+ → R+ is defined by

LṼ(x, y, u, w) = 1
a12

(x− 1)
(
b1
(
1− x

k

)
− a12y

m1+m2x+m3y

)
+ 1

a21

(
1− 1

y

)
(−b2y + a21u)

+
(
1− 1

w

) (
xy

m1+m2x+m3y
− w

)
+
(
1− 1

u

)
(w − u) +

α2
1

2a12
+

α2
2

2a21

=
α2

1

2a12
+

α2
2

2a21
+ b2

a21
+ 2 + b1

a12

(
−x2

k +
(
1
k + 1

)
x− 1

)
+ y

m1+m2x+m3y

≤ α2
1

2a12
+

α2
2

2a21
+ b2

a21
+ 2 + 1

m3
+ b1

a12

(
−x2

k +
(
1
k + 1

)
x− 1

)
≤ M,

where

M =
α2
1

2a12
+

α2
2

2a21
+

b2
a21

+ 2 +
1

m3
+ max

x∈(0,+∞)
{ b1
a12

(
−x2

k
+

(
1

k
+ 1

)
x− 1

)
}.

3.2. Proof of Theorem 2.2

To prove Theorem 2.2, we first give the definition of the persistence and the extinc-
tion and a lemma from [30]:

Definition 3.1. System (2.1) is said to be extinct if lim sup
t→+∞

y(t) = 0. System (2.1)

is said to be persistent in mean if lim inf
t→+∞

1

t

∫ t

0

y(s)ds > 0.

Consider the following 1-dimensional stochastic differential equation

dX(t) = b1X

(
1− X

k

)
dt+ α1XdB1(t). (3.1)

Lemma 3.1. ( [31]) If b1 <
α2

1

2 , then lim
t→∞

X(t) = 0 a.s.; if b1 >
α2

1

2 , then Eq.(3.1)

has a stationary solution X̃(t), which has the density

π(u) = Qα−2
1 u

−2+
2b1
α2
1 e

− 2b1
kα2

1 , u ∈ (0,∞),

where Q = [α−2
1 (

kα2
1

2b1
)
−1+

2b1
α2
1 Γ( 2b1

α2
1
− 1)]−1 such that π(u) satisfies

∫∞
0

π(u)du = 1.

Proof of Theorem 2.2 (1) If b1 <
α2

1

2 , obviously,

d lnx =
((

b1 − b1x
k

)
− a12y

m1+m2x+m3y
− α2

1

2

)
dt+ α1dB1(t)

≤
(
b1 − α2

1

2

)
dt+ α1dB1(t).
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For b1 <
α2

1

2 , we have lim
t→∞

lnx(t) = −∞, and so lim
t→∞

x(t) = 0 a.s. Thus, the proof

of Theorem 2.2(1) is completed.

(2) Since for any initial value (x(0), y(0), u(0), w(0)) ∈ R4
+, the solution of system

(2.1) is positive, we get

dx(t) ≤ b1x
(
1− x

k

)
dt+ α1xdB1(t).

Let X(t) be the solution of SDE(3.1) with the initial value X(0) = x(0) > 0. Then
applying the comparison theorem of 1-dimensional stochastic differential equation
[32], we have x(t) ≤ X(t) for any t ≥ 0 a.s.

Moreover by the proof of Theorem 2.2 of Liu [28], we have that,

∫∞
0

uπ(u)du =
k

(
b1−

α2
1
2

)
b1

,

∫∞
0

u2π(u)du =
k2

(
b1−

α2
1
2

)
b1

,∫∞
0

(u− k)2π(u)du =
k2α2

1

2b1
.

