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Abstract In this paper, the invariant subspace method is utilized to obtain
some new exact solutions for the time fractional thin-film equation. The frac-
tional derivative in the considered equation is given in Remain-Liouville and
Caputo senses. Some new invariant subspaces have been obtained that are not
reported in the literature before.

Keywords Time-fractional thin-film equation, Riemann-Lioville fractional
derivative, Caputo fractional derivative, Invariant subspace method, New ex-
act solutions.

MSC(2010) 34K37, 35G20.

1. Introduction

Exact solutions of nonlinear evolution equations play a very important role in the
study of nonlinear physical phenomena. Many methods can be utilized for obtaining
exact solutions of nonlinear evolution equations such as Backlund transformation
method [6, 9], Lie group method [1, 3, 19, 24], the tanh method [2, 5, 22, 29], the
exp(−φ(z))−expansion method [12, 13, 15, 17], the exp function approach [16] and
the invariant subspace method (ISM) [7,21].

The importance of the invariant subspace method comes from it is not only
used for solving nonlinear evolution equations but also it can be used for solving
fractional nonlinear evolution equations. Very recently, it is widely utilized for
investigating exact solutions of fractional nonlinear evolution equations (see for
example [4, 8, 10,11,14,18,20,26–28,30]).

In this paper, we use the ISM to investigate some new solutions of the time-
fractional thin-film equation [27]

∂αu

∂tα
= −u

(
∂4u

∂x4

)
+β

(
∂u

∂x

)(
∂3u

∂x3

)
+γ

(
∂2u

∂x2

)2

, t> 0 , 0 <α≤1 . (1.1)

Equation (1.1) can be used as a model for thin film flow on a substrate [7] . Here,
u(x, t) denotes the height of the fluid. The invariant subspaces and some exact
solutions of the Eq. (1.1) (when α = 1) have been obtained in [7, 30]. Some exact
solution of Eq. (1.1) have been obtained in [27] using the ISM. The main aim of
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this paper is to obtain some new invariant subspaces and some new exact solutions
of Eq. (1.1).
The rest of the paper is organized as follows: The basics and definitions of the ISM
are introduced in Section 2. The new inavariant subspaces and exact solutions of
Eq. (1.1) are discussed in Section 3. Section 4 discuss the results and conclusion of
the paper.

2. ISM: Time Fractional Partial Differential Equa-
tions (PDEs)

Consider a time fractional PDE

∂αu

∂tα
=F [u] =F (x, t, u, ux, uxx, . . . . . .) , 0 < α ≤ 1, (2.1)

where F [u] is a nonlinear differential operator of order k. The n-dimensional invari-
ant subspaceWn = L{f1 (x) , f2 (x) , . . . ,fk (x)} (where n ≤ 2k+1) can be obtained
from the solution of the following nth-order linear ordinary differential equation:

L [y] = y(n)(x) + an−1y
(n−1)(x) + · · ·+ a0y (x) = 0, (2.2)

where, the constant coefficients an−1, an−2, . . . , a0 can be obtained from the con-
dition [13]

L [F [u]]|L[u]=0 = 0.

The time fractional PDE (2.1) can be converted into a system of time fractional
ordinary differential equations (ODEs) through the following theorem:

Theorem 1 [13]. Let Wn be the linear space spanned by n linearly independent
functions { fi(x), i = 1, 2, ..., n} and suppose that Wn is invariant under the
operator F [u] , which means that

F

[
n∑

i=1

cifi (x)

]
=

n∑
i=1

F i (c1, c2, . . . .cn) fi (x) , (2.3)

for whatever constants c1, c2, . . . ,cn. Then, the fractional PDE (2.1) has the solution
of the form

u(x, t) =

n∑
i=1

ci (t) fi (x) , (2.4)

where the coefficients c1(t), c2(t), . . . .cn(t) satisfy the following system of fractional
ODEs

dαci(t)

dtα
= ψi (c1 (t) , . . . .,cn (t)) , i = 1, 2, ..., n. (2.5)

Here, the fractional order derivative ∂αu
∂tα will be considered in the Riemann-Liouville

sense in some cases. In some other cases the fractional derivative ∂αu
∂tα will be in the

Caputo sense according to the availability of exact solutions of the obtained system
of fractional ODEs after using the invariant subspace method . Basic definitions and
properties of the Riemann- Liouville and Caputo fractional derivatives are given in
Appendix A.
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3. Invariant subspaces and exact solutions of the
time fractional thin-film Eq. (1.1)

In this section, the invariant subspaces and exact solutions of the time fractional
thin-film Eq. (1.1) will be investigated. Here, we investigate the invariant subspaces
with dimensions n = { 4, 5, 6, 7, 8, 9} .

