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Existence and Blowup of Solutions for Neutral
Partial Integro-differential Equations with

State-dependent Delay

Jianbo Zhu1, Xingxing Wang1 and Xianlong Fu1,†

Abstract In this paper, we study the existence and blowup of solutions for
a neutral partial functional integro-differential equation with state-dependent
delay in Banach space. The mild solutions are obtained by Sadovskii fixed
point theorem under compactness condition for the resolvent operator, the
theory of fractional power and α-norm are also used in the discussion since
the nonlinear terms of the system involve spacial derivatives. The strong
solutions are obtained under the lipschitz condition. In addition, based on the
local existence result and a piecewise extended method, we achieve a blowup
alternative result as well for the considered equation. Finally, an example is
provided to illustrate the application of the obtained results.
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1. Introduction
In this paper, we study the existence and blowup of solutions for the semilinear
neutral partial integro-differential equation with state-dependent delay of the form

d

dt
[x(t) + F (t, xt)] = −A[x(t) + F (t, xt)] +

∫ t

0

Υ(t− s)x(s)ds+G(t, xρ(t,xt)),

t ∈ [0, T ],

x0 = ϕ ∈ Bα,
(1.1)

where −A is the infinitesimal generator of an analytic semigroup on a Banach space
X, Υ(t) is a closed linear operator defined later, F , G and ρ are given continuous
functions to be specified below, and Bα is an abstract phase space endowed with a
seminorm ∥ · ∥Bα .

Partial integro-differential equations can be used to describe a lot of natural
phenomena arising from many fields such as fluid dynamics, biological models and
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chemical kinetics etc. These are often more accurate than the classical differential
equations. A very effective approach to study this kind of equations is to transfer
them into integro-differential evolution equations in abstract spaces. Grimmer etc
[1–3] proved the existence of solutions of the following integrodifferential evolution
equation {

v′(t) = Av(t) +
∫ t
0
Υ(t− s)v(s)ds+ g(t), for t ≥ 0,

v(0) = v0 ∈ X,
(1.2)

where g : R+ → X is a continuous function. They obtained the representation of
solutions, the existence and uniqueness of solutions via resolvent operator associated
to the following linear homogeneous equation{

v′(t) = Av(t) +
∫ t
0
Υ(t− s)v(s)ds, for t ≥ 0,

v(0) = v0 ∈ X.

That is, the resolvent operator R(t), replacing the role of C0-semigroup for evolution
equations, plays an important role in solving Eq. (1.2) in weak and strict senses.
From then on, some topics for nonlinear integro-differential evolution equations,
such as existence and regularity, stability, (asymptotic) periodicity of solutions and
control problems, have been investigated by many mathematicians through ap-
plying the theory of resolvent operators, see [4–10]. Particularly, Lin and Liu [4]
investigated existence, uniqueness and regularity of mild solutions for semilinear
integrodifferential equations involving nonlocal initial conditionsu

′(t) = A

[
u(t) +

∫ t

0

F (t− s)u(s)ds

]
+ f(t, u(t)), t ∈ [0, T ],

u(0) + g(t1, · · ·, tp, u(t1), · · ·, u(tp)) = u0,

in a Banach space X with A the generator of a strongly continuous semigroup and
F (t) a bounded operator for t ∈ [0, T ]. f is a C1 function. In paper [5] the authors
studied the following partial functional integro-differential equations with infinite
delay in Banach space{

u′(t) = Au(t) +
∫ t
0
Υ(t− s)u(s)ds+ f(ut), for t ≥ 0,

u0 = ϕ ∈ B.
(1.3)

Under the assumptions that f : B → X is continuously differentiable, and f ′ is
locally Lipschitz continuous, the local existence and regularity of mild solutions for
Eq. (1.3) were obtained there.

Meanwhile, the nonlinear neutral functional integro-differential equations with
time delay have also been investigated extensively in these years, see [11–18] and the
references therein. Ezzinbi etc [11,12] studied the existence of mild solutions for this
type of neutral equations by using Banach fixed point theorem, and the regularity
of solutions was discussed there under the conditions that the nonlinear functions
are continuously differentiable. On the other hand, functional (integro) differential
equations with state-dependent delay appear frequently in various models and hence
the study of this kind of equations has received great attention in the last years
too. Some recent works can be found in [19–28]. Hernández etc [19] investigated
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the existence of mild solutions for a class of abstract partial functional differential
equations with state-dependent delay by using schauder fixed point theorem. With
the help of the theory of resolvent operators and Leray-Schauder Alternative type
fixed point theorem, Dos Santos [21] studied the existence result for partial neutral
integro-differential equations with state-dependent delay. While in [22], the authors
have considered a partial fractional neutral functional integro-differential equation
with state-dependent delay and formulated a new set of sufficient conditions proving
the existence of mild solutions for considered system with the help of fixed point
theorem.

In this paper, inspired by the work in [29,30], we shall discuss the existence and
regularity of solutions and a blowup alternative result for Eq. (1.1) by using the
theory of fractional power operators and α-norm, that is, we shall restrict Eq. (1.1)
in a Banach space Xα(⊂ X). To obtain the existence of mild solutions for System
(1.1), we assume that the analytic semigroup S(t)t≥0 generated by (−A,D(A)) is
compact for t > 0 so that the fixed point principle for condensing maps is applied,
which is quite different from the works in [19,21,22,27]. We then study the regularity
of mild solutions. We will show that each mild solution may be a strong solution
under proper conditions. In particular, we just require that F (·, ·) and G(·, ·) satisfy
the lipschitz conditions, other than continuous differentiability as in [4, 5, 11, 12].
Finally, we obtain a blowup alternative result for Eq. (1.1) by utilizing a piecewise
extended method and resolvent operators. We point out here that, so far, there is
very few relevant papers that discuss blowup problem for neutral partial integro-
differential equation with state-dependent delay. Clearly, our obtained results in
this paper extend and develop the existing results in the above mentioned work.

The whole article is arranged as follows: we firstly introduce some preliminaries
about analytic resolvent operators and phase space for state-dependent delay in
Section 2. Particularly, to make them to be still valid in our situation, we have
restated the axioms of phase space on the space Xα. The existence of mild solutions
is discussed in Section 3 by applying fixed point theorem. In section 4, we establish
some sufficient conditions to guarantee the existence of strong solutions. The blowup
alternative result is discussed in section 5. In Section 6, an example is presented to
show the applications of the obtained results.

2. Preliminaries
Let X be a Banach space with norm ∥ · ∥. Throughout this paper, we always
assume that −A : D(A) ⊆ X → X is the infinitesimal generator of a compact
analytic semigroup (S(t))t≥0. Let Y be the Banach space (D(A), ∥ · ∥1) with the
graph norm ∥x∥1 = ∥Ax∥ + ∥x∥, for x ∈ D(A). We assume 0 ∈ ρ(A), then it
is possible to define the fractional power Aα, for 0 < α ≤ 1, as a closed linear
operator on its domain D(Aα). Furthermore, the subspace D(Aα) is dense in X
and the expression

∥x∥α = ∥Aαx∥, x ∈ D(Aα),

defines a norm on D(Aα). Denoting the space (D(Aα), ∥ · ∥α) by Xα, then it
is well known that for each 0 < α ≤ 1, Xα is a Banach space, Xα ↪→ Xβ for
0 < β < α ≤ 1 and the imbedding is compact whenever R(λ,A) = (λI +A)−1, the
resolvent operator of −A, is compact. L (Xα, Xβ) will denote the space of bounded
linear operators Xα → Xβ with norm ∥ · ∥α, β and X0 = X. Hereafter we denote
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by C([0, T ], Xα) the Banach space of continuous functions from [0, T ] to Xα with
the norm

∥x∥C = sup
0≤t≤T

∥Aαx(t)∥, x ∈ C([0, T ], Xα).

For the theory of operator semigroup we refer to [31] and [32].
To study the equation (1.1), we assume that the histories xt : (−∞, 0] → X,

xt(θ) = x(t+ θ), belong to some abstract phase space B, which is defined axiomat-
ically. In this article, we employ an axiomatic definition of the phase space B
introduced by Hale and Kato [33] and follow the terminology used in [34]. Thus,
B will be a linear space of functions mapping (−∞, 0] into X endowed with a
seminorm ∥ · ∥B. We assume that B satisfies the following axioms:

(A) If x : (−∞, σ + a) → X, a > 0, is continuous on [σ, σ + a) and xσ ∈ B, then
for every t ∈ [σ, σ + a) the followings hold:
(i) xt is in B;
(ii) ∥x(t)∥ ≤ H∥xt∥B;
(iii) ∥xt∥B ≤ K(t− σ) sup{∥x(s)∥ : σ ≤ s ≤ t}+M(t− σ)∥xσ∥B.
Here H ≥ 0 is a constant, K,M : [0,+∞) → [0,+∞), K(·) is continuous and
M(·) is locally bounded, and H, K(·), M(·) are independent of x(t).

(A1) For the function x(·) in (A), xt is a B-valued continuous function on [σ, σ+a].
(B) The space B is complete.

We denote by Bα the set of all the elements in B which takes values in space Xα,
that is,

Bα := {ϕ ∈ B : ϕ(θ) ∈ Xα for all θ ≤ 0} .