We define a C2 − function V : R3
+ → R+ by

V(y, u, w) = δ1y(t) + δ2u(t) + δ2w(t),

where δ1, δ2 are positive constants to be determined later. Making use of Itô formula
to differentiate lnV yields

d(lnV) = L(lnV)dt− δ1α2y

V
dB2(t),

where

L(lnV) = δ1
V (a21u− b2y) +

δ2
V

(
σw − σu+ σxy

m1+m2x+m3y
− σw

)
− δ21α

2
2y

2

2V2

≤ δ1
V (a21u− b2y) +

δ2
V

(
σxy

m1+m2x+m3y
− σu

)
≤ δ1

V (a21u− b2y) +
δ2
V

(
σxy

m1+m2x
− σu

)
= δ1

V (a21u− b2y) +
δ2
V

(
σxy

m1+m2x
− σu+ σky

m1+m2k
− σky

m1+m2k

)
= σδ2y

V

(
x

m1+m2x
− k

m1+m2k

)
+ 1

V {
σδ2ky

m1+m2k
+ a21δ1u− (δ1b2y + δ2σu)}.

We define

M0 =


0 a21

b2
0

k
m1+m2k

0 0

0 0 1

 .

Making use of spectral decomposition, we let (δ1b2, δ2σ, δ2)M0 =
√
R0(δ1b2, δ2σ, δ2),
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where R0 = a21k
b2(m1+m2k)

.

L(lnV) ≤ σδ2y
V

(
x

m1+m2x
− k

m1+m2k

)
+ 1

V (δ1b2, δ2σ, δ2)(M0(y, u, w)
T − (y, u, w)T )

= σδ2y
V

(
x

m1+m2x
− k

m1+m2k

)
+ 1

V (
√
R0 − 1)(δ1b2y + σδ2u+ δ2w)

= σδ2m1y
V(m1+m2x)(m1+m2k)

(x− k) + 1
V (

√
R0 − 1)(δ1b2y + σδ2u+ δ2w)

≤ yσδ2
V(m1+m2k)

(X − k) + 1
V (

√
R0 − 1)(δ1b2y + σδ2u+ δ2w)

≤ δ2σ
δ1(m1+m2k)

|X − k|+ 1
V (

√
R0 − 1)(δ1b2y + σδ2u+ δ2w)

≤ min{b2, σ}(
√
R0 − 1)I{R0≤1} +max{b2, σ}(

√
R0 − 1)I{R0≥1}

+ δ2σ
δ1(m1+m2k)

|X − k|.

Setting γ = min{b2, σ}(
√
R0 − 1)I{R0≤1} +max{b2, σ}(

√
R0 − 1)I{R0≥1}, we have

d(lnV) ≤ {γ + δ2σ
δ1(m1+m2k)

|X − k|}dt− δ1α2y
V dB2(t).

Integrating from 0 to t and dividing by t for the formula above, we get that

lnV(t)
t ≤ lnV(0)

t + γ + δ2σ
tδ1(m1+m2k)

∫ t

0
|X(s)− k|ds− 1

t

∫ t

0
δ1α2y(s)

V(s) dB2(s), (3.2)

where M(t) ≜
∫ t

0
δ1α2y(s)

V(s) dB2(s) is a local martingale. The strong law number [29]

for local martingale leads to

lim
t→∞

M(t)

t
= 0 a.s. (3.3)

Since X(t) is ergodic and
∫∞
0

uπ(u)du =
k(b1−

α2
1
2 )

b1
< ∞, we have that by Hölder

inequality,

lim
t→∞

1

t

∫ t

0

|X(s)− k|ds =
∫ ∞

0

|u− k|π(u)du ≤ (

∫ ∞

0

(u− k)2π(u)du)
1
2 . (3.4)

Taking the superior limit on the both sides of (3.2) and substituting δ1 = k
b2(m1+m2k)

,

δ2 =
√
R0

σ into the following inequalities, together with (3.3) and (3.4), we obtain
that

lim sup
t→∞

lnV(t)
t

≤ lim
t→∞

lnV(0)
t

+ γ +
δ2σ

δ1(m1 +m2k)
lim
t→∞

1

t

∫ t

0

|X(s)− k|ds

≤ γ +
δ2σ

δ1(m1 +m2k)

√
k2α2

1

2b1

= γ + α1b2

(
R0

2b1

) 1
2

:= µ a.s.,
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which is required assertion. In addition, when µ < 0, it’s obvious to get

lim sup
t→∞

ln y(t)

t
< 0,

which also means lim
t→∞

y(t) = 0 a.s. That is to say, the predator population will

reduce to zero exponentially with probability one.

