
Journal of Nonlinear Modeling and Analysis http://jnma.ca; http://jnma.ijournal.cn
Volume 2, Number 2, June 2020, 267–285 DOI:10.12150/jnma.2020.267

Spatial Dynamics of a Diffusive Predator-prey
Model with Leslie-Gower Functional Response and

Strong Allee Effect

Fengru Wei1, Cuihua Wang1 and Sanling Yuan1,†

Abstract In this paper, spatial dynamics of a diffusive predator-prey model
with Leslie-Gower functional response and strong Allee effect is studied. Firstly,
we obtain the critical condition of Hopf bifurcation and Turing bifurcation of
the PDE model. Secondly, taking self-diffusion coefficient of the prey as bi-
furcation parameter, the amplitude equations are derived by using multi-scale
analysis methods. Finally, numerical simulations are carried out to verify
our theoretical results. The simulations show that with the decrease of self-
diffusion coefficient of the prey, the preys present three pattern structures:
spot pattern, mixed pattern, and stripe pattern. We also observe the transi-
tion from spot patterns to stripe patterns of the prey by changing the intrinsic
growth rate of the predator. Our results reveal that both diffusion and the
intrinsic growth rate play important roles in the spatial distribution of species.

Keywords Predator-prey model, Leslie-Gower functional response, Allee ef-
fect, Turing bifurcation, Amplitude equations, Pattern formation.
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1. Introduction
Lotka-Volterra equation is the classical model to study the interaction between
prey and predator populations, in which the prey population is assumed to be of
logistic growth in the absence of predator. It provides the basis for the study of
predator-prey model later [1–3]. In actual nature, the resources and environment
is constantly changing and the environmental capacity of the predator may has
the relation to the number of prey. Leslie-Gower formula can be used to describe
exactly this situation, which is introduced by Leslie et al. [4–6], and satisfies the
following assumptions [5, 7, 8]:

• The reduction in the number of the predator and individual capture rate is
correlated.

• The density of the predator is proportional to the adaptive capacity and the
amount of prey.
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These assumptions emphasize that the growth rate of the predator and prey is not
infinite [9], which is in accordance with the situation with the limited resources.

Meanwhile, the prey population is affected by its own density, mate, resources
and other factors, which will inhibit or promote the growth of the prey popula-
tion [10]. Allee effect is one of the most important factors in the study of biological
population, which has attracted extensive attention due to its biological signifi-
cance [11–13]. For instance, Voorn et al. [14] deal with the bifurcation analysis of
two predator-prey models with strong Allee effect and it can cause the bistability.
Wang et al. [15] studied global bifurcation analysis of a class of general predator-
prey models with strong Allee effect in prey population and the results suggest that
overexploitation could lead to the extinction of predator-prey populations. In a re-
cent paper [16], Nicole et al. conducted complete qualitative studies of the following
model: 

du

dt
= ru(1− u

K
)(1− m+ b

u+ b
)− quv,

dv

dt
= sv(1− v

nu
),

(1.1)

where u(t) and v(t) are respectively the densities of prey and predator populations;
r and s denote respectively the intrinsic growth rates of prey and predator; K repre-
sents the environmental capacity of prey; nu represents the environmental carrying
capacity of the predator, which characterize Lesile-Gower function response, and
A(u) = 1 − m+b

u+b represents the Allee effect [17–19]. Considering the small popu-
lation extinction rate is higher, it is required that b > 0, −b < m < K, namely
m+ b > 0. Based on [16], model (1.1) is topologically equivalent to

du

dt
= ((1− u)(u−M)−Qv(u+B))u2,

dv

dt
= S(u− v)(u+B)v.

(1.2)

It is well known that spatial dynamics among predator-prey populations have been
one of the main research topics in recent years [20]. Diffusion can also break the
stability of equilibrium, which may lead to the generation of spatial pattern. In the
primitive spatial ecosystem, the spatial distribution of predator-prey depends on
the influence of geographical location, climate, season and other conditions, such as
the free movement of species, predator environmental capacity, prey refuge effect
and Allee effect. So, in this paper, we consider the effects of diffusion of two species
on spatial dynamics of model (1.2). The model has the following form:

∂u(x, y, t)

∂t
= ((1− u)(u−M)−Qv(u+B))u2 + d11∇2u, (x, y) ∈ Ω, t > 0,

∂v(x, y, t)

∂t
= S(u− v)(u+B)v + d22∇2v, (x, y) ∈ Ω, t > 0,

∂u

∂n =
∂v

∂n = 0, (x, y) ∈ ∂Ω, t > 0

(1.3)
with initial conditions:

u(x, y, 0) ≥ 0, v(x, y, 0) ≥ 0,

where d11 and d22 respectively represent the self-diffusion coefficient of prey and
predator; the boundary ∂Ω is smooth and Ω is a bounded region of RN ; the outward
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unit normal vector of the boundary ∂Ω is n. Homogeneous Neumann boundary
conditions show that the population on the boundary is zero-flux.

