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New Peakons and Periodic Peakons of the
Modified Camassa-Holm Equation∗

Xinhui Lu1, Lin Lu2,† and Aiyong Chen1,2

Abstract In this paper, we obtain new peakon and periodic peakon solutions
to a modified Camassa-Holm equation. We change the modified Camassa-
Holm equation into a planar system. Then the first integral and algebraic
curves of this system are obtained. By using the first integral and algebraic
curves, a new peakon solution is given by hyperbolic function. Moreover, some
new periodic peakons are given by elliptic functions and triangle functions.
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1. Introduction

In recent years, studies on Camassa-Holm equations have received considerable
attention because these equations have many applications in physics. The Camassa-
Holm equation

ut − uxxt + 3uux = 2uxuxx + uuxxx (1.1)

was proposed by Camassa and Holm [1] as a model equations for shallow water
unidirectional nonlinear dispersion waves, where u(x, t) representing the waters free
surface over a flat bed. Equation (1.1) admits the peakons and periodic peakons in
the following forms [1, 5]

u(x, t) = ce−|x−ct|

and

u(x, t) =
c

sinh(1/2)
cosh

(
1

2
− (x− ct) + [x− ct]

)
,

where the notation [x] denotes the largest integer part of the real number x ∈ R.
Lenells [4] obtained smooth solitary wave solutions to the famous Korteweg-de Vries
equation

ut − 6uux + uuxxx = 0, (1.2)
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and showed that the smooth traveling waves of (1.1) naturally correspond to trav-
eling waves of (1.2).

The µ-Camassa-Holm (µCH) equation

µ(ut)− uxxt = −2µ(u)ux + 2uxuxx + uuxxx (1.3)

was introduced as an integrable equation arising in the study of the diffeomorphism
group of the circle, where u(x, t) is a real-valued spatially periodic function and
µ(u) =

∫
S1 u(x, t)dx denotes its mean. Lenells et al. [6] obtained that equation

(1.3) admits periodic peakons

u(x, t) =
c

26

(
12(x− ct)2 + 23

)
,

where |x− ct| ≤ 1
2 and u(x, t) is extended periodically to the real line.

In this paper, we consider the modified Camassa-Holm (mCH) equation

ut − uxxt = uuxxx + 2uxuxx − 3u2ux, (1.4)

where x ∈ R and t > 0. Wazwaz [12] obtained some solitary wave solutions to (1.4)
by using the extended tanh method and the rational hyperbolic functions method.
Moreover, based on the method of complete discrimination system for polynomial,
Deng [2] obtained some exact travelling wave solutions to (1.4). Since the nonlinear
partial differential equations have various traveling wave solutions [3,7–11], inspired
by the above, the aim of this paper is to construct new peakons and periodic peakons
solutions by using first integral and algebraic curves. A peakon solution is given by
a hyperbolic function, and some new periodic peakons are given by elliptic functions
and triangle functions.

The rest of the paper is organized as follows. In Section 2, we change (1.4)
into a planar system. Then we obtain the first integral of the planar system, and
use Maple to draw the bifurcation of each algebraic curve on the phase plane. In
Section 3, we obtain new peakons and periodic peakons solutions to equation (1.4).

2. First integral and algebraic curve

By substituting u(x, t) = ϕ(ξ) with ξ = x− ct into equation (1.4), it follows that

− cϕ′ + cϕ′′′ = ϕϕ′′′ + 2ϕ′ϕ′′ − 3ϕ2ϕ′, (2.1)

where ϕ′ is the derivative with respect to ξ. Integrating equation (2.1) once, we
obtain

(ϕ− c) ϕ′′ +
1

2
(ϕ′)2 − ϕ3 + cϕ = g, (2.2)

where g is the integral constant.
Letting y = dϕ

dξ , then we obtain the following planar dynamic system
dϕ

dξ
= y,

dy

dξ
=

−1

2
y2 + ϕ3 − cϕ+ g

ϕ− c
.

(2.3)
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Obviously, system (2.3) has the first integral

H(ϕ, y) = (ϕ− c)

[
y2 − 1

2

(
ϕ3 + d0ϕ

2 + d1ϕ+ d2
)]

= h, (2.4)

where d2 = c3 − 2c2 + 4g, d1 = c2 − 2c and d0 = c, and h is an integral constant.
Note that system (2.3) is discontinuous on the singular line ϕ = c. Let F (ϕ) =
ϕ3 + d0ϕ

2 + d1ϕ+ d2, then (2.4) can be rewritten as

H(ϕ, y) = (ϕ− c)

[
y2 − 1

2
F (ϕ)

]
= h.

