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Threshold Dynamics of an Epidemic Model with
Latency and Vaccination in a Heterogeneous

Habitat∗
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Abstract In this paper, we derive and analyze a nonlocal and time-delayed
reaction-diffusion epidemic model with vaccination strategy in a heterogeneous
habitat. First, we study the well-posedness of the solutions and prove the ex-
istence of a global attractor for the model by applying some existing abstract
results in dynamical systems theory. Then we show the global threshold dy-
namics which predicts whether the disease will die out or persist in terms of
the basic reproduction number R0 defined by the spectral radius of the next
generation operator. Finally, we present the influences of heterogeneous spa-
tial infections, diffusion coefficients and vaccination rate on the spread of the
disease by numerical simulations.
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1. Introduction

Since Gumel and Moghadas [6] proposed an epidemic model with nonlinear inci-
dence and vaccination strategy, researchers have done a lot of work on this model
and its derived versions (see, e.g., [24]). In these models, the role of vaccination
is only to reduce the chance of vaccinated individuals being infected and not fully
immunize, which is different from most existing models that follow the assumption
that vaccinated individuals will not be infected at all (see, e.g., [30]).

In real world, the nature of disease varies with temperature, humidity and oth-
er factors in different environments. The spatial heterogeneity plays an important
role in the theory of epidemiology. So far, many mathematical models with spa-
tial dependence have been studied (see, e.g., [13, 29]). On the other hand, many
diseases have a latent period before the hosts becoming infectious. For instance,
dengue fever is a viral disease, which is transmitted to humans by the Aedes aegypti
mosquito feeding during the day. When an infectious mosquito bites a susceptible
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human, the virus is injected into his or her bloodstream and begins an latent period
which takes from three to seven days [4]. Suppose that the latency τ is brought into
this population, namely, the susceptible or vaccinated individuals will infect other
uninfected individuals after being infected τ time, resulting in dividing the popu-
lation into five epidemiological classes living in the spatial habitat Ω with smooth
boundary ∂Ω: susceptible, vaccinated, exposed, infectious and recovered classes,
denoted by S = S(x, t), V = V (x, t), E = E(x, t), I = I(x, t) and R = R(x, t),
respectively.

Note that if an individual is infected by the disease in one location, and can
move freely during the latent period, this individual may appear at any location in
the domain when this individual becomes infectious. This means that the mobility
of the individuals in the latent period will lead to non-local infection. Some non-
local reaction-diffusion models in a spatially continuous habitat have been widely
studied (see, e.g., [12,23,25,28]). To incorporate non-local infection into the model
properly, we introduce an infection age variable θ, and let u(x, t, θ) represents the
density of infected population with infection age θ at time t and location x ∈ Ω.
Using the standard method on describing age structured population with spatial
diffusion [17], we have

∂u(x, t, θ)

∂t
+
∂u(x, t, θ)

∂θ
= D(x, θ)∆u(x, t, θ)− µ(x)u(x, t, θ)− γ(x, θ)u(x, t, θ),

(1.1)

where D(x, θ) and γ(x, θ) are the diffusion rate and the recovery rate at location x
and age θ, respectively, and µ(x) denotes the natural death rate which is indepen-
dent of the infection age. It easily follows that

E(x, t) =

∫ τ

0

u(x, t, θ)dθ and I(x, t) =

∫ ∞

τ

u(x, t, θ)dθ.

From the biological considerations, infected individuals connot recover during the
latent period. To make the model mathematically tractable yet without losing the
main features, we assume that

D(x, θ) =

{
DE(x) for x ∈ Ω, θ ∈ [0, τ),

DI(x) for x ∈ Ω, θ ∈ [τ,∞),

γ(x, θ) =

{
0 for x ∈ Ω, θ ∈ [0, τ),

γ(x) for x ∈ Ω, θ ∈ [τ,∞).

Integrating both sides of (1.1) with respect to θ from 0 to τ , and from τ to ∞,
respectively, we obtain that

∂E(x, t)

∂t
= DE(x)∆E(x, t)− µ(x)E(x, t) + u(x, t, 0)− u(x, t, τ) (1.2)

and

∂I(x, t)

∂t
= DI(x)∆I(x, t)− (µ(x) + γ(x))I(x, t) + u(x, t, τ)− u(x, t,∞). (1.3)

Biologically, it can be assumed that u(x, t,∞) = 0 (see e.g., [7]). Let β1(x) and
β2(x) be the transmission coefficients of susceptible and vaccinated individuals at
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location x, respectively. Note that the susceptible and vaccinated individuals would
be infected when they are in contact with the infectious individuals, and the force
of infection saturates as the number of the infective individuals increases, by using
the Holling-II incidence function, we have

u(x, t, 0) =
(β1(x)S(x, t) + β2(x)V (x, t))I(x, t)

1 + α(x)I(x, t)
, (1.4)

where α(x) ≥ 0 measures the saturation level, see [1] for more explanation.

