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Basic Reproduction Number in a Growing
Population

Yuzhen Chai1 and Junling Ma2,†

Abstract The basic reproduction number of a fast disease epidemic on a
slowly growing network may increase to a maximum then decrease to its equi-
librium value while the population increases, which is not displayed by classical
homogeneous mixing disease models. In this paper, we show that, by properly
keeping track of the dynamics of the per capita contact rate in the population
due to population dynamics, classical homogeneous mixing models show simi-
lar non-monotonic dynamics in the basic reproduction number. This suggests
that modeling the dynamics of the contact rate in classical disease models with
population dynamics may be important to study disease dynamics in growing
populations.
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1. Introduction
Contact networks are graphs representing the person-to-person contact structure in
a population, in which the nodes represent individuals and the edges represent con-
tacts (see, e.g., [1] and [8, Chapter 17]). They are more realistic than homogeneous
mixing models to describe the heterogeneous and long-term nature of human con-
tacts. Not surprisingly, they give predictions that cannot be easily reproduced in ho-
mogeneously mixing models. For example, on networks, the Susceptible-Infectious
Susceptible models (or SIS, for diseases without acquired immunity) have a larger
basic reproduction number than that of the Susceptible-Infectious-Removed models
(or SIR, for diseases with lifetime acquired immunity) with the same disease and
contact parameters [7], due to that fact that the long-term contacts allows multiple
transmissions along an edge for SIS models, but not for SIR models. In addition,
network SIS models introduces correlations in the infection status of neighboring
nodes [4]. These cannot be observed in homogeneous mixing models.

Interestingly, Yuan et al. [10] shows another feature of network disease models,
that the basic reproduction number R0 may display non-monotonic behavior in a
growing population, i.e., R0 may increase to a maximum then decrease to an equi-
librium value while the population increases to an equilibrium. There have been
extended studies in homogeneous mixing disease models with population dynamics
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(see, e.g., [5,6] and [2, Section 10.2]). These studies assume that the per-capita con-
tact rate either is a constant, or scales monotonically with the population size. Yet,
none has shown such non-monotonic dynamics in the basic reproduction number as
predicted by the network models.

We conjecture that this non-monotonic behavior is the result of precise counting
of contacts in networks models, which has always been neglected in homogeneous
mixing models. Specifically, for a population with N individuals and a per capita
contact β, i.e., a total contact rate if βN in the population, when one individual
leaves, his/her contacts are also removed. Because contacts are mutual, this must
cause the peers of his/her contacts to have a lower contact rate. On the other hand,
if one extra individual comes in with a contact rate β, he must contact others who
already have a contact rate β, and thus increase their contact rate. We propose
that if we properly count for the change in per capita contact rate by counting
the dynamics of total contact rate in the population, then the homogeneous mixing
models will show similar non-monotonic behavior in R0.

In Section 2, we construct a mathematical model that incorporates the dynamics
of the per capita contact rate due to a slow population dynamics, and study the
basic reproduction number of a fast disease dynamics (during which the population
size can be regarded as a constant). This model is analyzed in Section 3 and is
shown to have a non-monotonic dynamics for R0. Concluding remarks are given in
Section 4.

2. Model
The main goal of this paper is to model the change of the per capita contact rate in a
growing homogeneously mixed population. To do so, we assume a simple population
dynamics: the births (or immigrations) are assumed to be a constant λ, and the
per capita death rate µ is also a constant. Thus, the population size N(τ) at time
τ can be modeled as

dN

dτ
= λ− µN .

Here we model the total contact rate in the population at time τ , C(τ), and
then compute the per capita contact rate β(τ) from C(τ) as

β(τ) =
C(τ)

N(τ)
,

because we assume a homogeneous population, and thus every individual has the
same per capita contact rate at time τ . This idea is well summarized in [3, Page
33].

Assume that each incoming individual brings in β0 contacts per unit time, to
random individuals in the population. Thus, the total λβ0 incoming contact rate
causes an increase of the same amount in the total contact rate C(τ) among the
original individuals the population. Thus, C(τ) increases by 2λβ0 per unit time.
On the other hand, when an individual leaves (or dies), he/she takes away his/her
β(τ) contacts per unit time, and at the same time, causing a decrease of β(τ) in
the total contact rate C(τ) among the remaining individuals. Thus the total rate
of contacts in the population decreases by an amount

2µN(τ)β(τ) = 2µC(τ) .
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per unit time. In summary,

dC

dτ
= 2λβ0 − 2µC .

This gives us the dynamics of the per capita contact rate β(t):

dβ

dτ
=

d

dτ

(
C

N

)
= λ

2β0 − β

N
− µβ .