Then Bα becomes a subspace of B endowed with the seminorm ∥ · ∥Bα
which is

induced by ∥·∥B through ∥·∥α. More precisely, for any ϕ ∈ Bα, the seminorm ∥·∥Bα

is defined by ∥Aαϕ(θ)∥, instead of ∥ϕ(θ)∥. For example, let the phase space B =
Cr×Lp(g : X), r ≥ 0, 1 ≤ p <∞ (cf. [34]), which consists of all classes of functions
ϕ ∈ (∞, 0] → X such that ϕ is continuous on [−r, 0], Lebesgue-measurable, and
g∥ϕ(·)∥p is Lebesgue integrable on (−∞,−r), where g : (−∞,−r) → R is a positive
Lebesgue integrable function. The seminorm in B is defined by

∥ϕ∥B = sup {ϕ(θ) : −r ≤ θ ≤ 0}+
(∫ −r

−∞
g(θ)∥ϕ(θ)∥pdθ

) 1
p

.

Then the seminorm in Bα is defined by

∥ϕ∥Bα
= sup {∥Aαϕ(θ)∥ : −r ≤ θ ≤ 0}+

(∫ −r

−∞
g(θ)∥Aαϕ(θ)∥pdθ

) 1
p

.

See also the space Cg, 12 presented in Section 6. Hence, since Xα is still a Banach
space, we will assume that the subspace Bα also satisfies the following conditions:

(A′) If x : (−∞, σ + a) → Xα, a > 0, is continuous on [σ, σ + a) (in α−norm) and
xσ ∈ Bα, then for every t ∈ [σ, σ + a) the followings hold:
(i) xt is in Bα;
(ii) ∥x(t)∥α ≤ H∥xt∥Bα

;
(iii) ∥xt∥Bα

≤ K(t− σ) sup{∥x(s)∥α : σ ≤ s ≤ t}+M(t− σ)∥xσ∥Bα
.

Here H, K(·) and M(·) are as in (A)(iii) above.
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(A′
1) For the function x(·) in (A), xt is a Bα-valued continuous function on [σ, σ+a].

(B′) The space Bα is complete.

For any ϕ ∈ Bα, the notation ϕt, t ≤ 0, represents the function ϕt(θ) = ϕ(t+θ).
Then, for the function x(·) in axiom (A′) with x0 = ϕ, we may extend the mapping
t → xt to the whole interval (−∞, T ] by setting xt = ϕt as t ≤ 0. On the other
hand, for the continuous function ρ : [0, T ]× Bα → (−∞, T ], we introduce the set

ℜ(ρ−) = {ρ(s, ψ) : ρ(s, ψ) ≤ 0, (s, ψ) ∈ [0, T ]× Bα}

and give the following hypothesis on ϕt:
(H0) The function t → ϕt is continuous from ℜ(ρ−) into Bα and there exists

a continuous and bounded function Jφ : ℜ(ρ−) → (0,∞) such that, for each t ∈
ℜ(ρ−),

∥ ϕt ∥Bα
≤ Jφ(t) ∥ ϕ ∥Bα

.

Combining the phase spaces axioms and (H0), we have the following lemma,
see [34].

Lemma 2.1. If x : (−∞, T ] → Xα is a function such that x0 = ϕ and x |[0,T ]∈
C ([0, T ], Xα), then

∥xs∥Bα ≤
(
MT + J̃φ

)
∥ϕ∥Bα +KT sup

{
∥x(θ)∥; θ ∈ [0,max{0, s}]

}
, s ∈ ℜ(ρ−)∪

[0, T ],

where J̃φ = sup
t∈ℜ(ρ−)

Jφ(t),MT = sup
t∈[0,T ]

M(t) and KT = max
t∈[0,T ]

K(t).

The theory of resolvent operator plays an essential role in investigating the
existence of solutions of Eq. (1.1). Next we collect the definition and basic results
about this theory, see [1–3] for more details.

Definition 2.1. A family of bounded linear operators R(t) ∈ L (X) for t ∈ [0, T ]
is called resolvent operators for

d

dt
x(t) = −Ax(t) +

∫ t

0

Υ(t− s)x(s)ds,

x(0) = x0 ∈ X,

(2.1)

if

(i) R(0) = I and ∥R(t)∥ ≤ N1e
ωt for some N1 ≥ 1, ω ∈ R.

(ii) for all x ∈ X, R(t)x is continuous in t ∈ [0, T ].
(iii) R(t) ∈ L (Y ), for t ∈ [0, T ]. For x ∈ Y , R(t)x ∈ C1([0, T ], X) ∩ C([0, T ], Y )

and for t ≥ 0 such that

R′(t)x = −AR(t)x+

∫ t

0

Υ(t− s)R(s)xds

= −R(t)Ax+

∫ t

0

R(t− s)Υ(s)xds, (2.2)

where Y is the space D(−A) with the graph norm.



292 J. Zhu, X. Wang & X. Fu

We always assume the following hypotheses on operator −A and Υ(t):

(V 1) −A generates an analytic semigroup on X. Υ(t) is a closed operator on X
with domain at least D(A) a.e. t ≥ 0, Υ(t)x is strongly measurable for each
x ∈ D(−A) and ∥ Υ(t) ∥1,0≤ b(t), b(t) ∈ L1(0,∞) with b∗(λ) absolutely
convergent for Reλ > 0, where b∗(λ) denotes the Laplace transform of b(t).

(V 2) ρ(λ) = (λI+A−Υ∗(λ))−1 exists as a bounded operator on X which is analytic
for λ in the region Λ = {λ ∈ C : |argλ| < (π/2) + δ}, where 0 < δ < π/2.
In Λ, if | λ |≥ ε > 0, then there exists a constant M = M(ε) > 0 so that
∥ ρ(λ) ∥≤M/|λ|.

(V 3) Aρ(λ) ∈ L (X) for λ ∈ Λ and are analytic on Λ into L (X). Υ∗(λ) ∈ L (Y,X)
and Υ∗(λ)ρ(λ) ∈ L (Y,X) for λ ∈ Λ. Given ε > 0, there exists M =M(ε) > 0
so that for λ ∈ Λ with | λ |≥ ε, ∥Aρ(λ)∥1,0 + ∥Υ∗(λ)ρ(λ)∥1,0 ≤ M⧸ | λ |,
and ∥ Υ∗(λ) ∥1,0→ 0 as | λ |→ ∞ in Λ. In addition, ∥Aρ(λ)∥ ≤ M | λ |n for
some n > 0, λ ∈ Λ with | λ |≥ ε. Further, there exists D ⊂ D(A2) which is
dense in Y such that A(D) and Υ∗(λ)D are contained in Y and ∥ Υ∗(λ)x ∥1
is bounded for each x ∈ D,λ ∈ Λ, | λ |≥ ε.

Then, it follows from [2] that, under the conditions (V 1)−(V 3), there is an analytic
resolvent operator R(t) for linear system (2.1) which is given by R(0) = I and

R(t)x = (2πi)−1

∫
Γ

eλt(λI +A−Υ∗(λ))−1xdλ, t > 0,

or, equivalently, using the notation of (V 2),

R(t)x = (2πi)−1

∫
Γ

eλtρ(λ)xdλ, t > 0,

where Γ is a contour of the type used to obtain an analytic semigroup. We can
select contour Γ, included in the region Λ, consisting of Γ1,Γ2 and Γ3, where

Γ1 =
{
reiφ : r ≥ 1

}
, Γ3 =

{
re−iφ : r ≥ 1

}
,

π

2
< ϕ <

π

2
+ δ,

Γ2 =
{
eiθ : −ϕ ≤ θ ≤ ϕ

}
,

oriented so that Imλ is increasing on Γ1 and Γ2. And there also exist N,Cα > 0
such that

∥R(t)∥ ≤ N and ∥AαR(t)∥ ≤ Cα
tα
, 0 < t ≤ T, α > 0. (2.3)

We can further get the following lemmas:

Lemma 2.2. (see [35], Lemma 2.2) AR(t) is continuous for t > 0 in the uniform
operator topology of L (X).

Lemma 2.3. (see [36], Lemma 2.3) R(t) (t > 0) is continuous in t in uniform
operator topology of L (X).

Further, for the sake of simplicity, we also require that Aα commute with R(t)
for any 0 ≤ α ≤ 1, that is, for any x ∈ D(Aα), there holds

AαR(t)x = R(t)Aαx.
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Generally speaking, this commutation is not always valid. We point out that,
however, this commutation can be realized in many cases. For example, let Υ(t −
s) = b(t − s)A with b(t) a scalar function defined on (0,+∞), then, the linear
problem (2.1) becomes

d

dt
x(t) = −Ax(t) +

∫ t

0

b(t− s)Ax(s)ds,

x(0) = x0 ∈ X.

(2.4)

If we impose the following conditions on System (2.4),

(V 1′) The operator −A generates an analytic semigroup on X. In particular

Λ1 = {λ ∈ C : |argλ| < (π/2) + δ1}, 0 < δ1 < π/2

is contained in the resolvent set of −A and ∥(λI + A)−1∥ ≤ M/|λ| on Λ1

for some constant M > 0. The scalar function b(·) is in L1(0,∞) with b∗(λ)
absolutely convergent for Reλ > 0.

(V 2′) There exists Λ = {λ ∈ C : |argλ| < (π/2) + δ2}, 0 < δ2 < π/2, so that λ ∈ Λ
implies g1(λ) = 1 + b∗(λ) exists and is not zero. Further λg−1

1 (λ) ∈ Λ1 for
λ ∈ Λ.

(V 3′) In Λ, b∗(λ) → 0 as |λ| → ∞.

Then, from [2], conditions (V 1)− V 3) are satisfied and the resolvent operator R(t)
is given by

R(t)x = (2πi)−1

∫
Γ

eλtg−1
1 (λ)

(
λg−1

1 (λ)I −A
)−1

xdλ,

and we see that AαR(t) = R(t)Aα in this situation.
Now we end this section by stating the following fixed point principle which will

be used in Section 3.