3.1. Invariant subspaces when n = 4

Applying the invariant subspace method to Eq. (1.1) taking into consideration the
following auxiliary equation

y(4) + a3y
(3) + a2y

′′ + a1y
′ + a0y = 0,

we get the following cases:

Case 1: when β = 2, γ = −1 . In this case, the invariant subspace is
W4 = L

{
sin (a3x) , cos (a3x) , e

−(a3x), 1
}
. The exact solution of Eq. (1.1) can be

written in the form

u (x,t)=c1 (t) sin (a3x) +C2 (t) cos(a3x) +e−a3x c3(t)+C4(t), (3.1)

where a3 is an arbitrary constant. Substitute Eq. (3.1) into Eq. (1.1) and compare
the two sides of Eq. (1.1), to get

dαC1(t)

dtα
= −a43 C1(t)C4(t), (3.2)

dαC2 (t)

dtα
= − a43 C2(t)C4(t), (3.3)

dαC3 (t)

dtα
= −a43 C3(t)C4(t), (3.4)

dαC4 (t)

dtα
=− 2 a43 (C1 (t)

2
+ C2 (t)

2
). (3.5)

Solving the system of equations (3.2)- (3.5) assuming that the fractional derivatives
are in the Riemann–Liouville sense, we get

C4 (t) =
−1

a43

Γ (1− α)

Γ (1− 2α)
t−α, α ̸= 1

2
,

C3 (t) = l3 t
−α ,

C2 (t) = ±

√
1

2a38

(
Γ (1− α)

Γ (1− 2α)

)2

− l1
2 t−α,

C1 (t) = l1 t
−α,

where l1 and l3 are arbitrary constants.
Hence, we obtain the following exact solution of the time fractional thin-film equa-
tion (1.1)
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u (x, t)=
(
l1 sin (a3x) ±

√
1

2a38

(
Γ (1− α)

Γ (1− 2α)

)2

− l1
2cos(a3x) + l3e

−a3x

+
−1

a43

Γ (1− α)

Γ (1− 2α)

)
t−α. (3.6)

The plot of solution (3.6) when l1 = 1, l3 = 1, a3 = 1 and α = 0.9 is given in Fig. 1.
Also, the plot of solution (3.6) when l1 = 1, l3 = 0, a3 = 1 and α = 0.9 is given in
Fig. 2.

Figure 1. Plot of the solution (3.6) when l1 = 1, l3 = 1, a3 = 1 and α = 0.9.

Figure 2. Plot of the solution (3.6) when l1 = 1, l3 = 0, a3 = 1 and α = 0.9.

Case 2: when β = 3 and γ = −2. In this case, the invariant subspace is

W4 = L
{
1, e−

a3
2 x, e−

a3
4 xsin

(√
3
4 x
)
, e−

a3
4 xcos

(√
3
4 x
) }

and the exact solution of

Eq. (1) can be given by
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u (x, t) = C1 (t) e
− a3

4 xcos

(√
3

4
x

)
+ C2 (t) e

− a3
4 xsin

(√
3

4
x

)
+ C3 (t) e

− a3
2 x + C4 (t) , (3.7)

where a3 is an arbitrary constant. Substitute Eq. (3.7) into Eq. (1.1) and compare
the two sides of Eq. (1.1), to get

dαC1(t)

dtα
=

1

32
a43

(
C1 (t)−

√
3C2 (t)

)
C4(t), (3.8)

dαC2(t)

dtα
=

1

32
a43

(√
3C1 (t) + C2 (t)

)
C4(t), (3.9)

dαC3 (t)

dtα
= − 1

32
a43

(
3
(
C1(t)

2
+ C2(t)

2
)
+ 2 C3 (t)C4 (t)