Let v(x, ξ, θ) = u(x, θ + ξ, θ) with θ ∈ [0, τ ], we have

∂v(x, ξ, θ)

∂θ
=

[
∂u(x, t, θ)

∂t
+
∂u(x, t, θ)

∂θ

]
t=θ+ξ

= D(x, θ)∆u(x, θ + ξ, θ)− (µ(x) + γ(x, a))u(x, θ + ξ, θ)

= DE(x)∆v(x, ξ, θ)− µ(x)v(x, ξ, θ), θ ∈ [0, τ ],

v(x, ξ, 0) =
(β1(x)S(x, ξ) + β2(x)V (x, ξ)) I(x, ξ)

1 + α(x)I(x, ξ)
.

(1.5)

Regarding ξ as a parameter and letting Γ(θ, x, y) be the fundamental solution asso-
ciated with the partial differential operator DE∆ − µ(·) with Neumann boundary
condition [5], it follows that

v(x, ξ, θ) =

∫
Ω

Γ(θ, x, y)

(
(β1(y)S(y, ξ) + β2(y)V (y, ξ)) I(y, ξ)

1 + α(y)I(y, ξ)

)
dy. (1.6)

Since u(x, t, τ) = v(x, t− τ, τ), we get

u(x, t, τ) =

∫
Ω

Γ(τ, x, y)

(
(β1(y)S(y, t− τ) + β2(y)V (y, t− τ)) I(y, t− τ)

1 + α(y)I(y, t− τ)

)
dy,

(1.7)

which, together with (1.2)-(1.4), implies that

∂E(x, t)

∂t
=DE(x)∆E(x, t)− µ(x)E(x, t) +

(β1(x)S(x, t) + β2(x)V (x, t))I(x, t)

1 + α(x)I(x, t)

−
∫
Ω

Γ(τ, x, y)

(
(β1(y)S(y, t− τ) + β2(y)V (y, t− τ)) I(y, t− τ)

1 + α(y)I(y, t− τ)

)
dy

and

∂I(x, t)

∂t
=DI(x)∆I(x, t)− (µ(x) + γ(x))I(x, t)

+

∫
Ω

Γ(τ, x, y)

(
(β1(y)S(y, t− τ) + β2(y)V (y, t− τ)) I(y, t− τ)

1 + α(y)I(y, t− τ)

)
dy.

Based on the analysis above, we are leading to consider the SVEIR model under
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the framework of reaction-diffusion system as follows

∂S(x, t)

∂t
=DS(x)∆S(x, t) + Π(x)− (µ(x) + ω(x))S(x, t)− β1(x)S(x, t)I(x, t)

1 + α(x)I(x, t)
,

∂V (x, t)

∂t
=DV (x)∆V (x, t)− µ(x)V (x, t) + ω(x)S(x, t)− β2(x)V (x, t)I(x, t)

1 + α(x)I(x, t)
,

∂E(x, t)

∂t
=DE(x)∆E(x, t)− µ(x)E(x, t) +

(β1(x)S(x, t) + β2(x)V (x, t))I(x, t)

1 + α(x)I(x, t)

−
∫
Ω

Γ(τ, x, y)
(β1(y)S(y, t− τ) + β2(y)V (y, t− τ))I(y, t− τ)

1 + α(y)I(y, t− τ)
dy,

∂I(x, t)

∂t
=DI(x)∆I(x, t)− (µ(x) + γ(x))I(x, t)

+

∫
Ω

Γ(τ, x, y)
(β1(y)S(y, t− τ) + β2(y)V (y, t− τ))I(y, t− τ)

1 + α(y)I(y, t− τ)
dy,

∂R(x, t)

∂t
=DR(x)R(x, t) + γ(x)I(x, t)− µ(x)R(x, t),

(1.8)
where Π(x) and ω(x) represent the recruiting rate and the vaccination rate of the
susceptible individuals, respectively. Since the components E and R are decoupled
with the others, it suffices to study the following subsystem

∂S(x, t)

∂t
=DS(x)∆S(x, t) + Π(x)− (µ(x) + ω(x))S(x, t)− β1(x)S(x, t)I(x, t)

1 + α(x)I(x, t)
,

∂V (x, t)

∂t
=DV (x)∆V (x, t)− µ(x)V (x, t) + ω(x)S(x, t)− β2(x)V (x, t)I(x, t)

1 + α(x)I(x, t)
,

∂I(x, t)

∂t
=DI(x)∆I(x, t)− (µ(x) + γ(x))I(x, t)

+

∫
Ω

Γ(τ, x, y)
(β1(y)S(y, t− τ) + β2(y)V (y, t− τ))I(y, t− τ)