Theorem 2.1. (see [37]) Assume that P is a condensing operator on a Banach space
X, i.e., P is continuous and takes bounded sets into bounded sets, and α(P (B))
≤ α(B) for every bounded set B of X with α(B) > 0. If P (H) ⊆ H for a convex,
closed, and bounded set H of X, then P has a fixed point in H (where α(·) denotes
the kuratowski measure of non-compactness ).

Remark 2.1. It is easy to see that, if P = P1 + P2 with P1 a contractive operator
and P2 a completely continuous one, then P is a condensing operator on X.

3. Existence of mild solutions
The mild solution of Eq. (1.1) expressed by the resolvent operator is defined as
follows.

Definition 3.1. A function x(·) : (−∞, T ] → Xα is said to be a mild solution of
Eq. (1.1), if x0 = ϕ, the restriction of x(·) to interval [0, T ] is continuous and the
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following integral equation is verified

x(t) = R(t)
[
ϕ(0) + F (0, ϕ)

]
− F (t, xt)−

∫ t

0

∫ s

0

R(t− s)Υ(s− τ)F (τ, xτ )dτds

+

∫ t

0

R(t− s)G(s, xρ(s,xs))ds

for t ∈ [0, T ]. The last two terms are integrals in sense of Bocher [38].

To guarantee the existence of mild solutions, we impose the following restrictions
on Eq. (1.1). Let α ∈ (0, 1) be given.

(H1) There exists a constant β ∈ (0, 1) with 0 < α + β ≤ 1, such that Υ(t) ∈
L (Xα+β , X) for each t ∈ [0, T ]. Suppose that there exists a positive number
M1 such that

∥Υ(t)∥α+β, 0 ≤M1 t ∈ [0, T ].

(H2) The function F : [0, T ] × Bα → Xα+β satisfies the lipschitz condition, i.e.,
there exists a constant L > 0 such that :∥∥F (t1, ψ1)− F (t2, ψ2)

∥∥
α+β

≤ L
(
|t1 − t2|+ ∥ψ1 − ψ2∥Bα

)
for any 0 ≤ t1, t2 ≤ T, ψ1, ψ2 ∈ Bα. Moreover, there also holds that :∥∥F (t, ψ)∥∥

α+β
≤ L

(
∥ψ∥Bα + 1

)
holds for any (t, ψ) ∈ [0, T ]× Bα, where β is defined by (H1).

(H3) The function G : [0, T ]× Bα → X satisfies the following conditions:
(i) for each t ∈ [0, T ], the function G(t, ·) : Bα → X is continuous and for
each ψ ∈ Xα the function G(·, ψ) : [0, T ] → X is strongly measurable;
(ii) for each positive number r > 0, there is a positive function gr ∈ C([0, T ])
such that

sup
∥ψ∥Bα≤r

∥G(t, ψ)∥ ≤ gr(t)

and
lim inf
r→∞

∥gr∥C
r

ds = δ <∞.

Under these conditions we prove the following existence theorem.

Theorem 3.1. Let ϕ ∈ Bα. Assume that assumptions (H0)− (H3) hold, then Eq.
(1.1) has a mild solution provided that

KT

[
M0L+

Cα
1− α

T 2−αM1L+
Cα

1− α
T 1−αδ

]
< 1, (3.1)

where M0 = ∥A−β∥.

Proof. Let D = {x ∈ C([0, T ], Xα), x(0) = ϕ(0)} and we define the operator Φ on
D as

(Φx)(t) = R(t)[ϕ(0) + F (0, ϕ)]− F (t, x̄t)−
∫ t

0

∫ s

0

R(t− s)Υ(s− τ)F (τ, x̄τ )dτds

+

∫ t

0

R(t− s)G(s, x̄ρ(s,x̄s))ds.
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Here x̄ : (−∞, T ] → Xα satisfies x̄0 = ϕ and x̄ = x on [0, T ]. Using Axiom
(A′), the strong continuity of R(t) and conditions (H1)-(H3), we infer that Φx ∈
C([0, T ], Xα). We denote Br(0,D) = {x ∈ D : ∥x∥C ≤ r}.

Clearly, for each r > 0, Br(0,D) is a bounded closed convex subset in C([0, T ], Xα).
We first prove that there exists r > 0 such that Φ(Br(0,D)) ⊂ Br(0,D) . In fact, if
this is not true, then for each r > 0 there exist xr ∈ Br(0,D) and tr ∈ [0, T ] such
that r < ∥Φxr(tr)∥α. We note that, from Lemma 2.1,

∥x̄rtr∥Bα
≤ rKT + (MT + J̃φ)∥ϕ∥Bα

:= r∗,

∥∥x̄rρ(s,x̄r
s)

∥∥
Bα

≤ r∗, lim inf
r→∞

r∗

r
= KT ,

where 0 < s < tr. Then, applying (A′) and (H1)− (H3), we obtain

r <
∥∥(Φxr)(tr)∥∥

α

≤
∥∥R(tr)[ϕ(0) + F (0, ϕ)]

∥∥
α
+
∥∥F (tr, x̄rtr )∥∥α

+

∥∥∥∥∥
∫ tr

0

R(tr − s)

∫ s

0

Υ(s− τ)F (τ, x̄rτ )dτds

∥∥∥∥∥
α

+

∥∥∥∥∥
∫ tr

0

R(tr − s)G(s, x̄rρ(s,x̄r
s)
)ds

∥∥∥∥∥
α

≤ N
[∥∥ϕ(0)∥∥

α
+
∥∥A−β∥∥∥∥F (0, ϕ)∥∥

α+β

]
+
∥∥A−β∥∥∥∥F (tr, x̄rtr )∥∥α+β

+

∫ tr

0

∥∥AαR(tr − s)
∥∥∫ s

0

∥∥Υ(s− τ)
∥∥
α+β,0

∥∥F (τ, x̄rτ )∥∥α+βdτds
+

∫ tr

0

∥∥AαR(tr − s)
∥∥∥∥G(s, x̄rρ(s,x̄r

s)
)
∥∥ds

≤ N
[
H∥ϕ∥Bα

+M0L(∥ϕ∥Bα
+ 1)

]
+M0L(r

∗ + 1)

+

∫ tr

0

Cα
(tr − s)α

∫ s

0

M1L(r
∗ + 1)dτds+

∫ tr

0

Cα
(tr − s)α

gr∗(s)ds

≤ N
[
(H +M0L)

∥∥ϕ∥∥
Bα

+M0L
]
+M0L(r

∗ + 1) +
Cα

1− α
T 2−αM1L(r

∗ + 1)

+
Cα

1− α
T 1−α∥gr∗∥C .

Dividing both sides by r and taking the lower limit as r → ∞, we have

1 ≤ KT

[
M0L+

Cα
1− α

T 2−αM1L+
Cα

1− α
T 1−αδ

]
,

which contradicts (3.1). Hence, there exists r > 0 such that Φ(Br(0,D)) ⊂ Br(0,D).
In the rest of the proof r is fixed with this property.

Then we show that Φ is a condensing map from Br(0,D) into Br(0,D). To prove
this, we decompose Φ = Φ1 +Φ2 as

(Φ1x)(t) = R(t)F (0, ϕ)− F (t, x̄t)−
∫ t

0

∫ s

0

R(t− s)Υ(s− τ)F (τ, x̄τ )dτds,

(Φ2x)(t) = R(t)ϕ(0) +

∫ t

0

R(t− s)G(s, x̄ρ(s,x̄s))ds.
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We will verify that Φ1 is a contraction while Φ2 is a completely continuous operator.
To prove that Φ1 is a contraction, we take x1, x2 ∈ Br(0,D) arbitrarily. For each
t ∈ [0, T ], we get that∥∥(Φ1x1)(t)− (Φ1x2)(t)

∥∥
α

≤
∥∥F (t, x̄1t)− F (t, x̄2t)

∥∥
α

+

∥∥∥∥∥
∫ t

0

∫ s

0

R(t− s)Υ(s− τ)[F (τ, x̄1τ )− F (τ, x̄2τ )]dτds

∥∥∥∥∥
α

≤ ∥A−β∥L∥x̄1t − x̄2t∥Bα

+

∫ t

0

∫ s

0

∥AαR(t− s)∥M1∥F (τ, x̄1τ )− F (τ, x̄2τ )∥α+βdτds

≤
[
M0L+

Cα
1− α

M1T
2−αL

]
KT sup

0≤t≤T
∥x1(t)− x2(t)∥α

= L∗ sup
0≤t≤T

∥x1(t)− x2(t)∥α,

where L∗ =
[
M0L+ Cα

1−αM1T
2−αL

]
KT < 1 by (3.1). Thus,∥∥Φ1x1 − Φ1x2
∥∥
C
≤ L∗∥∥x1 − x2

∥∥
C
.

Next we prove that Φ2 is completely continuous in several steps.

(i) Φ2 is continuous on Br(0,D).

Let xn ⊆ Br(0,D) with xn → x (n → ∞) in C([0, T ], Xα) for some x ∈
Br(0,D). From Axiom (A′) , it is easy to see that x̄ns → x̄s uniformly for
s ∈ [0, T ] as n→ ∞. By virtue of (H3) we have∥∥G(s, x̄nρ(s,x̄n

s )
)−G(s, x̄ρ(s,x̄s))

∥∥
≤
∥∥G(s, x̄nρ(s,x̄n

s )
)−G(s, x̄ρ(s,x̄n

s )
)
∥∥+ ∥∥G(s, x̄ρ(s,x̄n

s )
)−G(s, x̄ρ(s,x̄s))

∥∥,
which implies that G

(
s, x̄nρ(s,x̄n

s )

)
→ G

(
s, x̄ρ(s,x̄s)

)
as n → ∞ for each s ∈ [0, T ].