)
, (3.10)

dαC4 (t)

dtα
= 0. (3.11)

Solving the system of equations (3.8)- (3.11) assuming that the fractional derivatives
are in the Caputo sense, we get

C4 (t) = 0,

C3 (t) = −
3a43

(
l21 + l22

)
32Γ (1 + α)

tα,

C2 (t) = l2,

C1 (t) = l1,

where l1 and l2 are arbitrary constants.Thus, the exact solution of the time fractional
thin-film equation (1.1) is given by

u (x, t) = l1e
− a3

4 xcos

(√
3

4
x

)
+ l2 e

− a3
4 xsin

(√
3

4
x

)
−

3a43
(
l21 + l22

)
32Γ (1 + α)

tα e−
a3
2 x.

(3.12)
The plot of solution (3.12) when l1 = l2 = 1, a3 = 4 and α = 0.9 is given in Fig.3.

Case 3: when β = 9
2 and γ = −7

2 . The invariant subspace in this case

is W4 = L{1, e−
a3
2 x, e−a3x, e

a3
2 x} and the exact solution of Eq. (1) can be

expressed as

u (x, t)= e−
a3
2 xC1 (t)+e−a3x C2 (t)+e

a3
2 x C3 (t)+C4 (t) . (3.13)

where a3 is an arbitrary constant. Substitute Eq. (3.13) into Eq. (1.1) and compare
the two sides of Eq. (1.1), to obtain

dαC1(t)

dtα
= −45

8
a43 C2 (t)C3 (t)−

1

16
a43 C1 (t)C4 (t) , (3.14)
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Figure 3. Plot of the solution (3.12) when l1 = l2 = 1, a3 = 4 and α = 0.9.

dαC2 (t)

dtα
= −a43 C2 (t)C4 (t) , (3.15)

dαC3 (t)

dtα
=− 1

16
a43 C3 (t)C4 (t) , (3.16)

dαC4 (t)

dtα
= −9

8
a43 C1 (t) C3 (t) . (3.17)

Solving the system of equations (3.14)- (3.17) when the fractional derivatives are in
the Riemann–Liouville sense, we get

C4 (t) =
−1

a34
Γ (1 + 2b1 + α)

Γ (1 + 2b1)
t−α, b1 ̸= −1

2
,

C3 (t) =
8

9a38 l1

Γ(1− α)Γ (1 + α+ 2b1)

Γ(1− 2α)Γ (1 + 2b1)
t−2α−b1 , α ̸= 1

2
,

C2 (t) = l2t
2b1+α,

C1 (t) = l1 t
b1 ,

where, l1 is an arbitrary constant and

l2 =
− a3

4 l1
2Γ (1− 2α) (16Γ (1 + b1)Γ (1 + 2b1)− l3Γ (1 + b1 − α))

80l3 Γ (1− α) Γ(1 + b1 − α)
,

l3 = Γ (1 + 2b1 + α).

The value of b1 can be obtained numerically from the following relation

Γ (1− 2α− b1)

Γ (1− 3α− b1)
=

1

16

l3
Γ (1 + 2b1)

.

Thus, the exact solution of the time fractional thin-film equation (1.1) is given by

u (x, t)= l1 t
b1 e

− a3
2 x

+ l2(t
2b1+α

)
(
e−a3x

)
+

8

9a38 l1

Γ(1− α)Γ (1 + α+ 2b1)

Γ(1− 2α)Γ (1 + 2b1)
(t

−2α−b1)
(
e

a3
2 x
)
− 1

a34
Γ (1 + 2b1 + α)

Γ (1 + 2b1)
t−α.

(3.18)
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Case 4: In this case, the invariant subspace is W4 = L{1,x, x2, x3} and the
exact solution of Eq. (1) can be expressed as

u (x, t) = C1 (t)x
3 + C2 (t)x

2 + C3 (t)x+ C4 (t) . (3.19)

Substitute Eq. (3.19) into Eq. (1.1) and compare the two sides of Eq. (1.1), to get

dαC1(t)

dtα
= 0, (3.20)

dαC2 (t)

dtα
= 18 (β + 2γ)C1(t)

2
, (3.21)

dαC3 (t)

dtα
= 12 (β + 2γ)C1 (t) C2 (t) , (3.22)

dαC4 (t)

dtα
= 4γC2(t)

2
+ 6βC1 (t) C3 (t) . (3.23)

The system of equations (3.20)- (3.23) can be solved when the fractional derivatives
are in the Caputo sense in two subcases as follows :

Case 4.1: when β and γ are arbitrary constants.