Pattern formation is one of the three main research objects of reaction-diffusion
systems [21–25]. As everyone knows, pattern refers to the non-uniform macroscopic
structure with some regularity in space or time, there are various temporal-spatial
patterns in our living space [26]. For example, the stripe pattern in the animal body
surface decorative pattern [27, 28], fluid [29], faraday system of surface wave spot
diagram [30], a pattern of chemical reactions [31], bacterial group competition and
cooperation of the growth behavior, the space of a linear optical system diagram
and gas discharge in the spot diagram [32–34]. In order to master the diversity
of spatial distribution of species, it is of great significance to research the pattern
dynamics [35–38]. In our work, based on the previous studies of Nicole et al. [16],
we mainly discuss the influence of diffusion on the pattern dynamics of model (1.3).

The rest of the paper is organized as follows. In Section 2, Some preliminaries
about the existence and stability of the equilibrium of the temporal model is given.
Through the method of linear stability analysis, Turing region is shown in Section
3. In section 4, the amplitude equations closed to Turing bifurcation are derived
by using standard multi-scale analysis. And some numerical simulations are carried
out in Section 5. Finally, we conclude the research and make a summary of our
research in Section 6 of this paper.

2. Some preliminaries
Based on the results obtained in [16], we know that model (1.2) always has two
boundary equilibria E0 = (0, 0) and E1 = (1, 0), and may have another one bound-
ary equilibrium EM = (M, 0) (if M > 0). But from biological point of view, we
only pay our attention on the interior equilibrium Ē = (ū, v̄) which satisfies the
following equation:

(1− ū)(ū−M)−Qū(ū+B) = 0, v̄ = ū. (2.1)

From Lemma 5 (1) in literature [16], we have

Lemma 2.1. Assume that (H0) M +1−BQ > 0, (M +1−BQ)2−4(Q+1)M > 0
holds, then model (1.2) exists two interior equilibria E1 = (u1, v1) and E2 = (u2, v2),
where

u1 = v1 =
M + 1−BQ−

√
(M + 1−BQ)2 − 4(Q+ 1)M

2(Q+ 1)
,

u2 = v2 =
M + 1−BQ+

√
(M + 1−BQ)2 − 4(Q+ 1)M

2(Q+ 1)
.

If (H0), then the interior equilibrium E1 of model (1.2) is always a hyperbolic
saddle [16], so Turing instability can only occur at interior equilibrium E2.

The jacobian matrix of model (1.2) at equilibrium E2 = (u2, v2) is

J0 =

a11 a12
a21 a22

 (2.2)

where
a11 = (−4− 3Q)u32 + (3M + 3− 2BQ)u22 − 2Mu2,
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a12 = −Qu22(B + u2), a21 = Su2(B + u2), a22 = −Su2(B + u2).

The characteristic equation corresponding to (2.2) can be written as

λ2 − Tr0λ+∆0, (2.3)

where

Tr0 = −u2(2M − 3u2 + 3Qu22 + SB − 3Mu2 + Su2 + 4u22 + 2BQu2),

∆0 = Su22(B + u2)(4Pu
2
2 − 3(Q+ 1)u2 + 2M).

Simple calculation shows that ∆0 < 0 is always true, and TrJ0 < 0 is equivalent to
S > SH =

(−4−3Q)u2
2+(3M+3−2BQ)u2−2M

(B+u2)
. Suppose that equation (2.3) has a pair of

conjugate complex roots of β1(S) + iβ2(S), so β1(SH) = 0, β2(SH) =
√
∆0 > 0 and

d

dS
β1(s) |S=SH

= −
u2

2
(B + u2) < 0.

Combine the above analysis, we have the following result.

Theorem 2.1. Assume that (H0) holds, then the equilibrium E2 of model (1.2) is
locally asymptotically stable when S > SH and unstable when S < SH . A Hopf
bifurcation will occur at the equilibrium E2 when S = SH .

3. Linear stability analysis and the Turing space
In this section, by using of linear stability analysis, we derive the conditions under
which the Turing instability of model (1.3) at E2 occur.

To facilitate the discussion below, we assume the following.
(H1) a11 + a22 < 0;
(H2) a11d22 + a22d11 > 0;
(H3) a11d22 − Su2(B + u2)d11 − 2

√
d11d22∆0 > 0.