1 + α(y)I(y, t− τ)
dy,

(1.9)
with Neumann boundary conditions

∂S(x, t)

∂n
=
∂V (x, t)

∂n
=
∂I(x, t)

∂n
= 0, x ∈ ∂Ω, t > 0, (1.10)

where n is the outward unit normal vector on the boundary ∂Ω, and the initial
conditions

S(x, θ) = ϕ1(x, θ) ≥ 0, V (x, θ) = ϕ2(x, θ) ≥ 0,

I(x, θ) = ϕ3(x, θ) ≥, ̸≡ 0, θ ∈ [−τ, 0], x ∈ Ω.
(1.11)

All space dependent parameters in (1.9) are continuous and strictly positive. Note
that in our recent work [10], we established a complete threshold result which reveals
the existence and non-existence of the strong traveling waves for system (1.9), where
all the parameters are spatially homogeneous and the infection mechanism is local.
For convenience, we set

Π = max
x∈Ω

Π(x) > 0, Π = min
x∈Ω

Π(x) > 0, β1 = max
x∈Ω

β1(x) > 0,

ω = max
x∈Ω

ω(x) > 0, ω = min
x∈Ω

ω(x) > 0, β2 = max
x∈Ω

β2(x) > 0,
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µ = max
x∈Ω

µ(x) > 0, µ = min
x∈Ω

µ(x) > 0, γ = min
x∈Ω

γ(x) > 0,

where Ω is the closure of Ω.
The rest of this paper is organized as follows. In Section 2, we devote to the

establishment of the well-posedness of solutions for system (1.9). We show that the
solutions for system (1.9) exist globally and have a compact global attractor. In
Section 3, We derive a biologically meaningful threshold index, the basic reproduc-
tion number R0 which is identified as the spectral radius of the next generation
operator, and investigate the threshold dynamics in terms of R0. We numerically
compute R0 to study the influences of heterogeneous spatial infections, diffusion
coefficients and vaccination rate on the spread of the disease in Section 4. Finally,
we present discussions and conclusions in Section 5.

2. The well-posedness

In this section, we focus on the well-posedness of solutions for system (1.9). Let
X := BUC(Ω,R3) be the set of all bounded and uniformly continuous functions
from Ω to R3, and X+ := BUC(Ω,R3

+). Obviously, X+ is a closed cone of X
and induces a partial ordering on X. In addition, we define a norm ∥ · ∥X by
∥φ∥X = supx∈Ω |φ(x)|, where | · | denotes the Euclidean norm in R3. It then follows
that (X, || · ||X) is a Banach space. We define C := C([−τ, 0],X) with the norm
∥φ∥ = supθ∈[−τ,0] ∥φ(θ)∥X and C+ := C([−τ, 0],X+). Obviously, (C,C+) is an
ordered Banach space. For convenience, we regard an element ϕ ∈ C+ as a function
from Ω× [−τ, 0] into R3 defined by ϕ(x, s) = ϕ(s)(x) for all x ∈ Ω and s ∈ [−τ, 0].
For any σ > 0 and continuous function u : [−τ, σ) → X, we define ut ∈ C by
ut(θ) = u(t+ θ) for all θ ∈ [−τ, 0].

Let Y := C(Ω,R) and Y+ := C(Ω,R+). Suppose that Ti(t), (i = 1, 2, 3) are the
strongly continuous semigroups associated withDS(·)∆−(ω(·)+µ(·)), DV (·)∆−µ(·)
and DI(·)∆− (µ(·) + γ(·)) subject to Neumann boundary conditions, respectively.
It then follows that

(Ti(t)ϕ)(x) =

∫
Ω

Λi(t, x, y)ϕ(y)dy, ∀ϕ ∈ Y, t ≥ 0,

where Λi are the Green functions associated with DS(·)∆− (ω(·)+µ(·)), DV (·)∆−
µ(·) and DI(·)∆ − (µ(·) + γ(·)), respectively, subject to the Neumann boundary
condition. By [18, Corollary 7.2.3], Ti(t) : Y → Y is strongly positive and compact
for each t > 0. Moreover, T (t) := (T1(t), T2(t), T3(t)) : X → X, t ≥ 0 is a strongly
continuous semigroup. Let Ai : D(Ai) → Y be the generator of Ti(t). Then
T (t) : X → X is a semigroup generated by the operator A = (A1, A2, A3) defined
on D(A) = D(A1)×D(A2)×D(A3).