3.3. Proof of Theorem 2.3

Consider the integral equation:

X(t) = X(t0) +

∫ t

t0

b(s,X(s))ds+
k∑

r=1

∫ t

t0

σr(s,X(s))dBr(s), t ≥ t0 ≥ 0. (3.1)

Lemma 3.2. (see [33]). Suppose that the coefficients of (3.1) are independent of t
and satisfy the following conditions for some constant B:

|b(s, x)− b(s, y)|+
∑k

r=1 |σr(s, x)− σr(s, y)| ≤ B|x− y|,

|b(s, x)|+
∑k

r=1 |σr(s, x)| ≤ B(1 + |x|),
(3.2)

in UR for every R > 0, and that there exists a non-negative C2 − function V (x) in
Rl such that

LV (x) ≤ −1 outside some compact set.

Then system (3.1) exists a solution, which is a stationary Markov process.

Remark 3.1. The condition (3.2) can be replaced by the global existence of the
solutions of (3.1) according to remark 5 of Xu [34].

Lemma 3.3. For any ξ > 0, ξ + 3
4ξ(1− ξ) ≤ ξ

1
4 .

Proof. Setting t = ξ
1
4 , we get

ξ + 3
4ξ(1− ξ)− ξ

1
4

= 1
4 (7t

4 − 3t8 − 4t)

= − t
4 (3t

7 − 7t3 + 4)

= − t
4 (t− 1)2(3t5 + 6t4 + 9t3 + 12t2 + 8t+ 4).

Obviously, we have ξ + 3
4ξ(1− ξ)− ξ

1
4 ≤ 0 for any t > 0.

Proof of Theorem 2.3. We will prove that system (2.1) exists a stationary
distribution. By Theorem 2.1, we have obtained that system (2.1) has a global
positive solution. By Lemma 3.2, it is sufficient to construct a non-negative C2-
function V ∗(x, y, u, w) and a closed set Ω ⊂ R4

+ such that

LV ∗(x, y, u, w) ≤ −1, on (x, y, u, w) ∈ R4
+/Ω.

Since the construction of V ∗(x, y, u, w) is very complex, we construct it in four
steps.
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Define

Ṽ1(x, y, u, w) =
(
− ln y + m2

b1
x− c1 lnu− c2 lnw

)
+ 4 4

√
a21c1c2σ2k

(
3x

4kb1
− ln x

b1

)
≜ V1 + V2,

where c1, c2 are positive, and will be chosen later.
Note that m2x

(
1− x

k

)
≤ m2k −m2x.

By Itô formula, we have

LV1 = b2 +
α2

2

2 − a21u
y +m2x

(
1− x

k

)
− a12m2xy

b1(m1+m2x+m3y)

−σ
(

c1w
u + c2xy

w(m1+m2x+m3y)
− c1 − c2

)
≤
(
b2 +

α2
2

2 + (c1 + c2)σ +m2x
(
1− x

k

))
−
(

a21u
y + c1wσ

u + c2σxy
w(m1+m2x+m3y)

)
≤
(
b2 +

α2
2

2 + (c1 + c2)σ +m2k
)
−
(
m2x+ a21u

y + c1wσ
u + c2σxy

w(m1+m2x+m3y)

)
≤
(
b2 +

α2
2

2 + (c1 + c2)σ + (m1 +m2k)
)
+m3y

−
(

a21u
y + c1wσ

u + c2σxy
w(m1+m2x+m3y)

+ (m1 +m2x+m3y)
)

≤
(
b2 +

α2
2

2 + (c1 + c2)σ + (m1 +m2k)
)
− 4 4

√
xa21c1c2σ2 +m3y.