Note that, by Lemma 2.1 and (H3),∥∥G(s, x̄nρ(s,x̄n
s )
)−G(s, x̄ρ(s,x̄s))

∥∥ ≤ 2gr∗(s),

then, by the dominated convergence theorem, we obtain

∥∥Φ2xn − Φ2x
∥∥
C

= sup
t∈[0,T ]

∥∥∥∥∥
∫ t

0

R(t− s)
[
G(s, x̄nρ(s,x̄n

s )
)−G(s, x̄ρ(s,x̄s))

]
ds

∥∥∥∥∥
α

≤ sup
t∈[0,T ]

∫ t

0

∥∥∥AαR(t− s)
∥∥∥∥∥∥G(s, x̄nρ(s,x̄n

s )
)−G(s, x̄ρ(s,x̄s))

∥∥∥ds
−→ 0, as n→ ∞,

i.e. Φ2 is continuous.

(ii) Φ2(Br(0,D)) = {Φ2x : x ∈ (Br(0,D))} is clearly bounded in C([0, T ], Xα).
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(iii) Φ2(Br(0,D)) = {Φ2x : x ∈ (Br(0,D))} is equicontinuous in C([0, T ], Xα).

Let x ∈ Br(0,D), t1, t2 ∈ (0, T ] and ε > 0 , such that 0 < ε < t1 < t2 ≤ T , then∥∥(Φ2x)(t1)− (Φ2x)(t2)
∥∥
α
≤
∥∥ [R(t2)−R(t1)]ϕ(0)

∥∥
α

+

∥∥∥∥∥
∫ t1−ε

0

[R(t2 − s)−R(t1 − s)]G(s, x̄ρ(s,x̄s))ds

∥∥∥∥∥
α

+

∥∥∥∥∥
∫ t1

t1−ε
[R(t2 − s)−R(t1 − s)]G(s, x̄ρ(s,x̄s))ds

∥∥∥∥∥
α

+

∥∥∥∥∥
∫ t2

t1

R(t2 − s)G(s, x̄ρ(s,x̄s))ds

∥∥∥∥∥
α

≤ ∥R(t2)−R(t1)∥H∥ϕ∥Bα

+

∫ t1−ϵ

0

∥Aα−1∥∥AR(t2 − s)−AR(t1 − s)∥gr∗(s)ds

+

∫ t1

t1−ϵ
∥Aα−1∥∥AR(t2 − s)−AR(t1 − s)∥gr∗(s)ds

+

∫ t2

t1

∥AαR(t2 − s)∥gr∗(s)ds,

where r∗ = rKT +(MT + J̃φ)∥ϕ∥Bα . As t2 → t1 and ε sufficiently small, the right-
hand side of the above inequality tends to zero independently of x ∈ Br(0,D), since
R(t) and AR(t) is continuous in the uniform operator topology on (0, T ] by Lemma
2.2 and 2.3. Thus, Φ2 maps Br(0,D) into an equicontinuous family of functions on
[0, T ] (note (Φ2x)(0) = ϕ(0)).

(iv) (Φ2Br(0,D))(t) = {Φ2x(t) : x ∈ Br(0,D)} is relatively compact in Xα for
each t ∈ [0, T ].

Obviously, (Φ2x)(0) is relatively compact in Xα since (Φ2x)(0) = ϕ(0). Now let
t ∈ (0, T ] be fixed, we just need to prove the set

V (t) :=

{∫ t

0

R(t− s)G(s, x̄ρ(s,xs))ds : x ∈ Br(0,D)
}

is relatively compact in Xα. Observe that, for 0 < α < α
′
< 1 ,∥∥∥∥Aα′

∫ t

0

R(t− s)G(s, x̄ρ(s,x̄s))ds

∥∥∥∥ ≤
∫ t

0

∥∥Aα′

R(t− s)
∥∥∥∥G(s, x̄ρ(s,x̄s))

∥∥ds
≤ Cα′T 1−α

′

1− α′ ∥gr∗∥C ,

which implies Aα
′

V (t) is bounded in X. Hence we infer that V (t) is relatively
compact in Xα by the compactness of operator A−α

′

: X → Xα′ (the imbedding
Xα′ ↪→ Xα is compact). Hence for each t ∈ [0, T ], (Φ2Br(0,D))(t) is relatively
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compact in Xα. From the Arzela-Ascoli theorem, we deduce that Φ2 is a completely
continuous map.

Therefore, Φ = Φ1+Φ2 is a condensing map from Br(0,D) into Br(0,D), and by
Theorem 2.1, we conclude that there exists a fixed point x(·) for Φ on C([0, T ], Xα).
Now we define

x∗(t) =

x(·) t ∈ [0, T ];

ϕ(t) t ∈ (−∞, 0),

then x∗(·) is the mild solution of equation (1). The proof is completed.

4. Regularity of solutions
In this section, we discuss the regularity of mild solutions for Eq. (1.1), that is, we
will provide conditions to allow the existence of strong solutions of Eq. (1.1). The
strong solutions of Eq. (1.1) are defined as

Definition 4.1. A function x(·) : (−∞, T ] → Xα is said to be a strong solution of
Problem (1.1), if

(1) x(t) + F (t, xt) is differentiable a.e. on (0, T ] and x′(·) ∈ L1([0, T ], X);
(2) x(·) ∈ D(A) satisfies

d

dt

[
x(t) + F (t, xt)

]
= −A

[
x(t) + F (t, xt)

]
+

∫ t

0

Υ(t− s)x(s)ds+G(t, xρ(t,xt)), a.e.

on [0, T ]

and
x0 = ϕ ∈ Bα.

In order to prove the existence of strong solutions for Eq. (1.1), we need to
establish the following lemma.

Lemma 4.1. Let −A be the infinitesimal generator of an analytic semigroup
S(t)t≥0, R(t) is the resolvent operator introduced in Definition 2.1 and f ∈ L1([0, T ], Xα)
satisfies the lipschitz condition, that is, there is L∗ > 0, s.t.

∥f(t1)− f(t2)∥α ≤ L∗|t1 − t2|, t1, t2 ∈ [0, T ]. (4.1)

Then ∫ t

0

R(t− s)f(s)ds ∈ D(A)

and
A

∫ t

0

R(t− s)f(s)ds =

∫ t

0

AR(t− s)f(s)ds, t ∈ [0, T ].

Proof. We write

k(t) : =

∫ t

0

R(t− s)f(s)ds

=

∫ t

0

R(t− s)[f(s)− f(t)]ds+

∫ t

0

R(t− s)f(t)ds

:= k1(t) + k2(t),
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and we consider the two parts separately. For k1(t), we define

k1,ϵ(t) =

∫ t−ϵ

0

R(t− s)[f(s)− f(t)]ds, for t ≥ ε

and
k1,ϵ(t) = 0, for 0 ≤ t < ε.

From this definition, it is clear that k1,ϵ → k1(t) as ε → 0, k1,ϵ ∈ D(A) and for
t ≥ ε,

Ak1,ϵ(t) =

∫ t−ϵ

0

AR(t− s)[f(s)− f(t)]ds.

On the other hand, utilizing condition (4.1), we have that∥∥Ak1,ϵ − ∫ t

0

AR(t− s)[f(s)− f(t)]ds
∥∥ =

∥∥∫ t

t−ϵ
AR(t− s)[f(s)− f(t)]ds

∥∥
≤
∫ t

t−ϵ
∥A1−αR(t− s)∥∥f(s)− f(t)∥αds

≤
∫ t

t−ϵ

C1−α

(t− s)1−α
L∗|s− t|ds

=
C1−αL

∗

1 + α
ε1+α → 0 (ε→ 0),

which shows that

lim
ϵ→0

Ak1,ϵ(t) =

∫ t

0

AR(t− s)[f(s)− f(t)]ds.

The closedness of A then implies that k1(t) ∈ D(A) for t ∈ [0, T ] and

Ak1(t) =

∫ t

0

AR(t− s)[f(s)− f(t)]ds.

To prove the same conclusion for k2(t), we define similarly that

k2,ϵ(t) =

∫ t−ϵ

0

R(t− s)f(t)ds, for t ≥ ε

and
k2,ϵ(t) = 0, for 0 ≤ t < ε.

Then, it is also clear that k2,ϵ → k2(t) as ε→ 0+ and k2,ϵ ∈ D(A), and for t ≥ ε

Ak2,ϵ(t) =

∫ t−ϵ

0

AR(t− s)f(t)ds

and
lim
ϵ→0

Ak2,ϵ(t) =

∫ t

0

AR(t− s)f(t)ds.

The closeness of A then implies that k2(t) ∈ D(A) for t > 0 and

Ak2(t) =

∫ t

0

AR(t− s)f(t)ds.

To sum up, we complete the proof.
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Remark 4.1. From the proofs of this lemma it is readily seen that, for any x(·) :
(−∞, T ] → Xα with x |[0,T ] continuous, if s→ F (s, xs) and s→ G(s, xρ(s,xs)) both
satisfy the lipschitz condition, then we similarly have

A

∫ t

0

R(t− s)G(s, xρ(s,xs))dsds =

∫ t

0

AR(t− s)G(s, xρ(s,xs))ds,

and

A

∫ t

0

∫ s

0

R(t− s)Υ(s− τ)F (τ, xτ )dτds =

∫ t

0

∫ s

0

AR(t− s)Υ(s− τ)F (τ, xτ )dτds.