The Jacobian matrix of model (1.3) at E2 is

Jk =

a11 − d11k
2 a12

a21 a22 − d22k
2

 , (3.1)

the determinant and the trace of Jk are respectively

∆k = ∆0 − [a11d22 + a22d11]k
2 + d11d22k

4, (3.2)

and
Trk = Tr0 − (d11 + d22)k

2. (3.3)

The characteristic equation corresponding to Jk is

λ2 − Trkλ+∆k = 0, (3.4)

the roots of Eq.(3.4) are

λ1,2 =
1

2
Trk ±

1

2

√
Tr2k − 4∆k,
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clearly, Trk < 0 when (H1) is met, thus, in order to obtain Turing instability we
must have ∆k < 0 for some k > 0. If (H2) holds, then the minimum value of ∆k is
obtained at the critical wave number

kT =

√
a11d22 + a22d11

2d11d22
. (3.5)

Substitute (3.5) into (3.2), then the condition of Turing instability to occur when

(a11d22 + a22d11)
2 > 4d11d22∆0. (3.6)

Considing d11 as the branching parameter, then the critical condition for Turing
instability to occur is d = d11T , where

d11T =
((4 + 3Q)u22 − (3M + 3− 2BQ)u2 − 2M)d22

S(B + u2)
.

From the above analysis, we can obtain the following theorem.

Theorem 3.1. For model (1.3), the Turing instability occurs at E2 = (u2, v2) if
(H0)− (H3) are met.
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Figure 1. Bifurcation diagram of model (1.3) in S − d11 space. With parameters B = 0.65,M =
0.08, Q = 0.5, d22 = 5. The Turing space is denoted by S1, which is bounded by the blue and the
carmine curves. S2− Turing-Hopf space; S3− Hopf space; S4− stable space.

Fig.1 and Fig. 2 are provided for a more intuitive understanding of the Turing
space and Turing instability conditions. In Fig.1, fix parameters B = 0.65,M =
0.08, Q = 0.5, d22 = 5, we show the Turing space in S − d11 plane, and the Turing
space S1 is bounded by the blue and the carmine curves. In Fig. 2, we take
S = 0.075 and other parameter values are the same as in Fig.1. changing the value
of d11, we show the correlation between ∆k and k2 and the correlation between
Re(λ) and k2, the critical parameter value of Turing instability occur is d11T = 0.6.
That is to say, the Turing instability occur when d11 < d11T .
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Figure 2. (a): Plot of ∆k against k2 with different d11. (b): Plot of Re(λ) against k2 with different
d11. Red line: d11 = d11T

= 0.6, magenta line: d11 = 0.5, blue line: d11 = 0.7, green line: d11 = 0.78.
Other parameter values: B = 0.65,M = 0.08, Q = 0.5, d22 = 5.

4. The amplitude equations and pattern stability
analysis

In this section, we chose d11 as the bifurcation parameter and use the standard multi-
scale method to derive the amplitude equation of the model (1.3). The detailed
derivation process is shown in appendix (A). Below, we give only a brief result of
the amplitude equation. We know that the Turing pattern of the model (1.3) is
described by the modes composed of three pairs of wave vectors k1, k2 and k3,
three pairs of wave vectors form 120◦ angles to each other. Near the critical point
d11=d11T , setting U = (u, v)

T , the solution form of model (1.3) can be written as

U =

u
v

=
3∑

j=1

Au
j

Av
j

 exp (ik j · r )+c.c., (4.1)

where |kj | = kc, Aj stands for the oscillation vector of the amplitude, c.c. is the
complex conjugate of the right-hand side. The amplitude equations of the entire
two-dimensional system Turing spot diagram are

τ0
∂A1

∂t
= µA1 + hA2A3 −

[
g1|A1|2 + g2

(
|A2|2 + |A3|2

)]
A1,

τ0
∂A2

∂t
= µA2 + hA1A3 −

[
g1|A2|2 + g2

(
|A1|2 + |A3|2

)]
A2,

τ0
∂A3

∂t
= µA3 + hA1A2 −

[
g1|A3|2 + g2

(
|A1|2 + |A2|2

)]
A3.

(4.2)

Next, we conduct the following linear stability analysis for the amplitude equations,
where each amplitude can be described as:

Aj=ρjejϕj , j = 1, 2, 3, (4.3)

where ϕj is the phase angle. Substituting (4.3) into equation (4.2) gives

τ0
∂ϕ

∂t
= −hρ

2
1ρ

2
2 + ρ21ρ

2
3 + ρ22ρ

2
3

ρ1ρ2ρ3
sinϕ,

τ0
∂ρ1
∂t

= µρ1 + hρ2ρ3 cosϕ− g1ρ
3
1 − g2(ρ

2
2 + ρ23)ρ1,
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τ0
∂ρ2
∂t

= µρ2 + hρ1ρ3 cosϕ− g1ρ
3
2 − g2(ρ

2
1 + ρ23)ρ2,

τ0
∂ρ3
∂t

= µρ3 + hρ1ρ2 cosϕ− g1ρ
3
3 − g2(ρ

2
1 + ρ22)ρ3,

where ϕ=ϕ1+ϕ2+ϕ3. The above equations have four steady-state solutions, their
stability conclusions are given in Table 1.