Applying Itô formula and Lemma 3.3, we obtain that

LV2 = 4 4
√
a21c1c2σ2k

((
3x
4k − 1

) (
1− x

k

)
− 3a12xy

4kb1(m1+m2x+m3y)
+ a12y

b1(m1+m2x+m3y)
+

α2
1

2b1

)
≤ 4 4

√
a21c1c2σ2k

(
x
k + 3x

4k

(
1− x

k

)
−
(
1− α2

1

2b1

)
+ a12y

b1(m1+m2x+m3y)

)
≤ 4 4

√
a21c1c2σ2k

(
4
√

x
k + a12y

b1m1
−
(
1− α2

1

2b1

))
= 4 4

√
xa21c1c2σ2 + 4 4

√
a21c1c2σ2k a12y

b1m1
− 4 4

√
a21c1c2σ2k

(
1− α2

1

2b1

)
.

Taking c1 = c2 =
a21k(1−

α2
2

2b1
)4

(m1+m2k)σ
, we have that

LṼ1 ≤
(
b2 +

α2
2

2 + (c1 + c2)σ + (m1 +m2k)
)
− 4 4

√
a21c1c2σ2k(1− α2

1

2b1
)

+ (m3 + 4 4
√
a21c1c2σ2k a12

b1m1
)y

= −( 4
√
Rs

0 − 1)
(
b2 +

α2
2

2

)
+
(
m3 + 4 4

√
a21c1c2σ2k a12

b1m1

)
y

:= −λ0 +
(
m3 + 4 4

√
a21c1c2σ2k a12

b1m1

)
y,

(3.3)

where RS
0 =

a21k(1−
α2
1

2b1
)4

(m1+m2k)(b2+
α2
2
2 )

, λ0 = ( 4
√
Rs

0 − 1)
(
b2 +

α2
2

2

)
> 0, since Rs

0 > 1.

Selecting

Ṽ2(x, y, u, w) = Ṽ1 +
1
b2

(
m3 + 4 4

√
a21c1c2σ2k a12

b1m1

) (
y + a21u

σ + a21w
σ

)
,



196 M. Song, W. Zuo, D. Jiang & T. Hayat

while

L
(
y + a21w

σ + a21u
σ

)
= −b2y +

a21xy
m1+m2x+m3y

,

we have

LṼ2 ≤ −λ0 +
a21
b2

(
m3 + 4 4

√
a21c1c2σ2k

a12
b1m1

)
xy

m1 +m2x+m3y
. (3.4)

Choose

Ṽ3(x, y, u, w) =
1

1 + θ

(
x+

a12y

4a21
+

a12w

σ
+

a12u

2σ

)1+θ

,

where θ > 0 and will be defined later.

LṼ3 =
(
x+ a12y

4a21
+ a12w

σ + a12u
2σ

)θ (
b1x

(
1− x

k

)
− a12b2y

4a21
− a12w

2 − a12u
4

)
+ θ

2

(
x+ a12y

4a21
+ a12w

σ + a12u
2σ

)θ−1 (
α2
1x

2 + (a12α2

4a21
)2y2

)
≤ b1x

(
x+ a12y

4a21
+ a12u

2σ + a12w
σ

)θ
− b1

k x
θ+2 − aθ+1

12 b2

4θ+1aθ+1
21

yθ+1 − aθ+1
12

2θ+2σθ u
θ+1

−aθ+1
12

2σθ wθ+1 + θ
2

(
x+ a12y

4a21
+ a12u

2σ + a12w
σ

)θ−1
(
α2
1x

2 +
(

a12α2

4a21

)2
y2
)