We assume that the disease dynamics is much faster than the population dy-
namics, i.e., during an epidemic, the population can be regarded constant. For
simplicity, and to compare with the network model results, we assume an SIR dis-
ease dynamics. In addition, because of the assumed separation of timescales, the
births and deaths are neglected during the disease epidemic. Assuming that the
disease invades at time τ in the slow (population dynamics) timescale, which corre-
sponds to time t = 0 in the fast (epidemic) timescale. Letting S(t), I(t), an R(t) be
the number of susceptible, infectious and recovered individuals in the population
at time t, respectively, the SIR model can be written as

dS

dt
= −β(τ)

SI

N
, (2.1a)

dI

dt
= β(τ)

SI

N
− γI , (2.1b)

dR

dt
= γI , (2.1c)

where γ is the recovery rate (i.e., the infectious period is exponentially distributed
with mean 1/γ). The basic reproduction number R0(τ) for a disease introduced at
time τ of the slow timescale, can be computed as [9]

R0 =
β(τ)

γ
, (2.2)

which is proportional to β(τ). That is, the dynamics of β(τ) completely determines
that of R0(τ). Specifically, we choose the proper timescale so that γ = 1, i.e., the
unit time in the disease dynamics is the mean infectious period, then R0(τ) = β(τ).
We thus use β(τ) and N(τ) to describe the dynamics of the basic reproduction
number R0(τ) for a disease introduced at time τ of the population growth process,
which can be summarized as

dN

dτ
= λ− µN , (2.3a)

dβ

dτ
= λ

2β0 − β

N
− µβ . (2.3b)

3. Analysis
The system (2.3) has a unique equilibrium (N∗ = λ/µ, β∗ = β0).

To analyze the dynamics of (2.3), non-dimensionalize the system with the trans-
formation s = µτ , N = N∗x, β = β∗y, giving

dx

ds
= 1− x , (3.1a)
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Figure 1. The phase plot of the non-dimensionalized model (3.1). The solid lines are trajectories
starting from different initial conditions, and the dashed line is the y-nullcline of (3.1). The scaled
average contact rate y(s) first increases to a maximum then decreases to its equilibrium if the initial
population size x(0) is less than the equilibrium population size.

dy

ds
=

2

x
− (

1

x
+ 1)y , (3.1b)

with an equilibrium (x∗ = 1, y∗ = 1).
The phase plot of this simple system is illustrated in Figure 1 for different

initial conditions. This system is solvable analytically. With the initial condition
x(0) = x0, (3.1a) gives

x(s) = 1 + (x0 − 1)e−s , (3.2)

which can then be then substituted in (3.1b), together with y(0) = y0,

y(s) =
1

1 + (x0 − 1)e−s
+ (x0y0 − 1)

e−2s

1 + (x0 − 1)e−s
. (3.3)

Note that, with 0 < x0 < 1, x(s) monotonically increases to x = 1. On the other
hand, dy/ds is positive for 2 > (x + 1)y and negative for 2 < (x + 1)y. Thus with
y0 < 1, y(s) may either increase monotonically to reach a maximum on (x+1)y = 2
then decrease to y = 1 or increase monotonically to y = 1 . Consequently, the
behavior of y(s) is uniquely determined by the sign of dy/ds about the equilibrium
(1, 1). As s → ∞,

dy

ds
=

(x0 − 1)e−s

[1 + (x0 − 1)e−s]2
+ o(e−s) .

Hence, if x0 < 1, then dy
ds < 0 about the equilibrium, and thus y(s) reaches the

equilibrium from above. In this case, y(s) reaches its maximum with above y = 1
and then decreases to y = 1. On the other hand, if x0 > 1, then y(s) increase
monotonically to y = 1.

This is the same kind of dynamics on basic reproduction number that we ob-
served in network models in [10].
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4. Concluding Remarks
In the introduction we have conjectured that the non-monotonic dynamics of the
basic reproduction number as a function of the invasion time in a growing network
is not observed in a homogeneous population, because network models keep tract
of the dynamics of the contacts more precisely. On the other hand, popular ho-
mogeneous mixing models naively assume that the per capita contact rate either
remains constant or scales non-monotonically with the population size in a changing
population. We have also hypothesized that, by properly tracking the dynamics of
contact rate in the population, the same type of non-monotonic dynamics in the
basic reproduction number will emerge in homogeneous mixing models.

To prove these, we formulated a simple homogeneously mixing population model
that keeps track of the dynamics of the per capita contact rate by counting each
contact that an incoming individual brings per unit time, and each contact that an
outgoing individual takes away per unit time. For a simple SIR epidemic model on
a fast timescale (so that the population remains approximately constant), this per
capita contact rate is the basic reproduction number with a proper time unit (the
mean infectious period).

The basic reproduction number shows non-monotonic behavior as the population
size increases to its equilibrium as long as the initial population size is less than
its equilibrium (i.e., in a growing population). This is in analogous to the uniform
attachment scheme in a growing network, but unlike the preferential attachment
scheme which requires that the initial total contacts is only a small fraction of the
total equilibrium contacts [10].

Assuming that individuals in the population have a constant contact rate β(τ)
is an over simplification. It would be an interesting extension to study the dynam-
ics of the distribution of the contact rates in the population while still assuming
homogeneous mixing. The resulting model will be a partial differential equation on
N(τ, β) for the number of individuals with contact rate β at time τ .

In summary, keeping track of the change of the per capita contact rate in clas-
sical homogeneous mixing disease models may be necessary for understanding the
invasion risks of emerging diseases such as Ebola and Zika virus in growing popu-
lations.
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