This case is discussed in [27]. So, we will not discuss it here.

Case 4.2: when β = − 2γ

C4 (t) = −12(−48 + l1l3)γ

Γ (1 + α)
tα,

C3 (t) = l3 ,

C2 (t) = l2,

C1 (t) = l1,

where, l1, l2 and l3 are arbitrary constants. Thus, the exact solution of the time
fractional thin-film equation (1.1) is given by

u (x, t) = l1x
3 + l2x

2 + l3x− 12(−48 + l1l3)γ

Γ (1 + α)
tα. (3.24)

The plot of solution (3.24) when l1 = l2 = l3 = 1 and α = 0.9 is given in Fig. 4.

3.2. Invariant subspaces when n = 5

Applying the ISM to Eq. (1.1) taking into consideration the auxiliary equation
y(5) + a4y

(4) + a3y
(3) + a2y

′′ + a1y
′ + a0y = 0, we get the following cases:
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Figure 4. Plot of the solution (3.24) when l1 = l2 = l3 = 1 and α = 0.9.

Case 5.1: when β = 9
2 ,γ = − 7

2 . The invariant subspace is given by

W5 = L
{
1,sin

(√
a3x√
5

)
, cos

(√
a3x√
5

)
, sin

(
2

√
a3x√
5

)
, cos

(
2

√
a3x√
5

) }
.

The exact solution of Eq. (1.1) can be written in the form

u (x, t)=C5 (t)+C4 (t) cos

(√
a3x√
5

)
+C3 (t) sin

(√
a3x√
5

)
+C2 (t) cos

(
2

√
a3x√
5

)
+C1 (t) sin

(
2

√
a3x√
5

)
, (3.25)

where a3 is an arbitrary constants. Substite Eq. (3.25) into Eq. (1.1) and compare
the two sides of Eq. (1.1), to btain

dαC1(t)

dtα
=− 16

25
a3

2C1(t)C5 (t) , (3.26)

dαC2 (t)

dtα
= −16

25
a3

2C2(t)C5 (t) , (3.27)

dαC3 (t)

dtα
=

1

25
a3

2(45C2(t)C3 (t)− 45C1(t)C4 (t)− C3(t)C5 (t)), (3.28)

dαC4 (t)

dtα
= − 1

25
a3

2 (45C1 (t)C3 (t) + C4 (t) (45C2 (t)+C5 (t))) , (3.29)

dαC5 (t)

dtα
=− 9

50
a3

2
(
16C1 (t)

2
+ 16C2 (t)

2
+ C3 (t)

2
+ C4 (t)

2
)
. (3.30)

Solving the system of equations (3.26)- (3.30) assuming that the fractional deriva-
tives are in the Riemann–Liouville sense, we get

C5 (t) = − 25Γ (1− α)

16a23Γ (1− 2α)
t−α, α ̸= 1

2
,
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C4 (t) = l4 t
−α,

C3 (t) = l3 t
−α ,

C2 (t) = l2 t
−α,

C1 (t) = l1 t−α,

where, l1 is an arbitrary constant and

l2 = ±

√
−2304a43l

2
1(Γ (1− 2α))

2
+ 625(Γ (1− α))

2

48a23Γ (1− 2α)
,

l3 = ±
5
√
π
√

21+4α

a4
3(Γ( 1

2−α))
2

√
25Γ (1− α) +

√
−2304a43l

2
1(Γ (1− α))

2
+ 625(Γ (1− α))

2

24
√
Γ (1− α)

,

l4 =
l3(8l

2
1 + 16l22 − l23)

8l1l2
.

Therefore, we get the following exact solution of the time fractional thin-film equa-
tion (1.1)

u (x, t)=
(
− 25Γ (1− α)

16a23Γ (1− 2α)
+l4 cos

(√
a3x√
5

)
+l3 sin

(√
a3x√
5

)
+l2 cos

(
2

√
a3x√
5

)
+l1 sin

(
2

√
a3x√
5

) )
t−α.

