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Abstract This paper addresses the Lagrange stability of memristive neural
networks with leakage delay and time-varying transmission delays as well as
parameter uncertainties. Based on the theory of Filippov’s solution, by us-
ing Lyapunov-Krasovskii functionals and the free-weighting matrix method,
sufficient conditions in terms of linear matrix inequality (LMI) are given to
ascertain the networks with different kinds of activation functions to be stable
in Lagrange sense. Meanwhile the estimation of globally attractive sets are
given. Finally, numerical simulations are carried out to illustrate the effec-
tiveness of theoretical results.
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1. Introduction
In the past few years, there have been increasing research interests in analyzing
the dynamical behaviors of neural networks due to their widespread applications
in various areas, such as optimization, signal processing, pattern recognition and
so on. In these applications, the stability of neural networks is a precondition to
ensure the results to be reliable. Up to now, much work has been done in the filed
of stability of neural networks [1–5]. Most of these researches are about Lyapunov
stability of monostable neural networks with a unique equilibrium attracting all
trajectories asymptotically. However, monostable neural networks have been found
computationally restrictive in many applications and multistable neural networks
may be more appropriate [6, 7]. For example, the neural networks are required to
have multistable equilibria when designed for associative memory or pattern recog-
nition, so that they can get different results with diverse inputs (or initial values). In
these applications, the neural networks are no longer globally stable in Lyapunov
sense and it’s meaningful to analyse their stability in Lagrange sense. Lagrange
stability is concerned with the boundedness and the attractivity of systems. It has
been proved that no equilibrium, chaos attractor or periodic state exists outside
the global attractive set in a Lagrange stable neural network [6, 8]. Moreover, the
global stability in Lyapunov sense can be regarded as a special case of stability in
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Lagrange sense when the attractive set is an equilibrium. So far, some researches
about Lagrange stability of neural networks can be found in [6, 8–14].

Since the first memristor was fabricated by Hewlett-Packard Laboratory [15,16],
it has attracted much attention because of its special features. Electrical measure-
ments showed that memristors can produce many important features of synapses,
such as long term potentiation, long term depression, spike-timing-dependent plas-
ticity, and short term potentiation. Also the distinctive ability to memorize the
passed quantity of electric charge and the nonvolatile nature make memirstor a
potential media for the next generation storage technology. Memristive neural net-
works are constructed by replacing the resistors with memristors in VLSI circuits
of conventional neural networks. This new type of neural networks will provide
the great potential for building a brain-like neural computer by implementing the
synapses of biological brains [17]. In [18], Hu and Wang proposed a simplified math-
ematical model to characterize the pinched hysteretic feature of the memristor. A
memristive neural networks model was given in this paper. The employing of mem-
ristors made the neural networks state-dependent switching. The state-dependent
switching neural networks are discontinuous on the right-hand side, which implies
they have more abundant dynamical behaviors and are more difficult to be inves-
tigated. Moreover, the analysis of dynamical properties for the memristive neural
networks has been found useful to address a number of interesting engineering
tasks [19].

As well known, delays are inherent features in many practical networks. Trans-
mission delays in neural networks can be caused by the finite switching speed of the
neuron amplifiers and the finite signal propagation speed. In [6, 8–10], this kind of
delays were considered when the authors analysed the Lagarange stability of neu-
ral networks. In [20], Gopalsamy proposed a kind of delays called leakage delay.
Leakage delays are introduced to describe that the decay process of neurons is not
instantaneous and time is required to isolate the static state. They always have
a great impact on the dynamical behavior of neural networks [19, 21]. In [11], the
authors studied the Lagrange stability of complex-valued neural networks with leak-
age delay. However, few scholars considered parameter uncertainties in the study of
Lagrange stability for neural networks. Parameter uncertainties may arise because
of the variations in system parameters (temperature variation for example), mod-
eling errors or some ignored factors. These uncertainties may cause the instability
and poor performance [21]. So, it’s important to study the dynamical behaviors of
neural networks by taking the uncertainties into account. In [21] and [22], Xiao et.
al and Song et. al investigated the passivity of conventional and memristive neural
networks with parameter uncertainties, respectively. Comparing with researches on
passivity of neural networks without parameter uncertainties in [23] and [24], their
results are more general and reasonable.

To our best knowledge results on Lagrange stability of memristive neural net-
works with leakage delay and parameters uncertainties have not been reported in the
literature. Compared with traditional neural networks, the dynamical properties of
memristive neural networks are more complex and difficult to analyse. To obtain
more general and applicable results, delays and parameter uncertainties should be
considered in the analysis. These factors also complicate the dynamical behavior of
memristive neural networks, especially the leakage delay. Meanwhile, the activation
functions in neural networks are various, but most of them are Lipschitz continuous
or bounded.
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Motivated by discussion above, the objective of this paper is to study the La-
grange stability of memristive neural networks with leakage delay and time-varying
transmission delays as well as parameters uncertainties. The analysis are argued in
two situations: 1: the activation functions of the memristive neural networks satisfy
Lipshcitz continuity condition. 2: the activation functions are bounded. To deal
with the discontinuity caused by using memristor, we make qualitative analysis of
a relevant differential inclusion under the framework of Filippov’s solution [25]. By
constructing suitable Lyapunov-Krasovskii functionals and using the free-weighting
matrix method, sufficient conditions in terms of LMI are given to ascertain the
network is stable in Lagrange sense. The criteria can be easily checked by Matlab
LMI Toolbox. Meanwhile the according estimation of globally attractive sets are
also given.