We now define F = (F1, F2, F3) : C+ → X by

F1(ϕ)(x) = Π(x)− β1(x)ϕ1(0, x)ϕ3(0, x)

1 + α(x)ϕ3(0, x)
,

F2(ϕ)(x) = ω(x)ϕ1(0, x)−
β2(x)ϕ2(0, x)ϕ3(0, x)

1 + α(x)ϕ3(0, x)
,

F3(ϕ)(x) =

∫
Ω

Γ(τ, x, y)
(β1(y)ϕ1(−τ, y) + β2(y)ϕ2(−τ, y))ϕ3(−τ, y)

1 + α(y)ϕ3(−τ, y)
dy
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for any ϕ = (ϕ1, ϕ2, ϕ3) ∈ C+ and x ∈ Ω. Obviously, F is Lipschitz continuous in
any bounded subset of C+. Then system (1.9) can be rewritten as follows

du

dt
= Au+ F (ut), t ≥ 0,

u0 = ϕ ∈ C+,
(2.1)

where u := (S, V, I).

Theorem 2.1. For any initial value function ϕ = (ϕ1, ϕ2, ϕ3) ∈ C+, system (1.9)
admits a unique mild solution u(·, t, ϕ) defined on its maximal interval of existence
[0, σϕ) with u0 = ϕ, where σϕ ≤ ∞. Further, for any t ∈ [0, σϕ), it have u(·, t, ϕ) ∈
C+. For any t > τ , u(x, t, ϕ) is a classical solution of (1.9).

Proof. For any ϕ = (ϕ1, ϕ2, ϕ3) ∈ C+ and k̂ > 0, we have

ϕ(x, 0) + k̂F (ϕ)(x)

=


ϕ1(x, 0) + k̂Π(x)− k̂ β1(x)ϕ1(x,0)ϕ3(x,0)

1+α(x)ϕ3(x,0)

ϕ2(x, 0) + k̂ω(x)ϕ1(x, 0)− k̂ β2(x)ϕ2(x,0)ϕ3(x,0)
1+α(x)ϕ3(x,0)

ϕ3(x, 0) + k̂
∫
Ω
Γ(τ, x, y) (β1(y)ϕ1(y,−τ)+β2(y)ϕ2(y,−τ))ϕ3(y,−τ)

1+α(y)ϕ3(y,−τ) dy



≥


(1− k̂ β1

α )ϕ1(x, 0)

(1− k̂ β2

α )ϕ2(x, 0)

ϕ3(x, 0)

 .

This implies that ϕ(0) + k̂F (ϕ) ∈ C+ when k̂ is sufficiently small, and hence,

lim
k̂→0+

1

k̂
dist

(
ϕ(0) + k̂F (ϕ),C+

)
= 0, ∀ϕ ∈ C+.

In view of [27, Corollary 8.1.3] (see also [16, Corollary 4]), we can obtain the desired
conclusion.

In the following, we will show that solutions of system (1.9) exist globally on
[0,∞) and converge to a compact attractor in C+.

Theorem 2.2. For any ϕ ∈ C+, system (1.9) has a unique solution u(·, t, ϕ) on
[0,∞) with u0 = ϕ, and the solution semiflow Φ(t) = ut(·) : C+ → C+ has a global
compact attractor for t ≥ 0.

Proof. By [14, Lemma 1], the following problem
∂ν(x, t)

∂t
= DS(x)∆ν(x, t) + Π(x)− (ω(x) + µ(x))ν(x, t), x ∈ Ω, t > 0,

∂ν(x, t)

∂n
= 0, x ∈ ∂Ω, t > 0

admits a unique positive steady state ν∗(x) which is globally attractive in Y. Since

∂S(x, t)

∂t
≤ DS(x)∆S +Π(x)− (ω(x) + µ(x)S(x, t), ∀t ∈ [0, σϕ), x ∈ Ω, (2.2)
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it then follows from the standard parabolic comparison theorem that S(·, t, ϕ) is
bounded on [0, σϕ). Thus, there existsM1 > 0, such that S(x, t) ≤M1, ∀t ∈ [0, σϕ).
Further, we have

∂V (x, t)

∂t
≤ DV (x)∆V + ω(x)M1 − µ(x)V (x, t), ∀t ∈ [0, σϕ), x ∈ Ω.

By [14, Lemma 1] and the comparison principle again, we see that V (·, t, ϕ) is
bounded on [0, σϕ), and hence, there exists M2 > 0, such that V (x, t) ≤ M2,
∀t ∈ [0, σϕ). Thus, we have

∂I(x, t)

∂t
≤DI(x)∆I +

β1(x)M1 + β2(x)M2

α(x)

− (µ(x) + γ(x))I(x, t), ∀t ∈ [0, σϕ), x ∈ Ω.

Again, by [14, Lemma 1] and the comparison principle, it follows that I(·, t, ϕ) is
bounded on [0, σϕ). It then follows that u(·, t, ϕ) = (S(·, t, ϕ), V (·, t, ϕ), I(·, t, ϕ))
is bounded on [0, σϕ). Consequently, we know from [27, Theorem 2.1.1] that the
solution u(·, t, ϕ) exists globally on [0,∞). Therefore, system (1.9) generates a
semiflow Φ(t) : C+ → C+ by

(Φ(t)ϕ)(θ, x) = u(x, t+ θ, ϕ), ∀θ ∈ [−τ, 0], x ∈ Ω.