To prove the existence of strong solutions for Eq. (1.1), we will gain additional
properties of the the phase subspace Bα. Let BCα be the set of bounded and
continuous functions mapping (−∞, 0] into Xα, and C00 be subset consisting of
functions in BCα with compact support. If Bα also satisfies the additional axiom
(C):

(C) If a uniformly bounded sequence {ϕn(θ)} in C00 converges to a function ϕ(θ)
uniformly on every compact set on (−∞, 0], then ϕ ∈ Bα and lim

n→+∞
∥ϕn −

ϕ∥Bα = 0.

Then BCα is continuously imbedded into Bα. Put

∥ϕ∥∞ = sup{∥ϕ(θ)∥α : θ ≤ 0},

for ϕ ∈ BCα, then one has that (see [33,34]).

Lemma 4.2. If the phase space Bα satisfies the axiom (C), then BCα ⊂ Bα, and
there exists a constant J > 0 such that ∥ϕ∥Bα

≤ J∥ϕ∥∞ for all ϕ ∈ BCα.

Theorem 4.1. Let X be a reflexive Banach space and the phase space Bα satisfies
the axiom (C) additionally. Suppose that condition (H0) and (H2) are satisfied.
Also the following conditions hold:

(H ′
1) The function F (·, ·) maps [0, T ] × Bα into D(Aα+β) and for any function
x(·) : (−∞, T ] → Xα with x |[0,T ] continuous, the map t → Aα+βF (t, xt)
satisfies the lipschitz condition, i.e. there exist L1 > 0 such that∥∥F (t2, xt2)− F (t1, xt1)

∥∥
α+β

≤ L1|t2 − t1|.

(H ′
2) Function G(·, ·) satisfies the local lipschitz condition, i.e. for each (t0, ϕ0) ∈

[0, T ] × Bα, there exist a neighborhood W of (t0, ϕ0) and constants L2 > 0,
such that

∥G(t2, ϕ2)−G(t1, ϕ1)∥ ≤ L2[|t2 − t1|+ ∥ϕ2 − ϕ1∥Bα
],

for any (ti, ϕi) ∈W , i = 1, 2.
(H ′

3) The initial function ϕ ∈ Bα satisfies the lipschitz condition on (−∞, 0],
together with ϕ(0) + F (0, ϕ) ∈ D(Aα+β).

(H ′
4) For any function x(·) : (−∞, T ] → Xα with x |[0,T ] continuous, the map
t→ ρ(t, xt) satisfies the lipschitz condition on (−∞, T ], i.e.

|ρ(t2, xt2)− ρ(t1, xt1)| ≤ L4|t2 − t1|.
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(H ′
5) Υ(t) ∈ L (Xα+β , X) also satisfies the lipschitz condition on [0, T ], i.e. ∥Υ(t)−

Υ(s)∥α+β,0 ≤ L5|t− s|.

Then the equation (1.1) has a strong solution on (−∞, T ].

Proof. Let Φ be the operator defind in the proof of Theorem 3.1. And by Theorem
3.1 , we see that Eq. (1.1) has a mild solution x(·) on (−∞, T ]. For this x(·), let

f(t) = R(t)[ϕ(0) + F (0, ϕ)],

p(t) =

∫ t

0

∫ s

0

R(t− s)Υ(s− τ)F (τ, xτ )dτds,

q(t) =

∫ t

0

R(t− s)G(s, xρ(s,xs))ds.

In the sequel we prove that they all satisfy the lipschitz condition in Xα, and then
together with that the F (t, xt) satisfies the lipschitz condition, we derive x(·) sat-
isfies the lipschitz condition on [ε, T ].

Let t ∈ [ε, T ] and h > 0 small enough, then from (2.2), we find

∥∥f(t+ h)− f(t)
∥∥
α
=

∥∥∥∥∥
∫ t+h

t

R′(s)[ϕ(0) + F (0, ϕ)]ds

∥∥∥∥∥
α

≤

∥∥∥∥∥
∫ t+h

t

AR(s)[ϕ(0) + F (0, ϕ)]ds

∥∥∥∥∥
α

+

∥∥∥∥∥
∫ t+h

t

∫ s

0

Υ(s− τ)R(τ)[ϕ(0) + F (0, ϕ)]dτds

∥∥∥∥∥
α

≤
∫ t+h

t

∥∥AR(s)∥∥∥∥A−β∥∥∥∥ϕ(0) + F (0, ϕ)
∥∥
α+β

ds

+

∫ t+h

t

∫ s

0

∥∥Υ(s− τ)A−βR(τ)
∥∥ ∥∥ϕ(0) + F (0, ϕ)

∥∥
α+β

dτds

≤
∫ t+h

t

C1

s
M0

∥∥ϕ(0) + F (0, ϕ)
∥∥
α+β

ds

+M0M1NT
∥∥ϕ(0) + F (0, ϕ)

∥∥
α+β

h

=
[
C1M0[ln(t+ h)− lnt] +M0M1NTh

]∥∥ϕ(0) + F (0, ϕ)
∥∥
α+β

≤
[
C1M0M

∗ +M0M1NT
]∥∥ϕ(0) + F (0, ϕ)

∥∥
α+β

h

= L01h,

where
M∗ = Max{|ln(T + h)|, |lnε|},
L01 :=

[
C1M0M

∗ +M0M1NT
]∥∥ϕ(0) + F (0, ϕ)

∥∥
α+β

.

Hence f(t) satisfies the lipschitz condition. For p(t) we see that

∥p(t+ h)− p(t)∥α =

∥∥∥∥∫ t+h

0

∫ s

0

R(t+ h− s)Υ(s− τ)F (τ, xτ )dτds

−
∫ t

0

∫ s

0

R(t− s)Υ(s− τ)F (τ, xτ )dτds

∥∥∥∥
α
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≤
∥∥∥∥∫ t+h

h

∫ s

0

R(t+ h− s)Υ(s− τ)F (τ, xτ )dτds

−
∫ t

0

∫ s

0

R(t− s)Υ(s− τ)F (τ, xτ )dτds

∥∥∥∥
α

+

∥∥∥∥∫ h

0

∫ s

0

R(t+ h− s)Υ(s− τ)F (τ, xτ )dτds

∥∥∥∥
α

≤
∥∥∥∥∫ t

0

∫ s

0

R(t− s)[Υ(s+ h− τ)−Υ(s− τ)]F (τ, xτ )dτds

∥∥∥∥
α

+NTM0M1 sup
0≤s≤T

∥F (s, xs)∥α+βh

≤ L5M0NT
2 sup
0≤s≤T

∥F (s, xs)∥α+βh

+M0M1NT sup
0≤s≤T

∥F (s, xs)∥α+βh

= L02h.

Then p(t) also satisfies the lipschitz condition. Similarly, we have the following
estimate with q(t),

∥q(t+ h)− q(t)∥α ≤
∥∥∥∥ ∫ t

0

[R(t+ h− s)−R(t− s)]G(s, xρ(s,xs))ds

∥∥∥∥
α

+

∥∥∥∥∫ t+h

t

R(t+ h− s)G(s, xρ(s,xs))ds

∥∥∥∥
α

≤
∥∥∥∥∫ t

0

∫ t+h

t

R′(τ − s)G(s, xρ(s,xs))dτds

∥∥∥∥
α

+
Cα

1− α
sup

0≤s≤T

∥∥∥∥G(s, xρ(s,xs))

∥∥∥∥h1−α
=

∥∥∥∥ ∫ t

0

∫ t+h

t

AR(τ − s)G(s, xρ(s,xs))dτds

∥∥∥∥
α

+

∥∥∥∥ ∫ t

0

∫ t+h

t

∫ τ−s

0

R(τ − s− ρ)Υ(ρ)G(s, xρ(s,xs))dρdτds

∥∥∥∥
α

+
Cα

1− α
sup

0≤s≤T

∥∥∥∥G(s, xρ(s,xs))

∥∥∥∥h1−α
≤ C1+α[t

1−α + h1−α − (t+ h)1−α]

α(1− α)

∥∥∥∥G(s, xρ(s,xs))

∥∥∥∥
+
CαM1[(t+ h)3−α − h3−α − t3−α]

(1− α)(2− α)(3− α)
sup

0≤s≤T

∥∥∥∥G(s, xρ(s,xs))

∥∥∥∥
+

Cα
1− α

sup
0≤s≤T

∥∥∥∥G(s, xρ(s,xs))

∥∥∥∥h1−α
≤
( C1+α

α(1− α)
+

Cα
1− α

)
sup

0≤s≤T

∥∥∥∥G(s, xρ(s,xs))

∥∥∥∥h1−α
+
CαM1[(3− α)(T + h)2−α − h2−α]

(1− α)(2− α)(3− α)
sup

0≤s≤T

∥∥∥∥G(s, xρ(s,xs))

∥∥∥∥h
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= L03h.