The rest of the paper is organized as follows. The model description, some
necessary definitions and lemmas are presented in Section 2. In Section 3, the main
theorems are derived. And then, numerical simulations are given to demonstrate
the effectiveness of the results in Section 4. Finally, we make a summary in Section
5.

Notations: R denotes the set of real numbers, Rn denotes the n-dimensional
Euclidean space. ∥·∥ is the Euclidean norm in Rn. The superscripts AT and A−1

stand for matrix transposition and matrix inverse of A, respectively. ∗ denotes
the symmetric block in symmetric matrix. Throughout this paper, solutions of
all the networks considered are in the Filippov’s sense [25]. Let C([−ρ, 0],Rn)
be the Banach space of continuous functions ψ : [−ρ, 0] → Rn with the norm
∥ψ∥c = sups∈[−ρ,0] ∥ψ(s)∥. For a given constant S > 0, CS is defined as the subset
{ψ ∈ C : ∥ψ∥c < S}. D+V (t) stands for the upper right Dini derivative of V (t).
λmin(·) stands for the minimum eigenvalue of a certain matrix.

2. Model description and Preliminaries
Based on the study of memristive neural networks modeling in [19,26] and researches
about uncertain systems in [21, 22, 27], we consider the following memristive neu-
ral networks with leakage delay and time-varying transmission delays as well as
parameter uncertainties,

ẋ(t) =− (D̂ +∆D)x(t− δ) + (Â+∆A)f(x(t))

+ (B̂ +∆B)f(x(t− τ(t))) + U(t),
(2.1)

where x(t) = (x1(t), x2(t), · · · , xn(t))T ∈ Rn is the state vector of the network at
time t; n corresponds to the number of neurons; f(x(t)) = (f1(x1(t)), f2(x2(t)), · · · ,
fn(xn(t)))

T are the activation functions. U(t) = (u1(t), u2(t), · · · , un(t))T ∈ Rn is
a continuous external input, satisfying |ui(t)| ≤ u∗i , (u

∗
i = maxt≥0 |ui(t)|). Denote

U = (u∗1, u
∗
2, · · · , u∗n)T . δ and τ(t) = (τ1(t), τ2(t), · · · , τn(t))T stand for the leak-

age delay and time-varying transmission delays, respectively. τi(t) are continuous
and satisfy max{τ1(t), τ2(t), · · · , τn(t)} < τ. ∆A,∆B, and ∆D are time-varying
parameter uncertainties, which are assumed to be of the form

∆A = H1T1(t)E1, ∆B = H2T2(t)E2, ∆D = H3T3(t)E3, (2.2)
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where H1,H2,H3, E1, E2, E3 are known real constant matrices of appropriate di-
mensions, T1(t), T2(t), T3(t) are unknown time-varying matrices satisfying

TT
1 (t)T1(t) ≤ I, TT

2 (t)T2(t) ≤ I, TT
3 (t)T3(t) ≤ I. (2.3)

Especially, H3, T3(t), E3 are diagonal matrices.
D̂ = diag(d̂1(x1(t)), d̂2(x2(t)), · · · , d̂n(xn(t))) describes the rate with which each

neuron will reset its potential to the resting state in isolation when disconnected
from the networks and external inputs at time t. Â = (âij(xi(t)))n×n and B̂ =

(b̂ij(xi(t)))n×n are the connection weight matrix and the delay connection weight
matrix, respectively. According to the feature of the memristor and the current-
voltage characteristic, d̂i(xi(t)), âij(xi(t)), b̂ij(xi(t)) satisfy

d̂i(xi(t)) =

d∗i , |xi(t)| ≤ χi,

d∗∗i , |xi(t)| > χi,
âij(xj(t)) =

a∗ij , |xi(t)| ≤ χi,

a∗∗ij , |xi(t)| > χi,

b̂ij(xj(t)) =

 b∗ij , |xi(t)| ≤ χi,

b∗∗ij , |xi(t)| > χi,

in which χi > 0, d∗i > 0, d∗∗i > 0, a∗i , a
∗∗
i , b

∗
i , b

∗∗
i , i, j = 1, 2, · · · , n are constants. De-

note dmax = max{d∗i , d∗∗i , i = 1, 2, · · · , n}. Obviously, for each i and j, d̂i(xi(t)), âij(xj(t))
and b̂ij(xj(t)) have two possible value. A certain state of xi will determine the value
of 2n + 1 of them, thus the combination number of the possible form of D̂, Â and
B̂ is 2n. Order these 2n cases in the following way:

(D1, A1, B1) , (D2, A2, B2) , · · · , (D2n , A2n , B2n) .

Then, at any fixed time t ≥ 0, the form of D̂, Â and B̂ must be one of the 2n cases.
For each case, we define the characteristic function as

Ψi(t) =

 1, D̂ = Di, Â = Ai, B̂ = Bi,

0, otherwise,
i = 1, 2, · · · , 2n. (2.4)

We can easily conclude that
2n∑
i=1

Ψi(t) = 1 and

D̂ =

2n∑
i=1

Ψi(t)Di, Â =

2n∑
i=1

Ψi(t)Ai, B̂ =

2n∑
i=1

Ψi(t)Bi. (2.5)

Then network (2.1) can be rewritten as

ẋ(t) =− (

2n∑
i=1

Ψi(t)Di +∆D)x(t− δ) + (

2n∑
i=1

Ψi(t)Ai +∆A)f(x(t))

+ (

2n∑
i=1

Ψi(t)Bi +∆B)f(x(t− τ(t))) + U(t)

=

2n∑
i=1

Ψi(t)(−(D̂ +∆D)x(t− δ) + (Â+∆A)f(x(t))

+ (B̂ +∆B)f(x(t− τ(t))) + U(t)).