Case 5.2: when β and γ are arbitrary constants.
This case is discussed in [27]. So, we will not discuss it here.

3.3. Invariant subspaces when n = 6

Applying the ISM to Eq. (1.1) taking into consideration the auxiliary equation
y(6) + a5y

(5) + a4y
(4) + a3y

(3) + a2y
′ + a1y

′ + a0y = 0, we get the following case:

Case 6: when γ = − 3
20 (−2 + 5β). The invariant subspace is given by W6 =

L{1, x, x2, x3, x4, x5}. So, the solution of Eq. (1.1) can be expressed as

u (x, t)= c1 (t)+ c2 (t)x + c3 (t)x
2+ c4 (t)x

3+c5 (t)x
4 +c6 (t)x

5. (3.31)

Substitute Eq. (3.31) into Eq. (1.1) and equate different powers of x to zero, to
get

dαC1(t)

dtα
=

(
6

5
− 3β

)
C3 (t)

2
+ 6βC2(t)C4 (t)− 24C1(t)C5 (t) , (3.32)

dαC2 (t)

dtα
=
6

5
(6− 5β)C3(t)C4 (t) + 24((−1 + β)C2(t)C5 (t)− 5C1(t)C6 (t)), (3.33)

dαC3 (t)

dtα
=

(
54

5
− 9β

)
C4 (t)

2
+

12

5
(−4 + 5β)C3 (t)C5 (t)+
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60 (−2 + β)C2 (t)C6 (t) , (3.34)

dαC4 (t)

dtα
=− 12

5
(−8 + 5β)(C4(t)C5 (t)− 5C3(t)C6 (t)), (3.35)

dαC5 (t)

dtα
=− 6

5
(−8 + 5β)(2C5 (t)

2 − 5C6(t)C4 (t)), (3.36)

dαC6 (t)

dtα
= 0. (3.37)

The system of equations (3.32)- (3.37) can be solved in the following special case
when the fractional derivatives are in the Caputo sense

C6 (t) = l6, C3 (t) = C4 (t) = C5 (t) = 0, β = 2, γ = −6

5
,

C1 (t) = l1,

C2 (t) = − 120 l1l6
Γ (1 + α)

tα,

where l1 and l6 are arbitrary constants. Therefore, we get the following exact
solution of the time fractional thin-film equation (1.1)

u (x, t)= l1 −
120 l1l6
Γ (1 + α)

tα x+l6 x
5. (3.38)

The plot of solution (3.38) when l1 = l6 = l and α = 0.9 is given in Fig. 5.

Figure 5. Plot of the solution (3.38) when l1 = l6 = l and α = 0.9.

3.4. Invariant subspaces when n = 7

Applying the ISM to Eq. (1.1) taking into consideration the following auxiliary
equation

y(7) + a6 y
(6) + a5y

(5) + a4y
(4) + a3y

(3) + a2y
′′ + a1y

′ + a0y = 0,

we get the following case:
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Case 7: when β =
(
1
2 − 5

4γ
)
. The invariant subspace is given by W7 =

L{1, x, x2, x3, x4, x5, x6}. Therefore, the solution of Eq. (1.1) can be ex-
pressed as

u (x, t)= c1 (t)+ c2 (t)x + c3 (t)x
2+ c4 (t)x

3+c5 (t)x
4 +c6 (t)x

5+c7 (t)x
6,

(3.39)
Substitute Eq. (3.39) into Eq. (1.1) and equate different powers of x to zero, to
get

dαC1(t)

dtα
= 4γC3(t)

2 − 3

2
(−2 + 5γ)C2 (t)C4 (t)− 24C1(t)C5 (t) , (3.40)

dαC2 (t)

dtα
=3 (2 + 3γ)C3 (t)C4 (t)− 6 (2 + 5γ)C2 (t)C5 (t)− 120C1(t)C6 (t) , (3.41)

dαC3 (t)

dtα
=
9

2
(2 + 3γ)C4 (t)