Table 1. Different Turing patterns types of different types of solutions.
Steady state solution Expression formula Stability condition Existence conditions

Homogeneous ρ1 = ρ2 = ρ3 = 0 Existence µ < µ2

steady state

Stripe patten ρ1 =
√

µ
g1

̸= 0 µ > µ2 µ > µ3

ρ2 = ρ3 = 0 µ2 = 0 µ3 = h2g1
(g2−g1)2

Hexagonal pattern ρ+ =
|h|+

√
h2+4(g1+2g2)µ

2(g1+2g2)
µ > µ1 ρ+ : µ < µ4

ρ− =
|h|−

√
h2+4(g1+2g2)µ

2(g1+2g2)
µ1 = −h2

4(g1+2g2)
µ4 = h2(2g1+g2)

(g2−g1)2

The mixed state ρ1 =
|h|

g2 − g1
, µ > µ3 unstable

ρ2 = ρ3 =
√

µ−g1ρ2
1

g1+g2
g2 > g1

5. Numerical investigation of the pattern formation
and selection

In order to verify our theoretical analysis, we choose a two-dimensional space with
200×200 grids. The space step and the time step is set as ∆h=1, ∆t=0.03 respec-
tively. In our model (1.3), S represents the growth rate of the predator, d11 is
the self-diffusion coefficient of prey. We will conduct some numerical simulations
to view the effect of for these two parameters on pattern formation. During the
process of numerical simulations, the predator and the prey always exhibit the same
pattern structures, so we only show the spatial distribution of prey population.

5.1. The effect of the varied d11 on pattern formation
In this subsection, fixing B = 0.65, Q = 0.5, M = 0.08, S = 0.075 and changing
the self-diffusion coefficient d11 located in the Turing space S1 (Fig.1), we study the
effect of the varied d11 on pattern formation.

Three basic types of pattern structures are found: cold-spot pattern (Fig.3(f)),
mixed pattern (Fig.4(f)) and stipe pattern (Fig.5(f)). When d11 = 0.55, the model
(1.3) shows spot pattern (Fig.3). In this case, µ = 0.0833 ∈ (µ2, µ3). The preys
evolve from the stripe with high-density to the structures with cold-spots. With
the decrease of d11, when d11 = 0.2, mixed pattern appeared. At this point, µ =
0.6667 ∈ (µ3, µ4). The cold-spots expand gradually to the cold-stripe and the
overall region is occupied by the stripe pattern with few cold-pattern. Finally, if
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d11 = 0.05, the model (1.3) shows the labyrinth pattern. And, we obtain that
µ = 0.9167 ∈ (µ4,∞). All above results are in accordance with our theoretical
analysis.

(a) (b) (c)

(d) (e) (f)

Figure 3. Evolution of prey at different instants with parameters Q = 0.5, B = 0.65,M = 0.08, S =
0.075, d11 = 0.55, d22 = 5. (a) t=0 iterations, (b) t=30000 iterations, (c) t=100000 iterations, (d)
t=300000 iterations, (e) t=600000 iterations,(f) t=1000000 iterations.

(a) (b) (c)

(d) (e) (f)

Figure 4. Evolution of prey at different instants with parameters Q = 0.5, B = 0.65,M = 0.08, S =
0.075, d11 = 0.2, d22 = 5. (a) t=0 iterations, (b) t=30000 iterations, (c) t=100000 iterations, (d)
t=300000 iterations, (e) t=600000 iterations,(f) t=1000000 iterations.

In order to illustrate the effect of the self-diffusion coefficient d11 on the spa-
tial distribution of the preys. We choose six sets of d11 and they are d11 =
0.55, 0.35, 0.2, 0.07, 0.03, 0.01 respectively. When d11 = 0.55, the preys show
the cold-spot pattern (Fig.6(a)). If we decrease d11 until d11 = 0.35, the cold-spot
pattern with few short-stripe occur (Fig.6(b)). As the decrease of d11, we find that
the cold-spot pattern decrease gradually and fade away ultimately (Fig.6(b)(c)(d)).
Then some stripe pattern emerge and the stripe becomes thin little by little (Fig.6(e)(f)).
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(a) (b) (c)

(d) (e) (f)

Figure 5. Evolution of prey at different instants with parameters Q = 0.5, B = 0.65,M = 0.08, S =
0.075, d11 = 0.01, d22 = 5. (a) t=0 iterations, (b) t=30000 iterations, (c) t=100000 iterations, (d)
t=300000 iterations, (e) t=600000 iterations,(f) t=1000000 iterations.