(2.6)
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The initial condition of network (2.1) is given as

xi(t) = ψi(t), t ∈ [−ρ, 0] , ρ = max{δ, τ}.

For any initial condition ψ(t) = [ψ1(t), ψ2(t), · · · , ψn(t)]
T ∈ C, the solution of

network (2.1) that starts from the initial condition ψ will be denoted by x(t, ψ). If
there is no need to emphasize the initial condition, any solution of network (2.1)
will also simply be denoted by x(t).

For the activation functions, we make the following assumptions:
(A1): For i = 1, 2, · · · , n, fi(0) = 0 and there exist constants F−

i , F
+
i such that

F−
i ≤ fi(x1)− fi(x2)

x1 − x2
≤ F+

i ,

for all x1 ̸= x2. We denote

F1 = diag
(
F−
1 F

+
1 , F

−
2 F

+
2 , · · · , F−

n F
+
n

)
,

F2 = diag

(
F−
1 + F+

1

2
,
F−
2 + F+

2

2
, · · · , F

−
n + F+

n

2

)
.

Remark 2.1. The constants F−
i , F

+
i (i = 1, 2, · · · , n) are allowed to be positive,

negative or zero. Hence, this assumption is weaker than the assumptions in [9,11,14].

(A2): For i = 1, 2, · · · , n, fi(x) is bounded, and there exist positive constant hi
such that |fi(x)| < hi. Denote H = (h1, h2, · · · , hn)T .

Definition 2.1. Network (2.1) is said to be uniformly stable in Lagrange sense (or
uniformly bounded), if for any S > 0, there exists a constant κ = κ(S) > 0 such
that ∥x(t, ψ)∥ < κ for all ψ ∈ CS and t ≥ 0.

Definition 2.2. If there exist a radially unbounded and positive definite function
V (x(t)), a functional κ ∈ C, positive constants ℓ, α, such that for any solution
x(t) = x(t, ψ) of network (2.1), V (x(t)) > ℓ, t ≥ 0, implies

V (x(t))− ℓ ≤ κ(ψ) exp(−αt),

then network (2.1) is said to be globally exponentially attractive, and the compact
set Ω := {x ∈ Rn, V (x) < ℓ} is called a globally exponentially attractive set of
network (2.1).

Definition 2.3. Network (2.1) is called globally exponentially stable in Lagrange
sense, if it is both uniformly stable in Lagrange sense and globally exponentially
attractive.

To prove our results, the following lemmas are necessary.

Lemma 2.1 ( [22]). Let h be a positive constant, and P ∈ Rn×n be a positive
definite constant matrix, then(∫ t

t−h

x(s)ds

)T

P

∫ t

t−h

x(s)ds ≤ h

∫ t

t−h

xT (s)Px(s)ds,

for t ≥ 0 and any vector function x(s) ∈ Rn.
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Lemma 2.2 ( [27]). Let H,E and T (t) be real matrices of appropriate dimensions
with T (t) satisfying TT (t)T (t) < I. Then for any scalar ε > 0,

HT (t)E + (HT (t)E)
T ≤ ε−1HHT + εETE.

Lemma 2.3 ( [28]). Let a, b ∈ Rn and Q be a positive definite matrix, then 2aT b ≤
aTQ−1a+ bTQb.

Lemma 2.4 ( [29]). The LMI Y =

 y11 y12
yT12 y22

 < 0 with yT11 = y11, y
T
22 = y22 is

equivalent to one of the following conditions:

(i) y22 < 0, y11 − y12y
−1
22 y

T
12 < 0,

(ii) y11 < 0, y22 − y12
T y−1

11 y12 < 0.

Lemma 2.5 ( [30]). Let V (x(t)) : Rn → R+ be a positive definite and radially
unbounded function, and suppose there exist two positive constants ϖ,π such that

D+V (x(t)) ≤ −ϖV (x(t)) + π, t ≥ t0,

then, when V (x(t)) ≥ π/ϖ, t ≥ t0 have

V (x(t))− π

ϖ
≤

(
V (x(t0))−

π

ϖ

)
e−ϖ(t−t0).

3. Main results
Theorem 3.1. Under assumption (A1), if there exist positive definite matrices
P1, P2, P3, P4, Q1, Q2, Q3, Q4, positive definite diagonal matrices K1,K2, matrices
M1,M2,M3,M4 and positive scalars ε1, ε2, ε3, ε4, ε5, ε6 such that the following LMIs
hold:

Λi =

 Ξi Γ1

ΓT
1 Θ1

 < 0, i = 1, 2, · · · , 2n, (3.1)

where

Γ1 =



0 0 0 0 0 0 M3 0 0 0

0 0 0 0 0 0 0 M4 0 0

0 M2H3 0 M2H1 0 M2H2 0 0 0 M2

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

M1H3 0 M1H1 0 M1H2 0 0 0 M1 0


,

Θ1 = diag(−ε1I,−ε2I,−ε3I,−ε4I,−ε5I,−ε6I,−
Q1

δ
,−Q2

τ
,−Q3,−Q4),
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Ξi =



Σ11 M4 Σ13 Σ14 F2K1 0 Σ17

∗ Σ22 0 0 0 F2K2 0

∗ ∗ Σ33 −P1Di M2Ai M2Bi Σ37

∗ ∗ ∗ Σ44 0 0 −P1

∗ ∗ ∗ ∗ Σ55 0 M1Ai

∗ ∗ ∗ ∗ ∗ Σ66 M1Bi

∗ ∗ ∗ ∗ ∗ ∗ Σ77


,

in which

Σ11 = P1 + P4 −M3 −MT
3 − F1K1 + (1 + δeδ)P3 + δDi

TP2Di − P1Di −Di
TPT

1 ,

Σ22 = −F1K2 −M4 −MT
4 ,Σ13 = P1Di +M3,

Σ33 = −P3 −M2Di −Di
TMT

2 + (ε1 + ε2)E3E
T
3 ,

Σ14 = P1Di − P1,Σ44 = P1 − P2

δeδ
,Σ55 = −K1 + (ε3 + ε4)E1E

T
1 ,

Σ66 = −K2 + (ε5 + ε6)E2E
T
2 ,Σ17 = P1 + P4,Σ37 = −M1Di −M2,

Σ77 = eδδQ1 + eττQ2 −M1 −MT
1 .