From these estimates we see that f(t), p(t) and q(t) all satisfy the lipschitz
condition continuous on [ε, T ]. So combined condition (H ′

1), we deduce that x(t)
satisfies the local lipschitz condition on [ε, T ], and it is clear that Xα is a reflexive
Banach space since X is so. Hence, x(t) is continuously differentiable a.e. on [ε, T ].
Furthermore,

dp(t)

dt
= lim

h→0

1

h

[∫ t+h

0

∫ s

0

R(t+ h− s)Υ(s− τ)F (τ, xτ )dτds

−
∫ t

0

∫ s

0

R(t− s)Υ(s− τ)F (τ, xτ )dτds

]

=

∫ t

0

∫ s

0

R′(t− s)Υ(s− τ)F (τ, xτ )dτds

+ lim
h→0

1

h

∫ t+h

t

∫ s

0

R(t+ h− s)Υ(s− τ)F (τ, xτ )dτds

=−
∫ t

0

∫ s

0

AR(t− s)Υ(s− τ)F (τ, xτ )dτds

+

∫ t

0

∫ s

0

∫ t−s

0

Υ(t− s− ν)R(ν)Υ(s− τ)F (τ, xτ )dνdτds

+

∫ t

0

Υ(t− s)F (s, xs)ds

=−
∫ t

0

∫ s

0

AR(t− s)Υ(s− τ)F (τ, xτ )dτds

+

∫ t

0

Υ(t− s)

∫ s

0

∫ t−s

0

R(s− ν)Υ(τ − ν)F (ν, xν)dνdτds

+

∫ t

0

Υ(t− s)F (s, xs)ds,

dq(t)

dt
=

∫ t

0

R′(t− s)G(s, xρ(s,xs))ds+G(t, xρ(t,xt))

=−
∫ t

0

AR(t− s)G(s, xρ(s,xs))ds+

∫ t

0

Υ(t− s)

∫ s

0

R(s− τ)G(τ, xρ(τ,xτ ))dτds

+G(t, xρ(t,xt))

and
df(t)

dt
= R′(t)[ϕ(0) + F (0, ϕ)]

=−AR[ϕ(0) + F (0, ϕ)] +

∫ t

0

Υ(t− s)R(s)[ϕ(0) + F (0, ϕ)]ds.

From above formulas, we obtain that
d

dt
[x(t) + F (t, xt)]
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=
d

dt
[f(t)− p(t) + q(t)]

=−A

[
R(t)

[
ϕ(0) + F (0, ϕ)

]
− F (t, xt)−

∫ t

0

∫ s

0

R(t− s)Υ(s− τ)F (τ, xτ )dτds

+

∫ t

0

R(t− s)G(s, xρ(s,xs))ds

]
+

∫ t

0

Υ(t− s)

[
R(s)

[
ϕ(0) + F (0, ϕ)

]
− F (s, xs)

−
∫ s

0

∫ τ

0

R(s− ν)Υ(τ − ν)F (ν, xν)dνdτ +

∫ s

0

R(s− τ)G(τ, xρ(τ,xτ ))dτ

]
ds

+G(t, xρ(t,xt))

=−Ax(t) +

∫ t

0

Υ(t− s)x(s)ds+G(t, xρ(t,xt)),

which shows x(t)+F (t, xt) is continuously differentiable a.e. on [ε, T ] and Eq. (1.1)
holds.

Taking ε small enough, it indicates that x(t) + F (t, xt) is continuously differ-
entiable a.e. on (0, T ], together with Eq. (1.1) holds. The proof is completed.

5. Blowup Alternative Result

In this section, based on the local existence of mild solutions for Eq. (1.1) on
interval [0, T ] (see Theorem 3.1), we will prove that given any ϕ ∈ Bα, Eq. (1.1)
exists a mild solution x(·) : (−∞, Tmax) −→ Xα on a maximal existence interval
(−∞, Tmax) and satisfies the blowup alternative result: either Tmax = +∞ (i.e.
x(·) is a global solution) or else Tmax < +∞ and ∥x(·)∥ → +∞ as t → T−

max (i.e.
x(·) blow up in finite time).

Theorem 5.1. Assume that assumptions (H0)−(H3) hold, then for every ϕ ∈ Bα,
Eq. (1.1) exists a mild solution x(·) on a maximal existence interval (−∞, Tmax)
with x|[0,Tmax) ∈ C([0, Tmax), Xα). If Tmax < +∞, then lim

t→T−
max

∥x(t)∥ = +∞.

Proof. By Theorem 3.1, we know that there exists a constant h0 > 0 such that Eq.
(1.1) has a mild solution x(·) : (−∞, h0] −→ Xα. Moreover, x(·) can be extended
to a large interval (−∞, h0 + h1] with h1 > 0 by defining x(t)=y(t) on [h0, h0 + h1],
where y(t) is the mild solution of the initial value problem


d

dt
[y(t) + F (t, yt)] = −A[y(t) + F (t, yt)] +

∫ t

0

Υ(t− s)y(s)ds+G(t, yρ(t,yt)),

t ∈ [h0, h0 + h1],

y0 = xh0
.

Hence, repeating the above procedure and using the methods of steps, we can prove
that x(·) can be extended to a maximal existence interval (−∞, Tmax), namely
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x(·) : (−∞, Tmax) −→ Xα is a mild solution of
d

dt
[x(t) + F (t, xt)] = −A[x(t) + F (t, xt)] +

∫ t

0

Υ(t− s)x(s)ds+G(t, xρ(t,xt)),

t ∈ [0, Tmax),

x0 = ϕ ∈ Bα.
(5.1)

In the following, we prove that the mild solution x(·) of Eq. (5.1) blows up in finite
time, i.e. if Tmax < +∞, then lim

t→T−
max

x(t) = +∞.

To do so, we first show that Tmax < +∞ implies lim sup
t→T−

max

∥x(t)∥α = +∞. In

fact, if Tmax < +∞ and lim sup
t→T−

max

∥x(t)∥α < +∞, we can assume that ∥R(t)∥ ≤ N ,

∥x(t)∥α ≤ k, and the conditions (H1)-(H3) are satisfied for t ∈ [0, Tmax). For
ε < t1 < t2 < Tmax with ε > 0 small enough, one has that∥∥x(t2)−x(t1)∥∥α

≤
∥∥[R(t2)−R(t1)

][
ϕ(0) + F (0, ϕ)

]∥∥
α
+
∥∥F (t2, xt,2)− F (t1, xt1)

∥∥
α

+

∥∥∥∥∥
∫ t2

0

R(t2 − s)G(s, xρ(s,xs))ds−
∫ t1

0

R(t1 − s)G(s, xρ(s,xs))ds

∥∥∥∥∥
α

+

∥∥∥∥∥
∫ t2

0

R(t2 − s)

∫ s

0

Υ(s− τ)F (τ, xτ )dτds

−
∫ t1

0

R(t1 − s)

∫ s

0

Υ(s− τ)F (τ, xτ )dτds

∥∥∥∥∥
α

≤
∥∥[R(t2)−R(t1)

][
ϕ(0) + F (0, ϕ)

]∥∥
α
+M0L

(
|t2 − t1|+ ∥xt,2 − xt,1∥Bα

)
+

∥∥∥∥∥
∫ t1−ε

0

[
R(t2 − s)−R(t1 − s)

]
G(s, xρ(s,xs))ds

∥∥∥∥∥
α

+

∥∥∥∥∥
∫ t1

t1−ε

[
R(t2 − s)−R(t1 − s)

]
G(s, xρ(s,xs))ds

∥∥∥∥∥
α

+

∥∥∥∥∥
∫ t2

t1

R(t2 − s)G(s, xρ(s,xs))ds

∥∥∥∥∥
α

+

∥∥∥∥∥
∫ t1−ε

0

[
R(t2 − s)−R(t1 − s)

] ∫ s

0

Υ(s− τ)F (τ, xτ )dτds

∥∥∥∥∥
α

+

∥∥∥∥∥
∫ t1

t1−ε

[
R(t2 − s)−R(t1 − s)

] ∫ s

0

Υ(s− τ)F (τ, xτ )dτds

∥∥∥∥∥
α

+
∥∥∥∫ t2

t1

R(t2 − s)

∫ s

0

Υ(s− τ)F (τ, xτ )dτds

∥∥∥∥∥
α

≤
∥∥[R(t2)−R(t1)

][
ϕ(0) + F (0, ϕ)

]∥∥
α
+M0L

(
|t2 − t1|+ ∥xt,2 − xt,1∥Bα

)
+

∫ t1−ε

0

∥Aα−1∥∥AR(t2 − s)−AR(t1 − s)∥∥G(s, xρ(s,xs))∥ds
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+

∫ t1

t1−ε
∥Aα−1∥∥AR(t2 − s)−AR(t1 − s)∥∥G(s, xρ(s,xs))∥ds

+

∫ t2

t1

∥AαR(t2 − s)∥∥G(s, xρ(s,xs))∥ds

+

∫ t1−ε

0

∥Aα−1∥∥AR(t2 − s)−AR(t1 − s)∥
∫ s

0

∥Υ(s− τ)F (τ, xτ )∥dτds

+

∫ t1

t1−ε
∥Aα−1∥∥AR(t2 − s)−AR(t1 − s)∥

∫ s

0

∥Υ(s− τ)F (τ, xτ )∥dτds

+

∫ t2

t1

∥AαR(t2 − s)∥
∫ s

0

∥Υ(s− τ)F (τ, xτ )∥dτds

→ 0, as t1, t2 → T−
max, ε→ 0.

Therefore by Cauchy criteria we know that lim
t→T−

max

x(t) = x(Tmax) exists and by the

first part of the proof the solution x(t) can be extended beyond Tmax, contradicting
the maximality of Tmax. Hence we get that lim sup

t→T−
max

x(t) = +∞.

To conclude the proof we will show that actually lim
t→T−

max

x(t) = +∞. If this is not

true then there is sequence tn → T−
max and a constant k > 0 such that ∥x(tn)∥α ≤ k

for all n. We still assume that ∥R(t)∥ ≤ N and the conditions (H1)-(H3) are fulfilled
for t ∈ [0, Tmax]. Since t −→ ∥x(t)∥α is continuous and lim sup

t→T−
max

∥x(t)∥α = +∞ we

can find a sequence {hn} having the following properties:

(i) hn → 0 as n→ +∞;
(ii) ∥x(t)∥α ≤ N(k + 1) for tn ≤ t ≤ tn + hn;

(iii) ∥x(tn + hn)∥α = N(k + 1).