For any fixed ϕ ∈ C+, by (2.2) and the comparison principle, we have some
t1 = t1(ϕ) > 0 such that

S(·, t, ϕ) ≤ 2Π

µ+ ω
:= B1, ∀t ≥ t1.

Similarly, we can prove that there exists Bi and ti = ti(ϕ) > 0 with i = 2, 3 such
that

V (·, t, ϕ) ≤ B2, ∀t ≥ t2 and I(·, t, ϕ) ≤ B3, ∀t ≥ t3.

Thus, the nonnegative solutions of system (1.9) are ultimately bounded with respect
to the maximum norm. It means that the solution semiflow Φ(t) : C+ → C+ is
point dissipative. By [27, Theorem 2.2.6], we get that Φ(t) is compact for any
t > τ . Therefore, from [9, Theorem 3.4.8], we conclude that Φ(t) has a compact
global attractor in C+. This completes the proof.

3. Threshold dynamics

This section is devoted to the threshold dynamics for the spatially heterogeneous
system (1.9) in terms of the basic reproduction number R0. To this end, we first
define the basic reproduction number for system (1.9). According to [14, Lemma
1], it is easy to see that the following problem

∂S(x, t)

∂t
= DS(x)∆S(x, t) + Π(x)− (ω(x) + µ(x))S(x, t), x ∈ Ω, t > 0,

∂V (x, t)

∂t
= DV (x)∆V (x, t) + ω(x)S(x, t)− µ(x)V (x, t), x ∈ Ω, t > 0,

∂S(x, t)

∂n
=
∂V (x, t)

∂n
= 0, x ∈ ∂Ω, t > 0

(3.1)
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admits a unique positive steady state (S0(x), V0(x)). Thus, system (1.9) has a
unique disease-free equilibrium E0 := (S0(x), V0(x), 0).

Linearizing the third equation of system (1.9) at the disease-free equilibrium E0,
we have

∂I(x, t)

∂t
=DI(x)∆I(x, t)− (µ(x) + γ(x))I(x, t)

+

∫
Ω

Γ(τ, x, y)(β1(y)S0(y) + β2(y)V0(y))I(y, t− τ)dy, x ∈ Ω, t > 0,

∂I(x, t)

∂n
=0, x ∈ ∂Ω, t > 0.

(3.2)
Substituting I(t, x) = e−λtψ(x) into (3.2), we obtain the following nonlocal eigen-
value problem

λψ(x) =DI(x)∆ψ(x)− (µ(x) + γ(x))ψ(x)

+ e−λτ

∫
Ω

Γ(τ, x, y)(β1(y)S0(y) + β2(y)V0(y))ψ(y)dy, x ∈ Ω, t > 0,

∂ψ(x)

∂n
=0, x ∈ ∂Ω, t > 0.

(3.3)
Note that (3.3) is nonlinear in terms of λ, which is caused by the presence of the
delay τ in the item I(y, t − τ) of (3.2). Since the linear delayed equation (3.2) is
monotone, the general results on monotone delay equations (see [22, Theorem 2.2])
suggest that the delay τ plays no role in determining the stability of the trivial
solution of (3.2), which motivates us to consider the following associated linear
nonlocal system resulting from dropping τ in (3.2):

∂I(x, t)

∂t
=DI(x)∆I(x, t)− (µ(x) + γ(x))I(x, t)

+

∫
Ω

Γ(τ, x, y)(β1(y)S0(y) + β2(y)V0(y))I(y, t)dy, x ∈ Ω, t > 0,

∂I(x, t)

∂n
=0, x ∈ ∂Ω, t > 0.

(3.4)
Substituting I(t, x) = e−λtψ(x) into (3.4), we obtain the nonlocal eigenvalue prob-
lem as follows

λψ(x) =DI(x)∆ψ(x)− (µ(x) + γ(x))ψ(x)

+

∫
Ω

Γ(τ, x, y)(β1(y)S0(y) + β2(y)V0(y))ψ(y)dy, x ∈ Ω, t > 0,

∂ψ(x)

∂n
=0, x ∈ ∂Ω, t > 0.

(3.5)

As direct applications of [18, Theorem 7.6.1] and [22, Theorem 2.2], we have the
following conclusion regarding the eigenvalue problems (3.3) and (3.5).