2 − 12γC3 (t)C5 (t)− 15 (6 + 5γ)C2 (t)C6 (t)−

360C1(t)C7 (t) , (3.42)

dαC4 (t)

dtα
=24 (1 + γ)C4 (t)C5 (t)− 10(6 + 7γ)C3(t)C6 (t)− 150(2 + γ)C2 (t)C7 (t) ,

(3.43)
dαC5 (t)

dtα
=24 (1 + γ)C5 (t)

2 − 15

2
(2 + 3γ)C4 (t)C6 (t)− 60(4 + 3γ)C3 (t)C7 (t) ,

(3.44)
dαC6 (t)

dtα
= 3(6 + 5γ)(2C5 (t)C6 (t)− 9C4 (t)C7 (t)), (3.45)

dαC7 (t)

dtα
= (6 + 5γ)(5C6 (t)

2 − 12C5 (t)C7 (t)). (3.46)

Solving the system (3.40)- (3.46) assuming that the fractional derivatives are in the
Riemann–Liouville sense, we get

γ = −2

3
, C1 (t) = C2 (t) = C3 (t) = 0,

C4 (t) =

l6

(
−Γ (1− 5α

4 − b1
4 )

Γ(1− 9α
4 − b1

4 )
+

2Γ( 1
4 (4−3α+b1))

Γ( 1
4 (4−7α+b1))

)
72l7

t
1
4 (−3α+b1)

C5 (t) =
Γ
(
1
4 (4− 3α+ b1)

)
8Γ
(
1
4 (4− 7α+ b1)

) t−α,

C6 (t) = l6t
1
4 (−5α−b1),

C7 (t) = l7 t
1
2 (−3α−b1),

where l7 is an arbitrary constant and

l6 = ±

√
3
10

√
l7 (Γ (d1)Γ (d2) + 4Γ (d3)Γ (d4))

2
√

Γ (d3)
√

Γ (d2)
,

d1 =
1

2
(2− 3α− b1) , d2 =

1

4
(4− 7α+ b1) ,
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d3 =
1

2
(2− 5α− b1) , d4 =

1

4
(4− 3α+ b1) .

The value of b1 can be obtained from the relation

Γ (1− α)Γ
(
1
4 (4− 7α+ b1)

)
Γ (1− 2α)

− Γ

(
1

4
(4− 3α+ b1)

)
= 0.

Thus, the exact solution of Eq. (1.1) is

u (x, t) =

l6

(
−Γ (1− 5α

4 − b1
4 )

Γ(1− 9α
4 − b1

4 )
+

2Γ( 1
4 (4−3α+b1))

Γ( 1
4 (4−7α+b1))

)
72l7

t
1
4 (−3α+b1) x 3

+
Γ
(
1
4 (4− 3α+ b1)

)
8Γ
(
1
4 (4− 7α+ b1)

) t−α x4 + l6t
1
4 (−5α−b1) x5 + l7 t

1
2 (−3α−b1) x6.

3.5. Invariant subspaces when n = 8

Applying the ISM to Eq. (1.1) taking into consideration the following auxiliary
equation

y(8) + a7 y
(7) + a6 y

(6) + a5y
(5) + a4y

(4) + a3y
(3) + a2y

′′ + a1y
′ + a0y = 0,

we get the following case:

Case 8: when β = 16
7 , γ = −10

7 . The invariant subspace is given by
W8 = L{1, x, x2, x3, x4, x5, x6, x7}. Therefore, the solution of Eq. (1.1) can
be expressed as

u (x, t)= c1 (t)+ c2 (t)x + c3 (t)x
2+ c4 (t)x

3+c5 (t)x
4 +c6 (t)x

5

+ c7 (t)x
6+c8 (t)x

7. (3.47)