So we have

N(k + 1) =
∥∥x(tn + hn)

∥∥
α

≤
∥∥R(hn)[x(tn) + F (tn, xtn)

]
− F (tn + hn, xtn+hn)

∥∥
α

+

∥∥∥∥∥
∫ tn+hn

tn

R(tn + hn − s)G(s, xρ(s,xs))ds

∥∥∥∥∥
α

+

∥∥∥∥∥
∫ tn+hn

tn

R(tn + hn − s)

∫ s

0

γ(s− τ)F (τ, xτ )dτds

∥∥∥∥∥
α

≤ Nk +M0

∥∥R(hn)F (tn, xtn)− F (tn + hn, xtn+hn)
∥∥
α+β

+
Cα

1− α
∥gk∥Ch1−αn +

Cα
1− α

M1Tmax sup
0≤t≤Tmax

∥∥F (t, xt)∥∥α+βh1−αn .

By the continuity of R(t), F (t, xt), the last three terms can be smaller than 1 when
n→ +∞. Therefore the proof is complete.

Remark 5.1. It is easy to see that when X is a reflexive Banach space and the
phase space Bα satisfies the axiom (C), the strong solution of Eq. (1.1) also has a
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blowup alternative result, i.e. If assumptions (H0), (H2) and (H ′
1)−(H ′

5) hold, then
for every ϕ ∈ Bα, Eq. (1.1) exists a strong solution x(·) on a maximal existence
interval (−∞, T−

max). If Tmax < +∞, then lim
t→T−

max

∥x(t)∥ = +∞.

6. An example
In order to show the applications of above theorems, we consider the following
system

∂

∂t

[
z(t, x) +

∫ t

−∞

∫ π

0

a

(
s− t, x, z(s, y) +

∂

∂y
z(s, y)

)
dyds

]
=

∂2

∂x2

[
z(t, x)

+

∫ t

−∞

∫ π

0

a

(
s− t, x, z(s, y) +

∂

∂y
z(s, y)

)
dyds

]
+

∫ t

0

b(t− s)
∂2

∂x2
z(s, x)ds

+

∫ t

−∞
c(s− t)

[
z (s− σ(∥z(t, x)∥), x) + ∂

∂x
z(s, x)

]
ds,

z(t, 0) = z(t, π) = 0, 0 ≤ t ≤ T,

z(θ, x) = ϕ(θ, x), θ ≤ 0, 0 ≤ x ≤ π,
(6.1)

where the functions a(·, ·, ·), b(·), c(·) and ϕ(·, ·) will be described below. Let X =
L2([0, π]) and operator A be defined by

Af = −f ′′

with the domain

D(A) = H2
0 ([0, π]) = {f(·) ∈ X : f ′, f ′′ ∈ X, f(0) = f(π) = 0} .

Then −A generates a strongly continuous semigroup (S(·))t≥0 which is analytic,
compact and self-adjoint. Furthermore, −A has a discrete spectrum, the eigen-
values are −n2, n ∈ N, with the corresponding normalized eigenvectors en(x) =√

2
π sin(nx). Then the following properties hold:

(a) If f ∈ D(A), then

Af =

∞∑
n=1

n2⟨f, en⟩en.

(b) For every f ∈ X,

S(t)f =

∞∑
n=1

e−n
2t⟨f, en⟩en,

A− 1
2 f =

∞∑
n=1

1

n
⟨f, en⟩en.

In particular, ∥S(t)∥ ≤ e−t, ∥A−1∥ = ∥A− 1
2 ∥ = 1.



308 J. Zhu, X. Wang & X. Fu

(c) The operator A1/2 is given by

A1/2f =

∞∑
n=1

n⟨f, en⟩en,

on the space D(A1/2) = {f(·) ∈ X,
∞∑
n=1

n⟨f, en⟩en ∈ X}.

Here we take α = β = 1
2 and the phase space B = Cg, where the space Cg is defined

as: let g be a continuous function on (−∞, 0] with g(0) = 1, lim
θ→−∞

g(θ) = ∞, and
g is decreasing on (−∞, 0], then

Cg =

{
ϕ ∈ C((−∞, 0];X) : sup

s≤0

∥ϕ(s)∥
g(s)

<∞
}
,

and the norm is given by, for ϕ ∈ Cg,

|ϕ|g = sup
s≤0

∥ϕ(s)∥
g(s)

.

It is known that Cg satisfies the axioms (A), (A1), and (B), see [34]. Further, the
subspace Cg, 12 is defined by

Cg, 12 =

{
ϕ ∈ C((−∞, 0];X 1

2
) : sup

s≤0

∥A 1
2ϕ(s)∥
g(s)

<∞

}
,

endowed with the norm |ϕ|g, 12 = sup
s≤0

∥A
1
2 φ(s)∥
g(s) . Clearly, Cg, 12 satisfies correspond-

ingly the axioms (A′), (A′
1), and (B′), and we may choose a proper g such that

H, K(·), M(·) ≤ 1 (see [34]). Thus we obtain KT ≤ 1.
Considering the following conditions:

(i) The function (∂2/∂x2)a(θ, x, y) is measurable with a(·, 0, ·) = a(·, π, ·) ≡ 0,
and there is a function a1(·, ·) ∈ L1((−∞, 0] × R, R+) such that, for θ ∈
(−∞, 0], x, y ∈ R,∣∣∣∣ ∂2∂x2 a(θ, x, y2)− ∂2

∂x2
a(θ, x, y1)

∣∣∣∣ < a1(θ, x)|y2 − y1|,

∣∣∣∣ ∂2∂x2 a(θ, x, y)
∣∣∣∣ < a1(θ, x)(|y|+ 1),

and

L :=

(
2π

∫ π

0

(∫ 0

−∞
g(θ)a1(θ, x)dθ

)2

dx

) 1
2

<∞. (6.2)

(ii) The function σ : [0,∞) → [0,∞) is continuously differentiable. The function
c : R → R is continuous and satisfies

δ :=

(
2

∫ 0

−∞
g(θ)c2(θ)dθ

) 1
2

<∞. (6.3)
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(iii) The function ϕ defined by ϕ(θ)(x) = ϕ(θ, x) belongs to Cg, 12 .

(iv) The function b(·) ∈ C1[0, T ].

Now define the abstract functions F , G on Cg, 12 , ρ : [0, T ] × Cg, 12 → (−∞, T ]

and operator Υ(t) : D(A) → X by

F (ϕ)(x) =

∫ 0

−∞

∫ π

0

a (θ, x, ϕ(θ)(y) + ϕ(θ)′(y)) dydθ,

G(ϕ)(x) =

∫ 0

−∞
c(θ) [ϕ(θ)(x) + ϕ(θ)′(x)] dθ,

ρ(t, ϕ) = t− σ(∥ϕ(0)∥),

Υ(t)z(s, x) = b(t)
∂2

∂x2
z(s, x).

Then the system (6.1) is rewritten as the abstract form (1.1). It is known that there
exists ϑ ∈ (0, π/2) such that

Λ =
{
λ ∈ C : |argλ| < π

2
+ ϑ

}
⊂ ρ(−A)

and then (V 1′)−(V 3′) hold. Hence the linear system of system (6.1) has an analytic
resolvent operator (R(t))t≥0 which is given by R(0) = I and

R(t)x =
1

2πi

∫
Γ

eλtg−1
1 (λ)

[
λg−1

1 (λ)I −A
]−1

xdλ, t > 0,

where g1(λ) = 1 + b∗(λ) and the contour Γ is that described in Section 2.
By condition (i) we know that R(F ) ⊂ D(A) since

⟨F (ϕ), en⟩ =
1

n

〈∫ 0

−∞

∫ π

0

∂

∂x
a(θ, x, ϕ(θ)(y) + ϕ(θ)′(y))dydθ, ẽn(x)

〉
= − 1

n2

〈∫ 0

−∞

∫ π

0

∂2

∂x2
a(θ, x, ϕ(θ)(y) + ϕ(θ)′(y))dydθ, en(x)

〉
,

where ẽn(x) =
√

2
π cos(nx), n = 1, 2, · · · . Observe now that, for any θ ∈ (−∞, 0],

∥ϕ2(θ)(x)− ϕ1(θ)(x)∥2 =

∞∑
n=1

⟨ϕ2 − ϕ1, en⟩2

≤
∞∑
n=1

n2⟨ϕ2 − ϕ1, en⟩2

≤ ∥ϕ2(θ)(x)− ϕ1(θ)(x)∥ 1
2

2
,
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and

∥ϕ2(θ)
′(x)− ϕ1(θ)

′(x)∥2 =

∞∑
n=1

⟨ϕ′
2 − ϕ′

1, en⟩
2

=

∞∑
n=1

⟨ϕ2 − ϕ1, e
′
n⟩

2

=

∞∑
n=1

∞∑
m=1

n2⟨ϕ2 − ϕ1, en⟩⟨ϕ2 − ϕ1, em⟩⟨−e′′n, e′m⟩

≤ ∥ϕ2(θ)(x)− ϕ1(θ)(x)∥ 1
2

2
,

we get
|ϕ2(·)− ϕ1(·)|g ≤ |ϕ2(·)− ϕ1(·)|g, 12 ,

|ϕ2(·)′ − ϕ1(·)′|g ≤ |ϕ2(·)− ϕ1(·)|g, 12 .

Thus, under conditions (i) and (ii), F and G satisfy the assumptions (H2) and (H3)
with L and δ given by (6.2) and (6.3) respectively. Hence, by Theorem 3.1 the
system (6.1) admits a mild solution on (−∞, T ] provided that (3.1) is fulfilled (here
KT , M0 ≤ 1).