≤ − b1
2kx

θ+2 − aθ+1
12 b2

2×4θ+1aθ+1
21

yθ+1 − aθ+1
12

4σθ wθ+1 − aθ+1
12

2θ+3σθ u
θ+1 +B,

(3.5)
where

B = θ
2

(
x+ a12y

4a21
+ a12u

2σ + a12w
σ

)θ−1 (
α2
1x

2 + (a12α2

4a21
)2y2

)
− b1

2kx
θ+2 − aθ+1

12

4σθ wθ+1

+ b1x
(
x+ a12y

4a21
+ a12u

2σ + a12w
σ

)θ
− aθ+1

12

2θ+3σθ u
θ+1 − aθ+1

12 b2

2×4θ+1aθ+1
21

yθ+1

≤ θ
2

(
x+ a12y

4a21
+ a12u

2σ + a12w
σ

)θ−1 (
α1x+

(
a12α2

4a21

)
y +

(
a12

2σ

)
u+

(
a12

σ

)
w
)2

− b1
2kx

θ+2

− aθ+1
12

4σθ wθ+1 + b1x
(
x+ a12y

4a21
+ a12u

2σ + a12w
σ

)θ
− aθ+1

12

2θ+3σθ u
θ+1 − aθ+1

12 b2

2×4θ+1aθ+1
21

yθ+1

≤ θ4θ

2

(
xθ+1 +

a1+θ
12

(4a21)θ+1 y
θ+1 +

a1+θ
12

(2σ)1+θ u
θ+1 +

a1+θ
12

σ1+θw
θ+1
)
α2
max − b1

2kx
θ+2 − aθ+1

12

4σθ wθ+1

+ b1x
(
x+ a12y

4a21
+ a12u

2σ + a12w
σ

)θ
− aθ+1

12

2θ+3σθ u
θ+1 − aθ+1

12 b2

2×4θ+1aθ+1
21

yθ+1

≤ max
x∈(0,+∞)

{4
θθα2

max

2
xθ+1 − b1

2k
xθ+2 + b1x

(
x+

a12y

4a21
+

a12u

2σ
+

a12w

σ

)θ

}

− wθ+1

2σθ

(
aθ+1
12

2 − θ4θaθ+1
12 α2

max

σ

)
− uθ+1

2(2σ)θ

(
aθ+1
12

4 − θ4θa1+θ
12 α2

max

)
− yθ+1

2(4θaθ+1
21 )

(
aθ+1
12 b2 − θ4θa1+θ

12 α2
max

)
≤ max

x∈(0,+∞)
{4

θθα2
max

2
xθ+1 − b1

2k
xθ+2 + b1x

(
x+

a12y

4a21
+

a12u

2σ
+

a12w

σ

)θ

},

where α2
max = max{α2

1, α
4
2}, holding 4θθ ≤ min 1

α2
max

{1
4 ,

σ
2 , b2}. It is clear that B

has an upper bound.
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Define a Lyapunov function as follows

Ṽ4(x, y, u, w) = MṼ2 + Ṽ3 − lnw − lnu,

where M > 0 is a fixed constant satisfying −Mλ0 + 2σ + B̃ < −2. Moreover
Ṽ4(x, y, u, w) is not only continuous, but also tends to +∞ as (x, y, u, w) approaches
the boundary of R4

+. Hence it must be lower bounded and achieve this lower bound
at a point (x0, y0, u0, w0) in the interior of R4

+. Then we denote the C2-function as

V ∗(x, y, u, w) = Ṽ4(x, y, u, w)− Ṽ4(x
0, y0, u0, w0).

Applying Itô formula, we have

L(− lnw − lnu) = 2σ − σw

u
− σxy

w(m1 +m2x+m3y)
. (3.6)

Therefore, by (3.3)-(3.6), one can get that

LV ∗ ≤ −Mλ0 − b1
2kx

θ+2 − aθ+1
12 b2

2×4θ+1aθ+1
21

yθ+1 − aθ+1
12

4σθ wθ+1 − aθ+1
12

2θ+3σθ u
θ+1

+ Ma21

b2

(
m3 + 4 4

√
a21c1c2σ2k a12

b1m1
− σb2

wMa21

)
xy

m1+m2x+m3y
+ B̃ + 2σ,

where B̃ = supB. We denote Ma21

b2
(m3 + 4 4

√
a21c1c2σ2k a12

b1m1
) = λ̃ for convenience.