Substitute Eq. (3.47) into Eq. (3.11) and equate different powers of x to zero, to
get

dαC1(t)

dtα
=− 40

7
C3 (t)

2
+

96

7
C2(t)C4 (t)− 24C1(t)C5 (t) , (3.48)

dαC2 (t)

dtα
= −12 C3(t)C4 (t) + 48C2(t)C5 (t)− 120C1 (t)C6 (t) , (3.49)

dαC3 (t)

dtα
=− 72

7
C4 (t)

2
+

120

7
C3 (t)C5 (t) +

120

7
C2 (t)C6 (t)− 360 C1(t)C7 (t) ,

(3.50)
dαC4 (t)

dtα
=− 72

7
C4 (t)C5 (t) + 40C3 (t)C6 (t)−

600

7
C2 (t)C7 (t)− 840C1(t)C8 (t) ,

(3.51)
dαC5 (t)

dtα
=− 72

7
C5 (t)

2
+

120

7
C6 (t)C4 (t) +

120

7
C3 (t)C7 (t)− 360 C2(t)C8 (t) ,

(3.52)
dαC6 (t)

dtα
= −48

7
C5 (t)C6 (t) +

216

7
C4 (t)C7 (t)− 120C3(t)C8 (t) , (3.53)

dαC7 (t)

dtα
= − 40

7
C6 (t)

2
+

96

7
C5 (t)C7 (t)− 24C4 (t)C8 (t) , (3.54)
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dαC8 (t)

dtα
= 0. (3.55)

Solving the system (3.48)- (3.55) assuming that the fractional derivatives are in the
Caputo sense, we get

C1 (t) = C2 (t) = C3 (t) = C4 (t) = C5 (t) = 0,

C6 (t) = l6,

C7 (t) = − 40l26
7Γ (α+ 1)

tα,

C8 (t) = l8,

where l6 and l8 are constants. Therefore, the exact solution of Eq. (1.1) is

u (x, t)=l6x
5 − 40l26

7Γ (α+ 1)
tαx6+l8x

7.

3.6. Invariant subspaces when n = 9

Applying the ISM to Eq. (1.1) taking into consideration the following auxiliary
equation

y(9) + a8y
(8) + a7 y

(7) + a6 y
(6) + a5y

(5) + a4y
(4) + a3y

(3) + a2y
′′ + a1y

′ + a0y = 0,

we get the following case:

Case 9: when γ = − 45
28 , β = 5

2 . The invariant subspace is given by W9 =
L{1, x, x2, x3, x4, x5, x6 x7 x8}. Therefore, the solution of Eq. (1.1) can be
expressed as

u (x, t)= c1 (t)+ c2 (t)x + c3 (t)x
2+ c4 (t)x

3+c5 (t)x
4 +c6 (t)x

5

+c7 (t)x
6+c8 (t)x

7+c9 (t)x
8, (3.56)

Substitute Eq. (3.56) into Eq. (3.11) and equate different powers of x to zero, to
get

dαC1(t)

dtα
=− 45

7
C3 (t)

2
+ 15 C2(t)C4 (t)− 24C1(t)C5 (t) , (3.57)

dαC2 (t)

dtα
= −60

7
C3 (t)C4 (t) + 36C2(t)C5 (t)− 120C1 (t)C6 (t) , (3.58)

dαC3 (t)

dtα
=− 90

7
C4 (t)

2
+

132

7
C3 (t)C5 (t) + 30 C2 (t)C6 (t)− 360 C1(t)C7 (t) ,

(3.59)

dαC4 (t)

dtα
=− 108

7
C4 (t)C5 (t) +

360

7
C3 (t)C6 (t)− 60 C2 (t)C7 (t)

− 840C1 (t)C8 (t) (3.60)

dαC5 (t)

dtα
=− 108

7
C5 (t)

2
+

135

7
C6 (t)C4 (t)+

330

7
C3 (t)C7 (t)− 315 C2 (t)C8 (t)
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−1680 C1(t)C9 (t) , (3.61)

dαC6 (t)

dtα
= −108

7
C5 (t)C6 (t) +

360

7
C4 (t)C7 (t)− 60C3 (t)C8 (t)

− 840C2 (t)C9 (t) , (3.62)

dαC7 (t)

dtα
= − 90

7
C6 (t)

2
+

132

7
C5 (t)C7 (t) + 30C4 (t)C8 (t)− 360C3 (t)C9 (t) ,

(3.63)
dαC8 (t)

dtα
= − 60

7
C6 (t)C7 (t) + 36 C5 (t)C8 (t)− 120 C4 (t)C9 (t) , (3.64)

dαC9 (t)

dtα
= − 45

7
C7 (t)

2
+ 15 C6 (t)C8 (t)− 24 C5 (t)C9 (t) . (3.65)