Then (2.1) is globally exponentially stable in Lagrange sense, and

Ω1 =

{
x(t) ∈ Rn, ∥x(t)∥ ≤

√
UT (Q3 +Q4)U

λmin(P1)
eδdmax

}

∩

{
x(t) ∈ Rn, ∥x(t)∥ ≤

√
UT (Q3 +Q4)U

λmin(P4)

}
is a globally exponentially attractive set of network (2.1).

Proof. Employ the following Lyapunov-Krasovskii functional:

V (t) = V1(t) + V2(t) + V3(t) + V4(t), (3.2)

where

V1(t) =

(
x(t)− D̂

∫ t

t−δ

x(s)ds

)T

P1

(
x(t)− D̂

∫ t

t−δ

x(s)ds

)
,

V2(t) =

∫ 0

−δ

∫ t

t+θ

es−t

(
x(s)

T
D̂TP2D̂x(s) + eδx(s)

T
P3x(s) + eδẋT (s)Q1ẋ(s)

)
dsdθ,

V3(t) =

∫ 0

−τ

∫ t

t+θ

es−t+τ ẋT (s)Q2ẋ(s)dsdθ,

V4(t) =x
T (t)P4x(t) +

∫ t

t−δ

xT (s)P3x(s)ds.

By computing the upper right Dini derivative of V (t) along the solutions of network
(2.1), we can derive that

D+V (t) = D+V1(t) +D+V2(t) +D+V3(t) +D+V4(t), (3.3)



248 L.C. Li, R. Xu & J.Z. Lin

where

D+V1(t) =2

(
x(t)− D̂

∫ t

t−δ

x(s)ds

)T

P1

(
ẋ(t)− D̂x(t) + D̂x(t− δ)

)
,

D+V2(t) =− V2(t) + δxT (t)D̂TP2D̂x(t) + eδδx(t)TP3x(t)

+ eδδẋT (t)Q1ẋ(t)−
∫ t

t−δ

es−txT (s)D̂TP2D̂x(s)ds

−
∫ t

t−δ

es−t+δxT (s)P3x(s)ds−
∫ t

t−δ

es−t+δẋT (s)Q1ẋ(s)ds,

D+V3(t) =− V3(t) + eττ ẋT (t)Q2ẋ(t)−
∫ t

t−τ

es−t+τ ẋT (s)Q2ẋ(s)ds,

D+V4(t) =2xT (t)P4ẋ(t) + xT (t)P3x(t)− xT (t− δ)P3x(t− δ).

(3.4)

Obviously,

−
∫ t

t−δ

es−t+δxT (s)P3x(s)ds ≤ −
∫ t

t−δ

xT (s)P3x(s)ds, (3.5)

−
∫ t

t−δ

es−t+δẋT (s)Q1ẋ(s)ds ≤ −
∫ t

t−δ

ẋT (s)Q1ẋ(s)ds, (3.6)

−
∫ t

t−τ

es−t+τ ẋT (s)Q2ẋ(s)ds ≤ −
∫ t

t−τ

ẋT (s)Q2ẋ(s)ds. (3.7)

It follows from Lemma 2.1 that

−
∫ t

t−δ

es−txT (s)D̂TP2D̂x(s)ds

≤− e−δ

δ

∫ t

t−δ

xT (s)dsD̂TP2D̂

∫ t

t−δ

x(s)ds.

(3.8)

According to (2.1), we have

0 =
(
2ẋT (t)M1 + 2xT (t− δ)M2

)
[−ẋ(t)− D̂x(t− δ) + Âf(x(t))

+ B̂f(x(t− τ(t)))−∆Dx(t− δ) + ∆Af(x(t))

+ ∆Bf(x(t− τ(t))) + U(t)].

By Lemma 2.2, we can get that

−
(
2ẋT (t)M1 + 2xT (t− δ)M2

) (
−∆Dx(t− δ) + ∆Af(x(t))

+ ∆Bf(x(t− τ(t)))
)

≤x(t− δ)
[
ε−1
2 M2H3H

T
3 M

T
2 + (ε1 + ε2)E3E

T
3

]
x(t− δ)

+ ε−1
1 ẋT (t)M1H3H

T
3 M

T
1 ẋ(t)

+ ε−1
3 ẋT (t)M1H1H

T
1 M

T
1 ẋ(t) + ε−1

4 xT (t− δ)M2H1H
T
1 M

T
2 x(t− δ)

+ (ε3 + ε4) f
T (x(t))E1E

T
1 f(x(t))

+ ε−1
5 ẋT (t)M1H2H

T
2 M

T
1 ẋ(t) + ε−1

6 xT (t− δ)M2H2H
T
2 M

T
2 x(t− δ)

+ (ε5 + ε6) f
T (x(t− τ(t)))E2E

T
2 f(x(t− τ(t))).