We consider the bounded closed set

Uϵ = {(x, y, u, w) ∈ R4
+|ϵ < x <

1

ϵ
, ϵ < y <

1

ϵ
, ϵ < u <

1

ϵ3
, ϵ < w <

1

ϵ2
},

where 0 < ϵ < 1 is a sufficiently small number. In the set R4
+ \ Uϵ, we can choose ϵ

sufficiently small such that the following conditions hold:

A1 :ϵ ≤ m1(θ + 1)

λ̃θ
,

λ̃ϵ

m1(θ + 1)
≤ aθ+1

12 b2

2× 4θ+1aθ+1
21

,

A2 :ϵ ≤ (m1 +m3ϵ)(θ + 2)

λ̃(θ + 1)
,

λ̃ϵ

(m1 +m3ϵ)(θ + 2)
≤ b1

2k
,

A3 :
−σ

ϵ(m1 +m2ϵ+m3ϵ)
+ C ≤ −1, A4 :

−σ

ϵ
+ C ≤ −1,

A5 :− b1
4kϵθ+2

+ C ≤ 1, A6 : − aθ+1
12 b2

4θ+2aθ+2
21 ϵθ+1

+ C ≤ −1,

A7 :− aθ+1
12

4σθ(ϵ3)θ+1
+ C ≤ −1, A8 : − aθ+1

12

2θ+3σθ(ϵ2)θ+1
+ C ≤ −1.

Then we divide R4
+ \ Uϵ into eight domains as if

D1 ={(x, y, u, w) ∈ R4
+ : 0 < x < ϵ},

D2 ={(x, y, u, w) ∈ R4
+ : 0 < y < ϵ},

D3 ={(x, y, u, w) ∈ R4
+ : 0 < w < ϵ3, x > ϵ, y > ϵ},

D4 ={(x, y, u, w) ∈ R4
+ : 0 < u < ϵ2, w > ϵ},
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D5 ={(x, y, u, w) ∈ R4
+ : x >

1

ϵ
},

D6 ={(x, y, u, w) ∈ R4
+ : y >

1

ϵ
},

D7 ={(x, y, u, w) ∈ R4
+ : u >

1

ϵ3
},

D8 ={(x, y, u, w) ∈ R4
+ : w >

1

ϵ2
}.

Clearly, DC
ϵ =

8∪
i=1

Di
ϵ. Next, we will show that LV ∗(x, y, u, w) ≤ −1 on UC

ϵ × R+,

which is equivalent to show it on the above eight domains.
Case 1. If (x, y, u, w) ∈ D1, one can see that

xy
m1+m2x+m3y

≤ ϵy
m1

≤ ϵ
m1

θ+yθ+1

θ+1 = ϵθ
m1(θ+1) +

ϵyθ+1

m1(θ+1) .

Thus,

LV ∗ ≤ −Mλ0 + λ̃
(

ϵθ
m1(θ+1) +

ϵyθ+1

m1(θ+1)

)
+ B̃ + 2σ − aθ+1

12 b2

2×4θ+1aθ+1
21

yθ+1

= −Mλ0 +
λ̃ϵθ

m1(θ+1) +
(

λ̃ϵ
m1(θ+1) −

aθ+1
12 b2

2×4θ+1aθ+1
21

)
yθ+1 + B̃ + 2σ

≤ −2 + 1 = −1,

by virtue of the condition A1. Thus, LV
∗ ≤ −1 on D1.

Case 2. If (x, y, u, w) ∈ D2, one can see that

xy
m1+m2x+m3y

≤ ϵ
m1+m3ϵ

(θ+1)+xθ+2

θ+2 = ϵ(θ+1)
(m1+m3ϵ)(θ+2) +

ϵxθ+2

(m1+m3ϵ)(θ+2) .