The pattern transition: cold-spot pattern → mixed pattern → stripe pattern occurs
as d11 decreases.

Figure 6. The six categories of Turing pattern of predator at 1000000 iterations with
different parameters d11. (a) d11 = 0.55; (b) d11 = 0.35; (c) d11 = 0.2; (d)d11 = 0.1;
(e)d11 = 0.07; (f)d11 = 0.01. Other parameters are set as Q = 0.5, B = 0.65,M =
0.08, S = 0.075, d22 = 5 .

5.2. The effect of the varied S on pattern formation
In biology, the intrinsic growth rate S are also an important factor for the density of
the population, which may affect the pattern structure. The parameters in Table.
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2 are selected for the simulations.

Table 2. Parameters values for simulations.

Q B M S d11 d22

0.5 0.65 0.08 0.0706 0.05 5

0.5 0.65 0.08 0.4000 0.05 5

0.5 0.65 0.08 0.8500 0.05 5

(a) (b) (c)

Figure 7. The three categories of Turing pattern of prey at 1000000 iterations with different
growth rate S. (a) S = 0.0706; (b) S = 0.4000; (c) S = 0.8500. Other parameters are set
as Q = 0.5, B = 0.65,M = 0.08, S = 0.075, d11 = 0.05, d22 = 5.

As can be seen in Fig.7, the increase of the growth rate S also induce the pattern
transition: stripe pattern → mixed pattern → cold-spot pattern. When S = 0.0706,
the model (1.3) shows the stripe pattern with few cold spots (Fig.7(a)). When S
increases to 0.4, the stripe becomes thinner and shorter and some tripes break
into some spots and thus the overall region is gradually occupied by the mixed
pattern with cold-spots and stripes (Fig.7(b)). Finally, if S = 0.8, the stripe break
completely into cold-spots and these spots decrease gradually (Fig.7(c)).

6. Conclusion and discussion
In this paper, spatial dynamics of a diffusive Leslie-Gower predation model with
strong Allee effect is studied. Firstly, according to [16], we obtain the existence con-
ditions of positive equilibrium. Secondly, we derive the critical conditions of Hopf
bifurcation and Turing bifurcation in model (1.3). Finally, the appropriate parame-
ters were selected for numerical simulation in the corresponding Turing region. We
choose d11 as the bifurcation parameter to reveal the influence of self-diffusion on
the spatial pattern of the model (1.3). Stripe patterns, mixed patterns and spot
patterns are found in our numerical simulations and the pattern transition: cold-
spot pattern → mixed pattern → stripe pattern occurs as d11 decreases. Meanwhile,
the intrinsic growth rate S also can induce the same pattern transition series as S
decreases.

Biologically, the diffusion coefficient stands for the remove rate of the preys from
the current position and the prey density will decrease as the diffusion coefficient
increases, which has the same effect as the decrease of the intrinsic growth rate. In
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our model (1.3), the environmental capacity of the predators is positively correlated
to the prey density. Thus, if the density of the preys is small, the environmental
capacity of the predators is also small. In order to guarantee the coexistence of the
preys and the predators, it is necessary to increase the density of the preys. In actual
environment, we can add the resources or the opportunity for meeting the mates,
which is beneficial to the coexistence of the species. Furthermore, the cross-diffusion,
the related parameter of the Allee effect and the Leslie-Gower functional response
also have an effect on the pattern dynamics, which need further investigation.

A. Derivation of the amplitude equations
We use the standard multi-scale method to derive the coefficients of amplitude
equation of the model (1.3) near the onset d11=d11T . The solution of model (1.3)
can be expressed as u

v

=
3∑

j=1

Au
j

Av
j

 exp (ik j · r )+c.c.. (A.1)

The Taylor expansion of model (1.3) at the positive equilibrium point (u2, v2) as
follows:

∂u

∂t
= d11∇2u+ a11u+ a12v +

1

2
f20u

2

+ f11uv +
1

2
f02v

2 +
1

6
f30u

3 +
1

2
f21u

2v +
1

2
f12uv

2 +
1

6
f03v

3 + o(ρ3),

∂v

∂t
= d22∇2v + a21u+ a22v +

1

2
g20u

2

+ g11uv +
1

2
g02v

2 +
1

6
g30u

3 +
1

2
g21u

2v +
1

2
g12uv

2 +
1

6
g03v

3 + o(ρ3).