(3.9)
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By Lemma 2.3, we obtain

(
2ẋT (t)M1 + 2xT (t− δ)M2

)
U(t)

≤ẋT (t)M1Q
−1
3 MT

1 ẋ(t) + xT (t− δ)M2Q
−1
4 MT

2 x(t− δ)

+ UT (t) (Q3 +Q4)U(t),

(3.10)

By Newton-Leibniz formulation, we have

0 =− 2xT (t)M3(x(t)− x(t− δ)−
∫ t

t−δ

ẋ(s)ds),

0 =2xT (t− τ(t))M4(x(t)− x(t− τ(t))−
∫ t

t−τ(t)

ẋ(s)ds).

(3.11)

By Lemmas 2.1 and 2.3 and noting that 0 ≤ τi(t) ≤ τ, i = 1, 2, · · · , n, it can be
derived from (3.11) that

0 ≤xT (t)
(
−2M3 + δM3Q

−1
1 MT

3

)
x(t) + 2xT (t)M3x(t− δ)

+

∫ t

t−δ

ẋT (s)Q1ẋ(s)ds,

0 ≤xT (t− τ(t))(−2M4 + τM4Q
−1
2 MT

4 )x(t− τ(t)) +

∫ t

t−τ

ẋT (s)Q2ẋ(s)ds

+ 2xT (t− τ(t))M4x(t).

For positive diagonal matrices K1,K2, it follows from assumption (A1) and the
proof of Theorem 3.1 in [31] that

0 ≤

 x(t)

f(x(t))

T −F1K1 F2K1

F2K1 −K1

 x(t)

f(x(t))

 ,
0 ≤

 x(t− τ(t))

f(x(t− τ(t)))

T −F1K2 F2K2

F2K2 −K2

 x(t− τ(t))

f(x(t− τ(t)))

 .
(3.12)

Then it follows from (3.3) to (3.12) that

D+V (t) ≤− V (t) + ηT (t)Ξη(t)− ηT (t)Γ1Θ
−1
1 ΓT

1 η(t)

+ UT (t) (Q3 +Q4)U(t),
(3.13)

where

η(t) =

[
xT (t), xT (t− τ(t)), xT (t− δ),

∫ t

t−δ

xT (s)dsD̂T , fT (x(t)), fT (x(t− τ(t))), ẋT (t)

]T
,
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Ξ =



Σ̂11 M4 Σ̂13 Σ̂14 F2K1 0 Σ̂17

∗ Σ̂22 0 0 0 F2K2 0

∗ ∗ Σ̂33 −P1D̂ M2Â M2B̂ Σ̂37

∗ ∗ ∗ Σ̂44 0 0 −P1

∗ ∗ ∗ ∗ Σ̂55 0 M1Â

∗ ∗ ∗ ∗ ∗ Σ̂66 M1B̂

∗ ∗ ∗ ∗ ∗ ∗ Σ̂77


,

in which

Σ̂11 = P1 + P4 −M3 −MT
3 − F1K1 + (1 + δeδ)P3 + δD̂TP2D̂ − P1D̂ − D̂TPT

1 ,

Σ̂22 = −F1K2 −M4 −MT
4 , Σ̂13 = P1D̂ +M3,

Σ̂33 = −P3 −M2D̂ − D̂TMT
2 + (ε1 + ε2)E3E

T
3 ,

Σ̂14 = P1D̂ − P1, Σ̂44 = P1 − P2

δeδ
, Σ̂55 = −K1 + (ε3 + ε4)E1E

T
1 ,

Σ̂66 = −K2 + (ε5 + ε6)E2E
T
2 , Σ̂17 = P1 + P4, Σ̂37 = −M1D̂ −M2,

Σ̂77 = eδδQ1 + eττQ2 −M1 −MT
1 .

We can derive from (2.5) and (3.1) that

2n∑
i=1

Ψi(t)Λi < 0.

By Lemma 2.4, we have
Ξ− Γ1Θ

−1
1 ΓT

1 < 0. (3.14)
Substituting (3.14) into (3.13) yields

D+V (t) ≤ −V (t) + UT (Q3 +Q4)U.

By Lemma 2.5, we can get when t ≥ 0, V (x(t)) ≥ UT (Q3 +Q4)U ,

V (x(t))− UT (Q3 +Q4)U ≤
(
V (x(0))− UT (Q3 +Q4)U

)
e−t,

so that network (2.1) is globally exponentially attractive. From the following in-
equality

λmin(P4)∥x(t)∥2 ≤ V (x(t)) ≤ V (x(0)) + UT (Q3 +Q4)U,

we have
∥x(t)∥2 ≤ V (x(0)) + UT (Q3 +Q4)U

λmin(P4)
,

network (2.1) is uniformly bounded. Then (2.1) is globally exponentially stable in
Lagrange sense. By Definition 2.2 and solving the following inequalities

λmin(P1)

∥∥∥∥x(t)−D

∫ t

t−δ

x(s)ds

∥∥∥∥2 ≤ V1(x(t), t) ≤ UT (Q3 +Q4)U,

λmin(P4)∥x(t)∥2 ≤ V4(x(t), t) ≤ UT (Q3 +Q4)U,
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we obtain that

Ω1 =

{
x(t) ∈ Rn, ∥x(t)∥ ≤

√
UT (Q3 +Q4)U

λmin(P1)
eδdmax

}

∩

{
x(t) ∈ Rn, ∥x(t)∥ ≤

√
UT (Q3 +Q4)U

λmin(P4)

}
.

This completes the proof.

Remark 3.1. In Theorem 3.1, when there are no external inputs, the original
point is the globally exponentially attractive set, the neural network is globally
exponentially stable in Lyapunov sense. Meanwhile, the criterion is dependent on
both leakage delay and the upper bound of transmission delays, which implicates
that the information on the sizes of delays is sufficiently utilized.