Solve the system (3.57)- (3.65) assuming that the fractional derivatives are in the
Riemann–Liouville sense, to get

C1 (t) = C2 (t) = C3 (t) = C4 (t) = 0,

C5 (t) = l5 t
−α,

C6 (t) = l6 t
1
4 (−5α−b1),

C7 (t) = l7 t
1
2 (−3α−b1),

C8 (t) = l8 t
1
4 (−7α−3b1),

C9 (t) = l9 t
−2α−b1 ,

where l6 is an arbitrary constant and

l5 = − 7Γ (m5)

108Γ (m6)
,

l7 =
l62Γ (m5) Γ (m2)

2 (11Γ (m5) Γ (m2) + 9Γ (m6) Γ (m4))
,

l8 = − 90l36Γ (m6) Γ (m5) Γ (m1) Γ (m2)

7 (7Γ (m5) Γ (m1) + 3Γ (m6) Γ (m3)) (11Γ (m5) Γ (m2) + 9Γ (m6) Γ (m4))
,

l9 = −
15
(
3l27 − 7l6l8

)
Γ (1− 3α− b1)

7 (24l5Γ (1− 3α− b1) + Γ (1− 2α− b1))
,

m1 = 1− 11α

4
− 3b1

4
,

m2 = 1− 5α

2
− b1

2
,

m3 = 1− 7α

4
− 3b1

4
,

m4 = 1− 3α

2
− b1

2
,

m5 = 1− α,
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m6 = 1− 2α.

The value of b1 can be obtained from the relation

Γ
(
1− 5α

4 − b1
4

)
Γ
(
1− 9α

4 − b1
4

) − Γ (1− α)

Γ (1− 2α)
= 0.

Thus, we get the following exact solution of Eq. (1.1)

u (x, t)= l5 t
−αx4 +l6 t

1
4 (−5α−b1)x5+l7 t

1
2 (−3α−b1)x6+l8 t

1
4 (−7α−3b1)x7

+l9 t
−2α−b1x8. (3.66)

4. Conclusion

In this paper, we have investigated the time-fractional thin-film equation (1.1) using
the ISM. We have concentrated on higher dimensional invariant subspaces (when
n = 4, 5, 6, 7, 8, 9). These higher dimensional invariant subspaces are usually ignored
in research works due to the difficulty of solving the resulting system of fractional
ODEs. Many new exact solutions of Eq. (1.1) have been obtained which have not
been reported in [27]. Also, a new invariant subspace (namely, when n = 5, β=9

2
and γ= −7

2 ) have been derived.

Appendix A

In this Appendix, the definition of the Riemann-Liouville and Caputo fractional
derivatives are introduced. Also, we introduce some basic properties of these frac-
tional derivatives.
Definition 1 [23,25]. The Riemann-Liouville fractional derivative is given by

0D
α
xf (x) =

 1
Γ(m−α)

(
d
dx

)m ∫ x

0
(x− t)

m−α−1
f (t) dt, m− 1 < α < m(

d
dx

)m−1
f (x) , α = m− 1,

where m is an integer number.
Definition 2 [23,25]. The Caputo fractional derivative is given by

C
0 D

α

xf (x) =

 1
Γ(m−α)

∫ x

0
(x− t)

m−α−1
f (m) (t) dt, m− 1 < α < m(

d
dx

)m−1
f (x) , α = m− 1,

where m is an integer number.
The Riemann-Liouville and Caputo fractional derivatives satisfy the following

properties [23,25]:

0D
α
x(f(x) + g(x)) = 0D

α
xf(x) + 0D

α
xg(x),

C
0 D

α

x(f(x) + g(x)) = C
0 D

α

xf(x) +
C
0 D

α

xg(x),

0D
α
x(x

β) =

{
0, if β > −1 and α− β ∈ {0, 1, 2, ...,m− 1},
Γ(β+1)

Γ(β−α+1) t
β−α, if β > −1 and α− β ̸∈ N,

C
0 D

α

x(x
β) =

{
0, if β ∈ {0, 1, 2, ...,m− 1},
Γ(β+1)

Γ(β−α+1) t
β−α, if β ∈ N and β ≥ m, or β ̸∈ N and β > m− 1.
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