(A.2)
where a11, a12, a21, a22 are the same as Eq.(2.1), others are described as follows:

f20 = (−12− 6Q)u22 + (6M + 6− 2BQ)u2 − 2M,

f11 = −3Qu22 − 2BQu2, f02 = 0,

f30 = (−24− 6Q)u2 + 6(M + 1),

f21 = −6Qu2 − 2BQ, f12 = 0,

f03 = 0,

g20 = 2Su2, g11 = BS,

g02 = −2S(B + u2), g30 = 0,

g21 = 2S, g12 = −2S, g03 = 0.

Setting U = (u, v)
T , model (1.3) can be transformed into following system:

∂U

∂t
= LU +N, (A.3)

where

L = LT + (d11 − d11T )M =

a11 + d11T∇2 a12

a21 a22 + d22∇2

+ (d11 − d11T )

∇2 0

0 0

 ,
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N =

 1
2f20u

2 + f11uv +
1
6f30u

3 + 1
2f21u

2v + o(ρ3)

1
2g20u

2 + g11uv +
1
2g02v

2 + 1
2g21u

2v + 1
2g12uv

2 + o(ρ3)

 .

Then we expand U according to the different order of ε:

U = ε

u1
u1

+ ε2

u2
v2

+ ε3

u3
v3

+ o
(
ε3
)
. (A.4)

At the same time, we expand the controlled variable d11 and the nonlinear term N
as the following forms:

d11 − d11T = εd1 + ε2d2 + ε3d3 + o
(
ε3
)
, (A.5)

N = ε2N2 + ε3N3 + o
(
ε3
)
, (A.6)

where

N2 =

 1
2f20u1

2 + f11u1v1

1
2g20u1

2 + g11u1v1 + g02v1
2

 , (A.7)

N3 =

 f20u1u2 + f11(u1v2 + u2v1) +
1
2f21u1

2v1 +
1
6f30u1

3

g20u1u2 + g11(u1v2 + u2v1) + g02v1v2 +
1
2g21u1

2v1 +
1
2g12u1v1

2

 . (A.8)

Next, we derivative the time t to the following term:

∂

∂t
= ε

∂

∂t1
+ ε2

∂

∂t2
+ ε3

∂

∂t3
+ o

(
ε3
)
. (A.9)

Substituting Eq.(A.4), (A.5), (A.6), (A.9) into Eq.(A.3), then we can get different
order of ε of Eq.(A.3): First order of ε:

LT

u1
v1

 = 0. (A.10)

Second order of ε:

LT

u2
v2

 =
∂

∂t1

u1
v1

− d1M

u1
v1

−N2. (A.11)

Third order of ε:

LT

u3
v3

 =
∂

∂t1

u2
v2

+
∂

∂t2

u1
v1

− d1M

u2
v2

− d2M

u1
v1

−N3. (A.12)

For the first order: u1
v1

 =

φ
1

 3∑
j=1

Wj exp (ikj · r)

+ c.c., (A.13)
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where φ = −
a22 − d22k̂

2
T

a21
, k̂2T = k2T |d11=d11T

, Wj is the amplitude of the correspond-
ing exp(ikj · r) in the first order.
For the second order:

LT

u2
v2

 =
∂

∂t1

u1
v1

− d1

∇2u1

0

−

 1
2f20u1

2 + f11u1v1

1
2g20u1

2 + g11u1v1 +
1
2g02v1

2

 ≜

Fu

Fv

 .

(A.14)

Using Fredholm solubility conditions, the vector function at the right side of Eq.(14)
must be orthogonal to the zero eigenvector of the adjoint operator LT

+ of operator
LT . The zero eigenvector of the operator LT

+ is1

ψ

 exp(−ikj · r) + c.c., j = 1, 2, 3, (A.15)

where ψ =
a11 − d11T k̂

2
T

a21
. Then base on orthogonal conditions, we obtain:

(1, ψ)

F j
u

F j
v

 = 0, j = 1, 2, 3, (A.16)

where F j
u , F

j
v denote the coefficients corresponding to exp(ikj · r) in Fu, Fv respec-

tively. From Eq.(16), we get the following equations:

(φ+ ψ)∂W1

∂t1
= −d1φk̂2TW1 +

(
φ2f20 + 2φf11 + ψ

(
φ2g20 + 2φg11 + g02

))
W 2W 3,

(φ+ ψ)∂W2

∂t1
= −d1φk̂2TW2 +

(
φ2f20 + 2φf11 + ψ

(
φ2g20 + 2φg11 + g02

))
W 1W 3,

(φ+ ψ)∂W3

∂t1
= −d1φk̂2TW3 +

(
φ2f20 + 2φf11 + ψ

(
φ2g20 + 2φg11 + g02

))
W 1W 2.