Hence,

LV ∗ ≤ −Mλ0 + λ̃
(

ϵ(θ+1)
(m1+m3ϵ)(θ+2) +

ϵxθ+2

(m1+m3ϵ)(θ+2)

)
+ B̃ + 2σ − b1

2kx
θ+2

= −Mλ0 +
λ̃ϵ(θ+1)

(m1+m3ϵ)(θ+2) +
(

λ̃ϵ
(m1+m3ϵ)(θ+2) −

b1
2k

)
xθ+2 + B̃ + 2σ

≤ −2 + 1 = −1,

by the condition A2, we can get LV ∗ ≤ −1 on D2.
Case 3. If (x, y, u, w) ∈ D3, it yields

LV ∗ ≤ −σxy
w(m1+m2x+m3y)

+ C − b1
4kx

θ+2 − aθ+1
12 b2

4θ+2aθ+2
21

yθ+1

≤ −σ
ϵ(m1+m2ϵ+m3ϵ)

+ C,

where C = sup{− b1
4kx

θ+2− aθ+1
12 b2

4θ+2aθ+2
21

yθ+1+ λ̃xy
m1+m2x+m3y

+B̃+2σ}. By the condition

A3, we can get LV ∗ ≤ −1 on D3.
Case 4. If (x, y, u, w) ∈ D4, it yields

LV ∗ ≤ −σw
u + C − b1

4kx
θ+2 − aθ+1

12 b2

4θ+2aθ+2
21

yθ+1

≤ −σ
ϵ + C,
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which, together with the condition A4, induces that LV
∗ ≤ −1 on D4.

Case 5. If (x, y, u, w) ∈ D5, we can derive

LV ∗ ≤ −σxy
w(m1+m2x+m3y)

+ C − b1
4kx

θ+2 − aθ+1
12 b2

4θ+2aθ+2
21

yθ+1

≤ − b1
4kϵθ+2

+ C.

According to the condition A5, we can deduce that LV ∗ ≤ −1 on D5.
Case 6. If (x, y, u, w) ∈ D6, it yields

LV ∗ ≤ −σxy
w(m1+m2x+m3y)

+ C − b1
4kx

θ+2 − aθ+1
12 b2

4θ+2aθ+2
21

yθ+1

≤ − aθ+1
12 b2

4θ+2aθ+2
21 ϵθ+1

+ C,

which follows from the condition A6 that LV ∗ ≤ −1 on D6.
Case 7. If (x, y, u, w) ∈ D7, we have

LV ∗ ≤ −σxy
w(m1+m2x+m3y)

+ C − σw
u − aθ+1

12

4σθ wθ+1

≤ − aθ+1
12

4σθ(ϵ3)θ+1 + C.

By the condition A7, we can conclude that LV ∗ ≤ −1 on D7.
Case 8. If (x, y, u, w) ∈ D8, one can derive that

LV ∗ ≤ −σxy
w(m1+m2x+m3y)

+ C − σw
u − aθ+1

12

4σθ wθ+1

≤ − aθ+1
12

2θ+3σθ(ϵ2)θ+1 + C.

By the condition A8, we can conclude that LV ∗ ≤ −1 on D8.
So we get that

LV ∗(x, y, u, w) ≤ −1 for any (x, y, u, w) ∈ R4
+ \ Uϵ.

That is, the conditions in Lemma 3.2 hold. Hence, we obtain that system (2.1) has
a solution which is a stationary Markov process. This completes the proof.

4. Main results in the weak kernel case

For the weak kernel K(t) = σe−σt, let

u(t) =

∫ t

−∞
K(t− s)

xy

m1 +m2x+m3y
ds.

Then system (2.1) becomes the following equivalent system:

dx =
(
b1x

(
1− x

k

)
− a12xy

m1+m2x+m3y

)
dt+ α1xdB1(t),

dy = (−b2y + a21u)dt+ α2ydB2(t),

du = σ
(

xy
m1+m2x+m3y

− u
)
dt.

(4.1)
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By similar and simpler method as section 3, we directly draw the following conclu-
sions:

Theorem 4.1. For any given initial value (x(0), y(0), u(0)) ∈ R3
+, there exists a

unique positive solution (x(t), y(t), u(t)) of system (4.1) on t ≥ 0 and the solution
will remain in R3

+ with probability one.