Theorem 3.2. Under assumption (A2), if there exist positive definite matrices
P1, P2, P3, P4, Q1, Q2, Q3, matrices M1,M2 and positive scalars ε1, ε2, ε3 such that
the following LMIs hold:

Πi =

 Zi Γ2

ΓT
2 Θ2

 < 0, i = 1, 2, · · · , 2n, (3.15)

where

Γ2 =


0 0 0 0 0 0

M2H3 M2H1 M2H2 M2Ai M2Bi M2

0 0 0 0 0 0

M1H3 M1H1 M1H2 M1Ai M1Bi M1

 ,
Θ2 = diag(−ε1I,−ε2I,−ε3I,−Q1,−Q2,−Q3),

Zi =


Σ1 P1Di P1Di − P P1 + P4

∗ Σ2 −P1Di −M1Di −M2

∗ ∗ Σ3 −P1

∗ ∗ ∗ −M1 −MT
1

 ,
in which

Σ1 = P1 + P4 + (1 + δeδ)P3 + δDT
i P2Di − P1Di −DT

i P
T
1 ,

Σ2 = −P3 −M2Di −DT
i M

T
2 + ε1E3E

T
3 ,

Σ3 = P1 −
P2

δeδ
,

then (2.1) is globally exponentially stable in Lagrange sense, and

Ω2 =

{
x(t) ∈ Rn, ∥x(t)∥ ≤

√
W

λmin(P1)
eδdmax

}
∩

{
x(t) ∈ Rn, ∥x(t)∥ ≤

√
W

λmin(P4)

}
is a globally exponentially attractive set of network (2.1), in which W = ε2H

TET
1 E1H+

ε3H
TET

2 E2H +HTQ1H +HTQ2H + UTQ3U .
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Proof. Employ the following Lyapunov-Krasovskii functional:

V (t) = V1(t) + V2(t) + V3(t), (3.16)

where

V1(t) =

(
x(t)− D̂

∫ t

t−δ

x(s)ds

)T

P1

(
x(t)− D̂

∫ t

t−δ

x(s)ds

)
,

V2(t) =

∫ 0

−δ

∫ t

t+θ

es−t
(
x(s)TD̂TP2D̂x(s) + eδx(s)TP3x(s)

)
dsdθ,

V3(t) =x
T (t)P4x(t) +

∫ t

t−δ

xT (s)P3x(s)ds.

(3.17)

The upper right Dini derivative of V (t) along the solutions of network (2.1) can
be computed as the sum of D+V1(t), D

+V2(t) and D+V4(t) in the proof of Theorem
1. We also bring in free-weighting matrices M1 and M2 as we did in the proof of
Theorem 3.1,

0 =
(
2ẋT (t)M1 + 2xT (t− δ)M2

)
[−ẋ(t)− D̂x(t− δ) + Âf(x(t))

+ B̂f(x(t− τ(t)))−∆Dx(t− δ) + ∆Af(x(t)) + ∆Bf(x(t− τ(t))) + U(t)].

Denote ξ(t) =
[
xT (t), xT (t− δ),

∫ t

t−δ
xT (s)dsD̂T , ẋT (t)

]T
. By Lemma 2.2, we can

get that

−
(
2ẋT (t)M1 + 2xT (t− δ)M2

)
(−∆Dx(t− δ) + ∆Af(x(t)) + ∆Bf(x(t− τ(t))))

≤ε−1
1 ξT (t)


0

M2

0

M1

H3H
T
3


0

M2

0

M1



T

ξ(t) + ε−1
2 ξT (t)


0

M2

0

M1

H1H
T
1


0

M2

0

M1



T

ξ(t)

+ ε1x(t− δ)E3E
T
3 x(t− δ) + ε2f

T (x(t))E1E
T
1 f(x(t))

(3.18)

+ ε−1
3 ξT (t)


0

M2

0

M1

H2H
T
2


0

M2

0

M1



T

ξ(t) + ε3f
T (x(t− τ(t)))E2E

T
2 f(x(t− τ(t))).
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By Lemma 2.3, we can derive that(
2ẋT (t)M1 + 2xT (t− δ)M2

)
[Âf(x(t)) + B̂f(x(t− τ(t))) + U(t)]

≤ξT (t)


0

M2

0

M1

 ÂQ
−1
1 ÂT


0

M2

0

M1



T

ξ(t) + ξT (t)


0

M2

0

M1

 B̂Q
−1
2 B̂T


0

M2

0

M1



T

ξ(t)

+ fT (x(t))Q1f(x(t)) + fT (x(t− τ(t)))Q2f(x(t− τ(t)))

+ ξT (t)


0

M2

0

M1

Q
−1
3


0

M2

0

M1



T

ξ(t) + UT (t)Q3U(t),

(3.19)

Substituting (3.17)-(3.19) into D+V (t) yields

D+V (t) ≤− V (t) + ξT (t)


Σ̂1 P1D̂ P1D̂ − P1 P1 + P4

∗ Σ̂2 P1D̂ −M1D̂ −M2

∗ ∗ Σ3 −P1

∗ ∗ ∗ −M1 −MT
1

 ξ(t)

− ξT (t)Γ̂2Θ2
−1Γ̂T

2 ξ(t) + UT (t)Q3U(t)

+ ε3f
T (x(t− τ(t)))E2E

T
2 f(x(t− τ(t)))

+ ε2f
T (x(t))E1E

T
1 f(x(t)) + fT (x(t))Q1f(x(t))

+ fT (x(t− τ(t)))Q2f(x(t− τ(t))),

(3.20)

where

Γ̂2 =


0 0 0 0 0 0

M2H3 M2H1 M2H2 M2Â M2B̂ M2

0 0 0 0 0 0

M1H3 M1H1 M1H2 M1Â M1B̂ M1

 ,

Σ̂1 = P1 + P4 + (1 + δeδ)P3 + δD̂TP2D̂ − P1D̂ − D̂TPT
1 ,

Σ̂2 = −P3 −M2D̂ − D̂TMT
2 + ε1E3E

T
3 .