Lemma 3.1. The eigenvalue problems (3.3) and (3.5) have principal eigenvalues
λ(S0, V0, τ) and λ(S0, V0), respectively, corresponding to which, there exists a unique
strongly positive eigenvector. Further, λ(S0, V0, τ) has the same sign as λ(S0, V0)
for any τ > 0.
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Assume that the populations of all classes are near the disease-free equilibrium
E0. Let ψ(x) be the spatial distribution of infectious individuals at t = 0, and as
time evolves, those distributions at time t > 0 is T3(t)ψ. We define a positive linear
operator Q : Y → Y by

Q(ψ)(x) =

∫
Ω

Γ(τ, x, y)(β1(y)S0(y) + β2(y)V0(y))ψ(y)dy, ∀ψ ∈ Y, x ∈ Ω.

Then the distribution of new infected individuals reads that

L(ψ)(x) :=

[∫ ∞

0

Q(T3(t)ψ)(x)dt

]
=

∫ ∞

τ

Q(T3(t− τ)ψ)(x)dt

=

∫ ∞

τ

∫
Ω

Γ(τ, x, y)(β1(y)S0(y) + β2(y)V0(y))(T3(t− τ)ψ)(y)dydt

=

∫ ∞

0

∫
Ω

Γ(τ, x, y)(β1(y)S0(y) + β2(y)V0(y))(T3(t)ψ)(y)dydt

=

∫ ∞

0

Q(T3(t)ψ)(x)dt

=Q

(∫ ∞

0

T3(t)ψdt

)
(x), (3.6)

which is indeed the next infection operator. Following the work of Diekmann et
al. [3], we see that R0 := r(L) with r(L) being the spectral radius of L. Further,
we can obtain the following lemma by using the general results in [21] and the same
arguments as in [26, Lemma 2.2].

Lemma 3.2. R0 − 1 has the same sign as λ(S0, V0).

Remark 3.1. When all the parameters of system (1.9) are assumed to be spatially
independent, we then have

R0 = e−µτ β1S0 + β2V0
µ+ γ

= e−µτ Π(β1µ+ β2ω)

µ(µ+ ω)(µ+ γ)
,

where S0 =
Π

ω + µ
and V0 =

ωΠ

µ(ω + µ)
.

Next, we turn our attention to the uniform persistence for system (1.9). To this
end, we prove the following lemmas.

Lemma 3.3. Let u(x, t, ϕ) be the solution of system (1.9) with u0 = ϕ ∈ C+. Then
the following statements are valid:

(i) If there exists some t0 > 0 such that I(·, t0, ϕ) ≥, ̸≡ 0, then I(x, t, ϕ) ≥ 0 for
all t > t0 and x ∈ Ω.

(ii) S(x, t, ϕ) > 0 and V (x, t, ϕ) > 0 for any t > 0 and x ∈ Ω. Further, we have

lim inf
t→∞

S(x, t, ϕ) ≥ Π

µ+ ω + β1

α

and lim inf
t→∞

V (x, t, ϕ) ≥ ωΠ(
µ+ ω + β1

α

)(
µ+ β2

α

)
uniformly for x ∈ Ω.



402 G. He, J. Wang & G. Huang

Proof. (i) By [14, Lemma 1] and the third equation of system (1.9), it is easy to
get that I(x, t, ϕ) satisfies

∂I(x, t)

∂t
≥ DI(x)∆I − (µ(x) + γ(x))I(x, t), x ∈ Ω, t > 0,

∂I(x, t)

∂n
= 0, x ∈ ∂Ω, t > 0.

If I(·, t0, ϕ) ≥, ̸≡ 0 for some t0 > 0, the comparison principle implies that I(x, t, ϕ) >
0 for any t > t0 and x ∈ Ω.

(ii) By the first equation of (1.9), it follows that
∂S(x, t)

∂t
≥ DS(x)∆S +Π−

(
µ+ ω +

β1

α

)
S(x, t), x ∈ Ω, t > 0,

∂S(x, t)

∂n
= 0, x ∈ ∂Ω, t > 0.

Let υ1(x, t, ϕ) be the solution of

∂υ1(x, t)

∂t
= DS(x)∆υ1 +Π−

(
µ+ ω +

β1

α

)
υ1(x, t), x ∈ Ω, t > 0,

∂υ1(x, t)

∂n
= 0, x ∈ ∂Ω, t > 0,

υ1(x, 0) = ϕ1(x, 0) = S(x, 0), x ∈ Ω.

Then the comparison principle for scalar parabolic equations implies that S(x, t, ϕ) ≥
υ1(x, t, ϕ1) > 0 for all t > 0 and x ∈ Ω. Further, by [14, Lemma 1], we obtain that

lim inf
t→∞

S(x, t, ϕ) ≥ Π

µ+ ω + β1

α

:= B4

uniformly for x ∈ Ω. Similarly, let υ2(x, t, ϕ) be the solution of

∂υ2(x, t)

∂t
= DV (x)∆υ2 + ωB4 −

(
µ+

β2

α

)
υ2(x, t), x ∈ Ω, t > 0,

∂υ2(x, t)

∂n
= 0, x ∈ ∂Ω, t > 0,

υ2(x, 0) = ϕ2(x, 0) = V (x, 0), x ∈ Ω.