Furthermore, if take B 1
2
= C 0

g, 12
, where

C 0
g, 12

=

{
ϕ ∈ Cg, 12 : lim

s≤0

∥A 1
2ϕ(s)∥
g(s)

= 0

}
,

so that Axiom (C) is satisfied (see [34]). We impose some restrictions on the function
a(·, ·, ·) that a(·, ·, ·) ∈ C2, then for any z(t, y) with z|[0,T ] is continuous, the maps

t→ F (zt) =

∫ t

−∞

∫ π

0

a

(
s− t, x, z(s, y) +

∂

∂y
z(s, y)

)
dyds

and
t→ ρ(t, zt) = t− σ(∥z(·)∥)

are continuously differentiable on [0, T ] and hence Lipschitz continuous on this in-
terval. Meanwhile G(·) is locally lipschitz continuous on C 0

g, 12
since it is linear.

Thus the conditions (H ′
1), (H ′

2), (H ′
4) and (H ′

5) are all satisfied at this moment.
Therefore, if ϕ(·, x) is uniformly Lipschitz continuous and ϕ(0, x) ∈ D(A), then the
system (6.1) has a strong solution on (−∞, T ]. By Theorem 5.1, the solution z(·, x)
exists on a maximal existence interval (−∞, Tmax) and satisfies the blowup alter-
native: either Tmax = +∞ or else Tmax < +∞ and ∥z(·, x)∥ → +∞ as t→ T−

max.

References
[1] R. Grimmer, Resolvent operator for integral equations in a Banach space,

Transactions of the American Mathematical Society, 1982, 273(1), 333-349.
[2] R. Grimmer and A. J. Pritchard, Analytic resolvent operators for integral equa-

tions in Banach space, Journal of Differential Equations, 1983, 50(2), 234-259.



Existence and Blowup of Solutions for Equations 311

[3] R. Grimmer and F. Kappel, Series expansions for resolvents of Volterra in-
tegrodifferential equations in Banach space, SIAM Journal on Mathematical
Analysis, 1984, 15(3), 595-604.

[4] Y. Lin and J. H. Liu, Semilinear integrodifferential equations with nonlocal
Cauchy problem, Nonlinear Analysis. Theory, Methods and Applications, 1996,
26(5), 1023-1033.

[5] K. Ezzinbi, H. Toure and I. Zabsonre, Local existence and regularity of solutions
for some partial functional integrodifferential equations with infinite delay in
Banach spaces, Nonlinear Analysis. Theory, Methods and Applications, 2009,
70(9), 3378-3389.

[6] K. Ezzinbi and S. Ghnimi, Existence and regularity of solutions for some par-
tial integrodifferential equations involving the nonlocal conditions, Numerical
Functional Analysis and Optimization, 2019, 40(13), 1532-1549.

[7] M. A. Diop, T. Caraballo and A. A. Ndiaye, Exponential behavior of solutions
to stochastic integrodifferential equations with distributed delays, Stochastic
Analysis and Applications, 2015, 33(3), 399-412.

[8] H. Ding, J. Liang and T. Xiao, Pseudo almost periodic solutions to integro-
differential equations of heat conduction in materials with memory, Nonlinear
Analysis. Real World Applications, 2012, 13(6), 2659-2670.

[9] Z. Xia, Pseudo asymptotically periodic solutions for Volterra integro-differential
equations, Mathematical Methods in the Applied Sciences, 2015, 38(5), 799-
810.

[10] B. Radhakrishnan and K. Balachandran, Controllability of neutral evolution
integrodifferential systems with state dependent delay, Journal of Optimization
Theory and Applications, 2012, 153(1), 85-97.

[11] K. Ezzinbi and S. Ghnimi, Existence and regularity of solutions for neutral
partial functional integrodifferential equations, Nonlinear Analysis. Real World
Applications, 2010, 11(4), 2335-2344.

[12] K. Ezzinbi, S. Ghnimi and M. A. Taoudi, Existence and regularity of solutions
for neutral partial functional integrodifferential equations with infinite delay,
Nonlinear Analysis. Hybrid Systems, 2010, 4(1), 54-64.

[13] Y. Chang and W. Li, Solvability for impulsive neutral integro-differential equa-
tions with state-dependent delay via fractional operators, Journal of Optimiza-
tion Theory and Applications, 2010, 144(3), 445-459.

[14] J. P. C. Dos Santos, H. Henríquez and E. Hernández, Existence results for
neutral integro-differential equations with unbounded delay, Journal of Integral
Equations and Applications, 2011, 23(2), 289-330.

[15] H. R. Henriquez and J. P. C. Dos Santos, Differentiability of solutions of ab-
stract neutral integro-differential equations, Journal of Integral Equations and
Applications, 2013, 25(1), 47-77.

[16] P. Duan and Y. Ren, Solvability and stability for neutral stochastic integro-
differential equations driven by fractional Brownian motion with impulses,
Mediterranean Journal of Mathematics, 2018, 15(6), 1-19.

[17] M. A. Diop, A. T. Gbaguidi Amoussou, C. Ogouyandjou and R. Sakthivel,
Asymptotic behavior of mild solution of nonlinear stochastic partial functional



312 J. Zhu, X. Wang & X. Fu

equations driven by Rosenblatt process, Nonlinear Analysis. Modelling and Con-
trol, 2019, 24(4), 523-544.

[18] Z. Yan and X. Jia, Optimal solutions of fractional nonlinear impulsive neu-
tral stochastic functional integro-differential equations, Numerical Functional
Analysis and Optimization, 2019, 40(14), 1593-1643.

[19] E. Hernández, A. Prokopczyk and L. Ladeira, A note on partial functional dif-
ferential equations with state-dependent delay, Nonlinear Analysis. Real World
Applications, 2006, 7(4), 510-519.

[20] M. Basin and A. Rodkina, On delay-dependent stability for a class of nonlin-
ear stochastic systems with multiple state delays, Nonlinear Analysis. Theory,
Methods and Applications, 2008 68(8), 2147-2157.

[21] J. P. C. Dos Santos, Existence results for a partial neutral integro-differential
equation with state-dependent delay, Electronic Journal of Qualitative Theory
of Differential Equations, 2010, 2010(29), 1-12.

[22] J. P. C. Dos Santos, M. Mallika Arjunan and C. Cuevas, Existence results
for fractional neutral integro-differential equations with state-dependent delay,
Computers and Mathematics with Applications, 2011, 62(3), 1275-1283.

[23] M. Belmekki, M. Benchohra and K. Ezzinbi, Existence results for some partial
functional differential equations with state-dependent delay, Applied Mathe-
matics Letters, 2011, 24(11), 1810-1816.

[24] F. Andrade, C. Cuevas and H. R. Henríquez, Periodic solutions of abstract func-
tional differential equations with state-dependent delay, Mathematical Methods
in the Applied Sciences, 2016, 39(13), 3897-3909.

[25] Z. Yan and X. Jia, On a fractional impulsive partial stochastic integro-
differential equation with state-dependent delay and optimal controls, Stochas-
tics. An International Journal of Probability and Stochastic Processes, 2016,
88(8), 1115-1146.

[26] R. Chaudhary and D. N. Pandey, Existence results for a class of impulsive
neutral fractional stochastic integro-differential systems with state dependent
delay, Stochastic Analysis and Applications, 2019, 37(5), 865-892.

[27] E. Hernández and J. Wu, Existence, uniqueness and qualitative properties of
global solutions of abstract differential equations with state-dependent delay,
Proceedings of the Edinburgh Mathematical Society. Series II, 2019, 62(3),
771-788.

[28] Y. Zhou, S. Suganya, M. Mallika Arjunan and B. Ahmad, Approximate control-
lability of impulsive fractional integro-differential equation with state-dependent
delay in Hilbert spaces, IMA Journal of Mathematical Control and Information,
2019, 36(2), 603-622.

[29] C. C. Travis and G. F. Webb, Partial differential equations with deviating argu-
ments in the time variable, Journal of Mathematical Analysis and Applications,
1976, 56(2), 397-409.

[30] C. C. Travis and G. F. Webb, Existence, stability and compactness in the α-
norm for partial functional differential equations, Transactions of the American
Mathematical Society, 1978, 240, 129-143.



Existence and Blowup of Solutions for Equations 313

[31] K.-J. Engel and R. Nagel, One-Parameter Semigroups for Linear Evolution
Equations, Springer, New York, 2000.

[32] A. Pazy, Semigroups of Linear Operators and Applications to Partial Differ-
ential Equations, Springer-Verlag, New York, 1983.

[33] J. K. Hale and J. Kato, Phase space for retarded equations with infinite delay,
Funkcialaj Ekvacioj, 1978, 21(1), 11-41.

[34] Y. Hino, S. Murakami and T. Naito, Functional differential equations with
infinite delay, Springer-verlag, Berlin, 1991.

[35] X. Fu, Y. Gao and Y. Zhang, Existence of solutions for neutral integro-
differential equations with nonlocal conditions, Taiwanese Journal of Mathe-
matics, 2012, 16(5), 1879-1909.

[36] X. Fu and R. Huang, Existence of solutions for neutral integro-differential
equations with state-dependent delay, Applied Mathematics and Computation,
2013, 224, 743-759.

[37] B. N. Sadovskii, On a fixed point principle, Functional Analysis and its Appli-
cations, 1967, 1(2), 74-76.

[38] C. M. Marle, Mesures et probabilities, Hermam, Paris, 1974.


	Introduction
	Preliminaries
	Existence of mild solutions
	Regularity of solutions
	Blowup Alternative Result
	An example