Theorem 4.2. Let (x(t), y(t), u(t)) be a solution of system (4.1) with any initial
value (x(0), y(0), u(0)) ∈ R3

+. Then

(1) If b1 <
α2

1

2 , then lim
t→∞

x(t) = 0 a.s.,

(2) If b1 >
α2

1

2 , then for almost all ω ∈ Ω, we have

lim sup
t→∞

1

t
ln

(√
k

a21b2(m1 +m2k)
y(t) +

1

σ
u(t)

)
≤ µa.s.,

where µ = min{b2, σ}(
√
R0− 1)I{R0≤1}+max{b2, σ}(

√
R0− 1)I{R0≥1}+α1b2

√
R0

2b1

and R0 = a21k
b2(m1+m2k)

. Especially, if µ < 0, then the predator population y will die

out exponentially with probability one, i,e.,

lim
t→∞

y(t) = 0, a.s.

Moreover, the distribution of x(t) converges weakly to the measure which has the
density

π(u) = Qα−2
1 u

−2+
2b1
α2
1 e

− 2b1
kα2

1 , u ∈ (0,∞),

where Q = [α−2
1 (

kα2
1

2b1
)
−1+

2b1
α2
1 Γ( 2b1

α2
1
− 1)]−1 satisfying

∫∞
0

π(u)du = 1.

Theorem 4.3. Assume that b1 >
α2

1

2 , b2 >
α2

2

2 , and RS
0 =

a21k(1−
α2
1

2b1
)3

(m1+m2k)(b2+
α2
2
2 )

>

1. Then system (4.1) exists a solution P ∗(t) ≜ (x∗(t), y∗(t), u∗(t)), which is a
stationary Markov process.

5. Numerical simulations

In this section, we numerically simulate the solutions of system (2.1) with strong
kernel, which illustrate the different dynamics between the deterministic model (1.2)
and the stochastic model (2.1) by Milstiein Higher Order Method [35].
Case 1. We choose a set of parameters:

b1 = 0.4, b2 = 0.2, a12 = 0.1, a21 = 0.2, k = 0.6, σ = 0.8,m1 = 0.1,m2 = 0.5,m3 = 0.3.

Obviously, the condition b2 < a21k
m1+km2

holds. Hence, the deterministic system
(1.2) with the strong kernel has a positive equilibrium (x∗, y∗) = (0.4589, 0.4316),
which is globally asymptotically stable, illustrated in the left graph of Figure 1.
Then we consider the effect of the white noises on the system. There we choose

α1 = 0.05, α2 = 0.02 satisfying b1 >
α2

1

2 . By Theorem 2.2, we know that the prey
will be persistence in mean. The picture also shows that if white noise is small
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Figure 1. Left: The solutions of the stochastic system (2.1) and deterministic system (1.2) with
strong kernel; Right: The density function diagrams of x(t), y(t) with the initial value (x(t), y(t)) =
(0.4, 0.4), t ∈ (−∞, 0].

the predator is also persistence in mean. The results indicate that the stochastic
turbulence has no obvious influence when the white noise is relatively small.

Case 2. We choose the same parameters b1, b2, a12, a21, k, σ,m1,m2,m3 as
Case 1. That is, the positive equilibrium has the same value as Figure 1, illus-
trated in Figure 2. However, when we increase the intensities of white noise as

α1 = 0.9, such that b1 <
α2

1

2 , by Theorem 2.2, we know that the prey will tend to
extinction. Moreover the predator will extinct as prey disappears. The right graph
of the Figure 2 implies that prey-predator species will tend to extinction with the
stronger white noise. Furthermore, if we increase the intensities of the white noises
of the prey and predator, such as α1 = 0.02, α2 = 0.5, by Theorem 2.2, we know
that the predator will tend to extinct, but the prey still tend to persistence in the
mean, which are illustrated in Figure 3.
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