We then have V (x, t, ϕ) ≥ υ2(x, t, ϕ2) > 0, ∀t > 0, x ∈ Ω, and

lim inf
t→∞

V (x, t, ϕ) ≥ ωB4

µ+ β2

α

=
ωΠ(

µ+ ω + β1

α

)(
µ+ β2

α

)
uniformly for x ∈ Ω.

Lemma 3.4. Assume R0 > 1. Then there exists δ > 0 such that for any ϕ ∈ C+

with ϕ3(·, 0) ̸≡ 0, the solution u(·, t, ϕ) of system (1.9) satisfies

lim sup
t→∞

∥u(·, t, ϕ)− (S0(·), V0(·), 0)∥X ≥ δ.
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Proof. For any given ϕ ∈ C+ with ϕ3(·, 0) ̸≡ 0, by the parabolic maximum prin-
ciple and Lemma 3.3, it follows that I(x, t, ϕ) > 0 for all t > 0 and x ∈ Ω. When
R0 > 1, by Lemmas 3.1 and 3.2 as well as the continuous dependence of princi-
pal eigenvalue on parameters, we can conclude that there exists δ > 0 such that
λ(S0 − δ, V0 − δ, τ) > 0.

Suppose, by contradiction, there exists some ϕ0 = (ϕ10, ϕ20, ϕ30) ∈ C+ with
ϕ30(·, 0) ̸≡ 0 such that

lim sup
t→∞

∥u(·, t, ϕ0)− (S0(x), V0(x), 0)∥X < δ.

This indicates that there exists t4 > 0 large enough such that for any t > t4 and
x ∈ Ω, there holds

S0(x)− δ < S(x, t, ϕ0) < S0(x) + δ,

V0(x)− δ < V (x, t, ϕ0) < V0(x) + δ,

and I(x, t, ϕ0) < δ,

which, together with the third equation of (1.9), implies that I(x, t, ϕ0) satisfies

∂I(x, t)

∂t
≥
∫
Ω

Γ(τ, x, y)
(β1(y)(S0(y)− δ) + β2(y)(V0(y)− δ)) I(y, t− δ)

1 + α(y)δ
dy

+DI(x)∆I(x, t)− (µ(x) + γ(x))I(x, t), ∀t > t4, x ∈ Ω.

Let χ1(x) be the positive eigenfunction corresponding to λ0(S0 − δ, V0 − δ, τ) asso-

ciated with the problem (3.5). Then υ3(x, t) = eλ(S0−δ,V0−δ,τ)tχ1(x) solves

∂υ3(x, t)

∂t
=

∫
Ω

Γ(τ, x, y
(β1(y)(S0(y)− δ) + β2(y)(V0(y)− δ)) υ3(y, t− δ)

1 + α(y)δ
dy

+DI(x)∆υ3(x, t)− (µ(x) + γ(x))υ3(x, t), ∀t > t4, x ∈ Ω.

Since I(x, t, ϕ0) > 0 for all t > 0 and x ∈ Ω, there exists η > 0 such that

I(x, t, ϕ0) ≥ ηυ3(x, t), ∀t ∈ [t4 − τ, t4], x ∈ Ω.

By virtue of the comparison principle, we have

I(x, t, ϕ0) ≥ ηeλ(S0−δ,V0−δ,τ)tχ1(x), ∀t > t4, x ∈ Ω,

which, combining with λ(S0 − δ, V0 − δ, τ) > 0, yields that I(x, t, ϕ0) is unbounded.
This contradiction thus ends the proof.

Now we are in a position to prove the main result which indicates that R0 is a
threshold index for the disease persistence.

Theorem 3.1. Let u(x, t, ϕ) be the solution of (1.9) with u0 = ϕ ∈ C+. Then the
following two statements hold.

(i) If R0 < 1, the disease-free equilibrium E0 is globally attractive in C+ for
system (1.9).

(ii) If R0 > 1, system (1.9) admits at least one positive steady state u∗(x) =
(S∗(x), V ∗(x), I∗(x)), and there exists δ > 0 such that for any ϕ ∈ C+ with
ϕ3(·, 0) ̸≡ 0 such that

lim inf
t→∞

S(x, t) ≥ δ, lim inf
t→∞

V (x, t) ≥ δ and lim inf
t→∞

I(x, t) ≥ δ

uniformly for all x ∈ Ω.
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Proof. (i) If R0 < 1, we have λ(S0, V0) < 0 by Lemma 3.2. Since

lim
ε→0

λ(S0 + ε, V0) = λ(S0, V0) < 0,

there exists a sufficiently small number ε0 > 0 such that λ(S0 + ε0, V0) < 0. Note
that S(x, t) satisfies

∂S(x, t)

∂t
≤ DS(x)∆S +Π(x)− (µ(x) + ω(x))S(x, t), x ∈ Ω, t > 0,

∂S(x, t)

∂n
= 0, x ∈ ∂Ω, t > 0.