(A.17)
But it does not give any indication of the asymptotic behavior of the amplitude,
thus in order to get more qualitative results, we should push the weak nonlinear
analysis to the higher order of the pattern amplitude. Next substituting Eq.(13)
into Eq.(14), we can obtain:u2

v2

 =

U0

V0

+

3∑
j=1

Uj

Vj

 exp (ikj · r) +
3∑

j=1

Ujj

Vjj

 exp (2ikj · r)

+

U12

V12

 exp (i(k1 − k2) · r) +

U23

V23

 exp (i(k2 − k3) · r)

+

U31

V31

 exp (i(k3 − k1) · r) + c.c.,

(A.18)
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the coefficients in Eq.18 is determined by solving the linear equations of exp(0),
exp(ikj · r), exp(i2kj · r) and exp(i(kj − kl) · r), therefore we have

U0

V0

=

u0
v0

(
|W1|2+|W2|2+|W3|2

)
, Uj = φVj ,

Ujj

Vjj

=

u1
v1

W 2
j ,

Ujl

Vjl

=

u2
v2

WjW l,

u0
v0

=


2 (m1a22 −m2a12)

a11a22 − a12a21
2 (m2a11 −m1a21)

a11a22 − a12a21

 ,

u1
v1

 =


m1(a22 − 4d22k̂

2
T )−m2a12

(a11 − 4d11T k̂
2
T )(a22 − 4d22k̂2T )− a12a21

m2(a11 − 4d11T k̂
2
T )−m1a21

(a11 − 4d11T k̂
2
T )(a22 − 4d22k̂2T )− a12a21

 ,

u2
v2

=


2(a22 − 3d22k̂

2
T )m1 − 2a12m2

(a11 − 3d11T k̂
2
T )(a22 − 3d22k̂2T )− a12a21

2(a11 − 3d11T k̂
2
T )m2 − 2a21m1

(a11 − 3d11T k̂
2
T )(a22 − 3d22k̂2T )− a12a21

 ,

in which m1 = −( 12f20φ
2 + f11φ), m2 = −( 12g20φ

2 + g11φ+ 1
2g02).

For the third order: in Eq.12, it is

LT

u3
v3

 =
∂

∂t1

u2
v2

+
∂

∂t2

u1
v1

− d1

∇2u2

0

− d2

∇2u1

0


−

 f20u1u2 + f11(u1v2 + u2v1) +
1

2
f21u1

2v1 +
1

6
f30u1

3

g20u1u2 + g11(u1v2 + u2v1) + g02v1v2 +
1

2
g21u1

2v1 +
1

2
g12u1v1

2

 ≜

Gu

Gv

 .

(A.19)
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The coefficient of exp(ikj ·r) in Eq.19 is represented by (Gu
1, Gv

1)T , see as follows:

H1
u =φ

∂V1
∂t1

+ φ
∂W1

∂t2
+ d1φk̂

2
TV1 + d2φk̂

2
TW1

− (φf20 + f11)×
[
u0W1

(
|W1|2 + |W2|2 + |W3|2

)
+ φ

(
W 2V 3 +W 3V 2

)]
− (φf20 + f11)×

[
u2W1

(
|W2|2 + |W3|2

)
+ u1W1|W1|2

]
− φf11

[
v0W1

(
|W1|2 + |W2|2 + |W3|2

)
+W 2V 3 +W 3V 2

]
− φf11

[
v2W1

(
|W2|2 + |W3|2

)
+ v1W1|W1|2

]
− 3

2
f21φ

2W1

(
|W1|2 + 2|W2|2 + 2|W3|2

)
− 1

2
f30φ

3W1

(
|W1|2 + 2|W2|2 + 2|W3|2

)
=φ

∂V1
∂t1

+ φ
∂W1

∂t2
+ d1φk̂

2
TV1 + d2φk̂

2
TW1

+
(
I1|W1|2 + I2

(
|W2|2 + |W3|2

))
W1

−
(
φ2f20 + 2φf11

) (
W 2V 3 +W 3V 2

)
,

H1
v =

∂V1
∂t1

+
∂W1

∂t2

− (φg20 + g11)×
[
u0W1

(
|W1|2 + |W2|2 + |W3|2

)
+ φ

(
W 2V 3 +W 3V 2

)]
− (φg20 + g11)×

[
u2W1

(
|W2|2 + |W3|2

)
+ u1W1|W1|2

]
− (φg11 + g02)

[
v0W1

(
|W1|2 + |W2|2 + |W3|2

)
+W 2V 3 +W 3V 2

]
− (φg11 + g02)