We only consider the case h = 0. we assume that d2 = c3 − 2c2 + 4g = 0, which

yields g = 2c2−c3

4 . For y = 0, we can get the roots of the equation H(ϕ, 0) = 0,
if the roots of the equation F (ϕ) = 0 is found. Obviously, ϕ0 = 0 is a root of the
equation F (ϕ) = 0. Define ∆ = −3c2 + 8c. When ∆ > 0, there are two real roots

ϕ1 = −c+
√
∆

2 and ϕ2 = −c−
√
∆

2 for the equation F (ϕ) = 0. When ∆ = 0, there
is a double root ϕ3 = − c

2 . When ∆ < 0, there exists conjugate imaginary roots

ϕ4 = −c+
√
−∆ i

2 and ϕ5 = −c−
√
−∆ i

2 , where i2 = −1. The graphs of the algebraic
curve H(ϕ, y) = 0 are presented in the following Proposition. (For simplicity, we
only consider the case c > 0.)

Proposition 2.1. Let g = 2c2−c3

4 , then we have the following conclusions.
1. For 0 < c < 2

3 , the algebraic curves H(ϕ, y) = 0 consist of a closed curve and
a open curve (see Fig. 1(a)), the closed curve corresponds a smooth periodic wave
solution.

2. For 2
3 < c < 2, the algebraic curves H(ϕ, y) = 0 consists of a closed orbit and

a open curve (see Fig. 1(b)), which corresponds smooth periodic wave solution and
periodic peakon solution, respectively.

3. For c = 2, the algebraic curves H(ϕ, y) = 0 consists of a homoclinic orbit
and two heteroclinic orbits (see Fig. 1(c)), which corresponds smooth solitary wave
solution and periodic peakon solution, respectively.

4. For 2 < c < 8
3 , the algebraic curves H(ϕ, y) = 0 consists of a closed orbit and

a open curve (see Fig. 1(d)), which corresponds smooth periodic wave solution and
periodic peakon solution, respectively.

5. For c ≥ 8
3 , the algebraic curves H(ϕ, y) = 0 is a open curve (see Fig. 1(e)

and Fig. 1(f)), which corresponds a periodic peakon solution.

3. Peakon and periodic peakon solutions

In this Section, from Proposition 2.1, we can obtain peakon and periodic peakon
solutions to equation (1.4).

Type 1: Peakon

When c = 2, by (2.4), we obtain an algebraic curve Γ1:

y = ± 1√
2
(ϕ− ϕ0)

√
ϕ− ϕ2. (3.1)
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(a) c = 1
2 and g = 3

32 (b) c = 1 and g = 1
4 (c) c = 2 and g = 0

(d) c = 5
2 and g = − 25

32 (e) c = 8
3 and g = − 32

27 (f) c = 3 and g = − 9
4

Figure 1. (Color online.) The graphs of the algebraic curve H(ϕ, y) = 0.

where ϕ0 = 0 and ϕ2 = −2. By substituting (3.1) into (2.3) and integrating the
first expression of the system (2.3), we can get

±
√
2

∫ ϕ

2

dϕ

ϕ
√
ϕ+ 2

=

∫ ξ

0

dξ,

±2coth−1

√
ϕ+ 2

2

∣∣∣∣ϕ
2

= ξ.

By using identity 1− coth2(x) = −csch2(x), we obtain that the peakon solution to
equation (1.4) can be written as

ϕ(ξ) = 2csch2
(
A+

1

2
|ξ|
)
, (3.2)

where A = coth−1
(√

2
)
and ξ = x− 2t. The profile of peakon is shown in Fig. 2.

Remark 3.1. If c = 2, as shown in Fig. 1(c), we obtain that there is a homoclinic
orbit which corresponds to a smooth solitary wave solution. By (2.4), we also obtain
another algebraic curve Γ2:

y = ± 1√
2
(ϕ0 − ϕ)

√
ϕ− ϕ2. (3.3)

By substituting (3.3) into (2.3) and integrating the first expression of the system
(2.3), we have

±
√
2

∫ ϕ

−2

dϕ

ϕ
√
ϕ+ 2

=

∫ ξ

0

dξ,
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Figure 2. (Color online.) The profile of the peakon (3.2).

±2tanh−1

√
ϕ+ 2

2

∣∣∣∣ϕ
−2

= ξ.

By using identity 1 − tanh2(x) = sech2(x), the smooth solitary wave solutions to
equation (1.4) can be expressed as

ϕ(ξ) = −2sech2
(
1

2
ξ

)
, (3.4)

where ξ = x− 2t. The profile of smooth solitary wave is shown in Fig. 3.

Figure 3. (Color online.) The profile of the smooth solitary wave (3.4).