We can derive from (2.5) and (3.15) that

2n∑
i=1

Ψi(t)Πi < 0. (3.21)
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According to Lemma 2.4, (3.21) is equivalent to
Σ̂1 P1D̂ P1D̂ − P1 −P1 + P4

∗ Σ̂2 −P1D̂ −M1D̂ −M2

∗ ∗ Σ̂3 0

∗ ∗ ∗ −M1 −MT
1

− Γ̂2Θ2
−1Γ̂T

2 < 0. (3.22)

It follows from (3.20),(3.22) and assumption (A2) that

D+V (t) ≤− V (t) + ε2H
TET

1 E1H +HTQ1H

+ ε3H
TET

2 E2H +HTQ2H + UTQ3U.
(3.23)

By Lemma 2.5, we can get when t ≥ 0, V (x(t)) ≥W ,

V (x(t))−W ≤ (V (x(0))−W ) e−t. (3.24)

(3.24) shows that network (2.1) is globally exponentially attractive.
Finally, by a similar discussion as the proof of Theorem 3.1, we can get that

network (2.1) is globally exponentially stable in Lagrange sense. Moreover,

Ω2 =

{
x(t) ∈ Rn, ∥x(t)∥ ≤

√
W

λmin(P1)
eδdmax

}
∩

{
x(t) ∈ Rn, ∥x(t)∥ ≤

√
W

λmin(P4)

}

is a globally exponentially attractive set of network (2.1). This completes the proof.

Remark 3.2. Obviously, Theorems 2.1 and 2.2 also work for traditional neural
networks. Moreover, our results generalized some work of stability for neural net-
works without parameter uncertainties. The model in this paper is more general
than the models in [6, 8, 9], so our results can extend these work.

Remark 3.3. The criteria in Theorems 2.1 and 2.2 are given in terms of LMI. They
can be easily checked by Matlab LMI Toolbox. Actually, in this paper the criteria
essentially ensure the Lagrange stability of each subsystem (neural network with a
possible group of parameters Di, Ai and Bi, i = 1, 2, · · · , 2n). For each LMI, if there
exist feasible solutions, then the corresponding subsystem is globally exponentially
stable in Lagrange sense. Meanwhile, we can get a globally exponentially attractive
set for the subsystem. If all of the LMIs can be satisfied by different groups of
feasible solutions, the memristive neural network is also globally exponentially stable
in Lagrange sense. And its globally exponentially attractive set is the union of the
globally exponentially attractive sets for the subsystems. In this way, the conditions
can be relaxed.

4. Numerical simulations
In this section, two numerical examples are provided to demonstrate the effective-
ness of the theorems.



Global Exponential Stability in Lagrange Sense for Delayed Memristive Neural Networks 255

We consider the following two-dimensional memristive neural networks,

ẋ(t) =− (D̂ +∆D)x(t− δ) + (Â+∆A)f(x(t)) + (B̂ +∆B)f(x(t− τ(t)))

+ U(t),
(4.1)

where D̂ = diag
(
d̂1(x1(t)), d̂2(x2(t))

)
, Â = (âij(xi(t)))2×2, B =

(
b̂ij(xi(t))

)
2×2

.

Example 4.1. Set

d̂1(x1(t)) =

1.8, |x1(t)| ≤ 1,

1.6, |x1(t)| > 1,
d̂2(x2(t)) =

1.8, |x2(t)| ≤ 1,

2, |x2(t)| > 1,

â11(x1(t)) =

0.3, |x1(t)| ≤ 1,

0.5, |x1(t)| > 1,
â12(x1(t)) =

0.3, |x1(t)| ≤ 1,

−1.2, |x1(t)| > 1,

â21(x1(t)) =

−0.2, |x2(t)| ≤ 1,

−0.3, |x2(t)| > 1,
â22(x2(t)) =

0.1, |x2(t)| ≤ 1,

−0.1, |x2(t)| > 1,

b̂11(x1(t)) =

 0.6, |x1(t)| ≤ 1,

0.3, |x1(t)| > 1,
b̂12(x1(t)) =

−1, |x1(t)| ≤ 1,

−0.8, |x1(t)| > 1,

b̂21(x2(t)) =

−0.3, |x2(t)| ≤ 1,

−0.1, |x2(t)| > 1,
b̂22(x2(t)) =

0.3, |x2(t)| ≤ 1,

0.2, |x2(t)| > 1,

δ = 0.05, τ1(t) = 0.2+0.1 sin(t), τ2(t) = 0.2+0.1 cos(t). The parameter uncertainties
are selected as

H1 = H2 = H3 =

0.1 0

0 0.1

 , E1 =

 0.2 0.1

0.1 0.1

 , E2 =

0.2 0.1

0.1 0.2

 ,
E3 =

0.3 0

0 0.3

 , T1(t) =
−tanh (t) 0

0 −tanh (t)

 , T2(t) =
 cos(10t) 0

0 cos(10t)

 ,
T3(t) =

 tanh (t) 0

0 tanh (t)

 .