[
v2W1

(
|W2|2 + |W3|2

)
+ v1W1|W1|2

]
− 3

2
(g21φ

2 + g12)W1

(
|W1|2 + 2|W2|2 + 2|W3|2

)
=
∂V1
∂t1

+
∂W1

∂t2
+
(
J1|W1|2 + J2

(
|W2|2 + |W3|2

))
W1

−
(
φ2g20 + 2φg11 + g02

) (
W 2V 3 +W 3V 2

)
,

where

I1 = −(φf20 + f11)(u
0 + u1)− φf11(v

0 + v1)− 3

2
φ2f21 −

1

2
φ3f30,

I2 = −(φf20 + f11)(u
0 + u2)− φf11(v

0 + v2)− 3φ2f21 − φ3f30,

J1 = −(φg20 + g11)(u
0 + u1)− (φg11 + g02)(v

0 + v1)− 3

2
(φ2g21 + g12),

J2 = −(φg20 + g11)(u
0 + u2)− (φg11 + g02)(v

0 + v2)− 3(φ2g21 + g12).
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Then use Fredholm solubility conditions again, we get that:

(
φ+ ψ

)(∂V1
∂t1

+∂W1

∂t2

)
=− k̂2Tφ (d1V1 + d2W1)

+
[
φ2f20 + 2φf11 + ψ

(
φ2g20 + 2φg11 + g02

)]
×
(
W 2V 3 +W 3V 2

)
− [G1|W1|2 +G2(|W2|2 + |W3|2)]W1,

(φ+ ψ)

(
∂V2
∂t1

+∂W2

∂t2

)
=− k̂2Tφ (d1V2 + d2W2)

+
[
φ2f20 + 2φf11 + ψ

(
φ2g20 + 2φg11 + g02

)]
×
(
W 3V 1 +W 1V 3

)
− [G1|W2|2 +G2(|W3|2 + |W1|2)]W2,

(φ+ ψ)

(
∂V3
∂t1

+∂W3

∂t2

)
= −k̂2Tφ (d1V3 + d2W3)

+
[
φ2f20 + 2φf11 + ψ

(
φ2g20 + 2φg11 + g02

)]
×
(
W 1V 2 +W 2V 1

)
− [G1|W3|2 +G2(|W1|2 + |W2|2)]W3,

(A.20)

in which G1 = (I1 + ψJ1) , G2 = (I2 + ψJ2). According to Eq.9 the amplitude can
be transformed to the following form:

∂Aj

∂t
= ε

∂Aj

∂t1
+ ε2

∂Aj

∂t2
+ ε3

∂Aj

∂t3
+ · · · , (A.21)

that is
Aj = εWj + ε2Vj + o

(
ε3
)
.

Combining the above derivation and equations, we can get the following amplitude
equations corresponding to A1, A2, A3,

τ0
∂A1

∂t
= µA1 + hA2A3 −

[
g1|A1|2 + g2

(
|A2|2 + |A3|2

)]
A1,

τ0
∂A2

∂t
= µA2 + hA1A3 −

[
g1|A2|2 + g2

(
|A1|2 + |A3|2

)]
A2,

τ0
∂A3

∂t
= µA3 + hA1A2 −

[
g1|A3|2 + g2

(
|A1|2 + |A2|2

)]
A3,

(A.22)

where
τ0 = − φ+ ψ

d11Tφk̂
2
T

, µ =
d11T − d11
d11T

, h = −−2m1 − 2ψm2

d11Tφk̂
2
T

,

g1 = − G1

d11Tφk̂
2
T

, g2 = − G2

d11Tφk̂
2
T

.

Next, we conduct the following linear stability analysis for the amplitude equation,
where each amplitude can be described as:

Aj=ρjejϕj , (A.23)
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where ϕj is the phase angle corresponding to mode ρj , j = 1, 2, 3. We substitute
Eq.(A.23) into Eq.(A.22), and yield four equations of the real variables as follows:

τ0
∂ϕ

∂t
= −hρ

2
1ρ

2
2 + ρ21ρ

2
3 + ρ22ρ

2
3

ρ1ρ2ρ3
sinϕ,

τ0
∂ρ1
∂t

= µρ1 + hρ2ρ3 cosϕ− g1ρ
3
1 − g2(ρ

2
2 + ρ23)ρ1,

τ0
∂ρ2
∂t

= µρ2 + hρ1ρ3 cosϕ− g1ρ
3
2 − g2(ρ

2
1 + ρ23)ρ2,

τ0
∂ρ3
∂t

= µρ3 + hρ1ρ2 cosϕ− g1ρ
3
3 − g2(ρ

2
1 + ρ22)ρ3,

where ϕ=ϕ1+ϕ2+ϕ3. Clearly µ > 0. To make ensure that there is the steady state
solution above equation, system g1, g2 must be positive.
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