Type 2: Periodic peakon
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From Proposition 2.1, it is easy to see that there are periodic peakons, if
2
3 < c < 2 or c > 2. In the following, we will discuss these cases separately.

Case 1. When 2
3 < c < 2, for simplicity, we take c = 1, by (2.4), we obtain an

algebraic curve Γ3:

y = ± 1√
2

√
(ϕ− ϕ0)(ϕ− ϕ1)(ϕ− ϕ2). (3.5)

By substituting (3.5) into (2.3) and integrating the first expression of the system
(2.3), we obtain that the traveling wave solution to equation (1.4) can be written
as

ϕ(ξ) =
ϕ1

cn2
(√√

5
8 ξ, k1

) , −T1 ≤ ξ ≤ T1, (3.6)

where k1 =
√

ϕ2

ϕ2−ϕ1
and ξ = x − t. By extending the formula (3.6) to the entire

real axis, we have the following periodic peakon

ϕ(ξ) =
ϕ1

cn2
(√√

5
8 (ξ − 2nT1), k1

) , (2n− 1) T1 ≤ ξ ≤ (2n+ 1) T1, (3.7)

where n ∈ Z+ and T1 =
√

8√
5
cn−1

(√√
5−1
2 , k1

)
. The profile of periodic peakon

is shown in Fig. 4.

Figure 4. (Color online.) The profile of the periodic peakon (3.7).

Remark 3.2. If 2
3 < c < 2, as shown in Fig. 1(b), we obtain that there is a periodic

orbit. Rewrite (2.4) as an algebraic curve Γ4:

y = ± 1√
2

√
(ϕ0 − ϕ)(ϕ1 − ϕ)(ϕ− ϕ2). (3.8)
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By substituting (3.8) into (2.3) and integrating the first expression of the system
(2.3), we obtain that equation (1.4) has smooth periodic wave solutions in the form

ϕ(ξ) = ϕ2cn
2

(√
ϕ1 − ϕ2

8
ξ, k1

)
, (3.9)

where ξ = x− t. The profile of smooth periodic wave is shown in Fig. 5.

Figure 5. (Color online.) The profile of the smooth periodic wave (3.9).

Case 2. When c = 8
3 , by (2.4), we obtain an algebraic curve Γ5:

y = ± 1√
2
(ϕ− ϕ3)

√
ϕ− ϕ0. (3.10)

The profile of periodic peakon is shown in Fig. 7.

By substituting (3.10) into (2.3) and integrating the first expression of the system
(2.3), we obtain that the traveling wave solution to equation (1.4) can be written
as

ϕ(ξ) =
4

3
tan2

(
b1 −

1√
6
|ξ|
)
, −2

√
6 b1 ≤ ξ ≤ 2

√
6 b1, (3.11)

where b1 = arctan
√
2 and ξ = x− 8

3 t. Let T2 = 2
√
6 b1. By extending the formula

(3.11) to the entire real axis, we have the following periodic peakon

ϕ(ξ) =
4

3
tan2

(
b1 −

1√
6
|ξ − 2nT2|

)
, (2n− 1) T2 ≤ ξ ≤ (2n+ 1) T2, (3.12)

where n ∈ Z+. The profile of periodic peakon is shown in Fig. 6.

Case 3. When c > 8
3 , for simplicity, we take c = 3, by (2.4), we obtain an

algebraic curve Γ6:

y = ± 1√
2

√
(ϕ− ϕ0)(ϕ− ϕ4)(ϕ− ϕ5), (3.13)
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Figure 6. (Color online.) The profile of the periodic peakon (3.15).

Figure 7. (Color online.) The profile of the periodic peakon (3.12).

where ϕ4 and ϕ5 are conjugate imaginary roots. By substituting (3.13) into (2.3)
and integrating the first expression of the system (2.3), we obtain that the traveling
wave solution to equation (1.4) can be written as

ϕ(ξ) =
B
(
1 + cn

(√
B
2 |ξ|+D, k2

))
1− cn

(√
B
2 |ξ|+D, k2

) , −T3 ≤ ξ ≤ T3, (3.14)

where D = cn−1
(
c−B
c+B , k2

)
, B =

√
c2 − 2c, k2 =

√
2B−c
4B and ξ = x− 3t. Extending

the formula (3.14) to the entire real axis, we obtain the following periodic peakon

ϕ(ξ) =
B
(
1 + cn

(√
B
2 |ξ − 2nT3|+D, k2

))
1− cn

(√
B
2 |ξ − 2nT3|+D, k2

) , (2n− 1) T3 ≤ ξ ≤ (2n+ 1) T3,

(3.15)
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where n ∈ Z+ and T3 = 2
√
2 (2K−D)√

B
, K is the complete elliptic integral of the first

kind.
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