In this example we choose the extern inputs as U(t) = (0.2 cos(t), 0.5 sin(t))T , and
the activation functions are f1(x) = f2(x) = tanh (x)− x. Then we solve the LMIs
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in Theorem 3.1. The following feasible solutions can be obtained:

ε1 = 5.1768, ε2 = 5.0711, ε3 = 11.1292, ε4 = 11.1275, ε5 = 7.4632, ε6 = 7.4606,

P1 =

 0.1025 −0.0528

−0.0528 0.4342

 , P2 =

 0.9991 −0.0585

−0.0585 1.5315

 , P3 =

 12.8185 1.2202

1.2202 33.9103

 ,
P4 =

5.1890 0.7918

0.7918 16.0388

 , Q1 =

6.6130 1.5160

1.5160 12.2393

 , Q2 =

1.1963 0.4767

0.4767 2.8155

 ,
Q3 =

 45.1196 4.7090

4.7090 77.5548

 , Q4 =

 49.8750 9.8697

9.8697 64.3301

 ,K1 =

5.5458 0

0 11.9692

 ,
K2 =

5.5458 0

0 11.9692

 ,M1 =

1.5604 0.5779

0.5779 5.8099

 ,M2 =

3.5388 1.0666

1.0666 9.5785

 ,
M3 =

17.4469 2.2483

2.2483 50.5540

 ,M4 =

 2.0798 −0.0198

−0.0198 4.7619

 .
Therefore, network (4.1) is globally exponentially stable in Lagrange sense accord-
ing to Theorem 3.1. Moreover, Ω1 =

{
x ∈ R2 |∥x∥ < 2.8672

}
is a globally expo-

nentially attractive set. By choosing 20 random initial values (x1(t) = r1, x2(t) =
r2, t ∈ [−ρ, 0] , ρ = max{δ, τ}, r1, r2 are random constants), the state trajectories of
network (4.1) are shown in Figure 1.
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Figure 1. The state trajectories of network (4.1) in Example 4.1

To show that the leakage delay and parameter uncertainties can cause the neural
networks instability and poor performance, we change the value of δ and E1 in
Example 4.1 and simulate the changed neural networks as comparisons.

Example 4.2. For neural network (4.1), select δ = 0.7 and other parameters the
same as they were in Example 4.1. Choosing 20 random initial values, the state
trajectories of network (4.1) are shown in Figure 2.

Example 4.3. For neural network (4.1), select E1 =

2 1

1 1

 and other parameters
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Figure 2. The state trajectories of network (4.1) in Example 4.2

the same as they were in Example 4.1. Choosing 20 random initial values, the state
trajectories of network (4.1) are shown in Figure 3.
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Figure 3. The state trajectories of network (4.1) in Example 4.3

Example 4.4. For neural network (4.1) we set δ = 0.1, τ1(t) = 1.5, τ2(t) = 1.3.
The extern inputs U(t) are chosen as (0, 0)T . In this example we select a bounded
nonmonotonic piecewise function as the activation function. The function takes the
following form

f(t) =



1 t > 2,

− t+ 1 0.5 < t ≤ 2,

t 0 < t ≤ 0.5,

t+ 1 −0.5 < t ≤ 0,

1 t ≤ −0.5.

Other parameters are the same they were in Example 4.1. Solving the LMIs in the
criterion of Theorem 3.2, we can get the following feasible solutions:

ε1 = 3.4885, ε2 = 3.4885, ε3 = 3.4885,
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Figure 4. The state trajectories of network (4.1) in Example 4.4

P1 =

1.1582 0.0599

0.0599 1.9003

 , P2 =

0.7264 0.0109

0.0109 0.8853

 , P3 =

0.6039 0.0643

0.0643 1.7358

 ,
P4 =

0.1411 0.0144

0.0144 0.3232

 , Q1 =

 3.9186 −0.6847

−0.6847 5.2634

 , Q2 =

 3.6138 −0.3716

−0.3716 4.4454

 ,
Q3 =

4.8484 0.0037

0.0037 4.7143

 ,M1 =

1.1326 0.0469

0.0469 1.3545

 ,M2 =

1.3115 0.0317

0.0317 1.5515

 ,
By Theorem 3.2, network (4.1) is globally exponentially stable in Lagrange sense,
and Ω2 =

{
x ∈ R2 |∥x∥ < 4.5789

}
is a globally exponentially attractive set. Choos-

ing 20 random initial values, the state trajectories of network (4.1) are shown in
Figure 4.

The simulation results of Example 4.1 illustrated that Theorem 3.1 is feasible.
As comparisons, the results of Examples 4.2 and 4.3 showed the necessity of tak-
ing leakage delay and parameter uncertainties into consideration in modeling. The
simulation results of Example 4.4 demonstrated that Theorem 3.2 works. The tra-
jectories showed that neural network (4.1) in Example 4.4 is not stable in Lyapunov
sense. However, by Theorem 3.2, we know the network is globally exponentially
stable in Lagrange sense, which means that no positive invariant sets outside the
globally attractive set.

5. Summary
In this paper, a class of memristive neural networks with leakage delay and time-
varying transmission delays as well as parameter uncertainties was investigated. We
made qualitative analysis of a relevant differential inclusion under the framework
of Filippov’s solution to solve the discontinuity caused by using memristor in the
neural networks. Then, by constructing suitable Lyapunov-Krasovskii functionals
and using the free-weighting matrix method, sufficient conditions in terms of LMIs
were given to ascertain the neural network with Lipschitz continuous activation
functions and bounded activation functions to be stable in Lagrange sense. Finally,
we made four numerical simulations, the simulations’ results showed the necessity
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of taking leakage delay and parameter uncertainties into consideration in modeling
and illustrated that our theoretical results are effective.
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