For fixed ε0 > 0, by [14, Lemma 1] and the comparison principle, it follows that
there exists t5 = t5(ϕ) > 0 such that

S(x, t, ϕ) ≤ S0(x) + ε0, ∀t ≥ t5, x ∈ Ω,

and hence,
∂I(x, t)

∂t
≤
∫
Ω

Γ(τ, x, y)(β1(y)(S0(y) + ε0) + β2(y)V0(y))I(y, t− τ)dy

+DI(x)∆I(x, t)− (µ(x) + γ(x))I(x, t), x ∈ Ω, t ≥ t5,

∂I(x, t)

∂n
=0, x ∈ ∂Ω, t ≥ t5.

In view of Lemma 3.1, let χ2 be the strongly positive eigenfunction corresponding

to λ(S0 + ε0, V0, τ) < 0. Then υ4(x, t) = eλ(S0+ε0,V0,τ)tχ2(x) solves the following
linear system

∂υ4(x, t)

∂t
=

∫
Ω

Γ(τ, x, y)(β1(y)(S0(y) + ε0) + β2(y)V0(y))υ4(y, t− τ)dy

+DI(x)∆υ4(x, t)− (µ(x) + γ(x))υ4(x, t), x ∈ Ω, t ≥ t5,

∂υ4(x, t)

∂n
=0, x ∈ ∂Ω, t ≥ t5.

Since for any given ϕ ∈ C+, there exists some κ > 0 such that

I(·, t, ϕ) ≤ κυ4(·, t), t ∈ [t5 − τ, t5].

Then the comparison principle implies that

I(x, t, ϕ) ≤ κeλ(S0+ε0,V0,τ)tχ2(x), ∀t ≥ t5, x ∈ Ω,

and hence, limt→∞ I(x, t, ϕ) = 0 uniformly for x ∈ Ω. It then follows that the first
equation of (1.9) is asymptotic to

∂w1(x, t)

∂t
= DS(x)∆w1 +Π(x)− (µ(x) + ω(x))w1(x, t), x ∈ Ω, t > 0,

∂w1(x, t)

∂n
= 0 x ∈ ∂Ω, t > 0.
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By the theory for asymptotically autonomous semiflows (see e.g., [20, Corollary
4.3]), we have limt→∞ S(x, t, ϕ) = S0(x) uniformly for x ∈ Ω. Further, the second
equation of (1.9) is asymptotic to

∂w2(x, t)

∂t
= DV (x)∆w2 + ω(x)S0(x)− µ(x)w2(x, t), x ∈ Ω, t > 0,

∂w2(x, t)

∂n
= 0 x ∈ ∂Ω, t ≥ 0

and then limt→∞ V (x, t, ϕ) = V0(x) uniformly for x ∈ Ω. Therefore, the disease-free
equilibrium E0 is globally attractive.

(ii) If R0 > 1, we have λ(S0, V0) > 0. It then follows from Lemma 3.2 that
λ(S0, V0, τ) > 0. Define

X0 = {ϕ ∈ C+ : ϕ3(·, 0) ̸≡ 0} and ∂X0 = C+\X0 = {ϕ ∈ C+ : ϕ3(·, 0) ≡ 0} .

In view of Lemma 3.3, we obtain that for any ϕ ∈ X0, I(x, t, ϕ) > 0, ∀x ∈ Ω, t > 0,
that is Φ(t)X0 ⊆ X0.

Set

G∂ := {ϕ ∈ ∂X0 : Φ(t)ϕ ∈ ∂X0, ∀t ≥ 0}

and let ω(ϕ) be the omega limit set of the orbit O+(ϕ) := {Φ(t)ϕ : t ≥ 0}. Then
for any given ϕ ∈ G∂ , it has Φ(t)ϕ ∈ ∂X0, and hence, I(·, t, ϕ) ≡ 0 for all t ≥ 0. By
using the first and second equations of system (1.9) and the theory of asymptotically
autonomous semiflow (see, e.g., [20, Corollary 4.3]), we obtain that for any ϕ ∈
G∂ , there hold that limt→+∞ S(x, t, ϕ) = S0(x) and limt→+∞ V (x, t, ϕ) = V0(x)
uniformly for x ∈ Ω. This indicates that

ω(ϕ) = {S0(x), V0(x), 0}, ∀ϕ ∈ G∂ . (3.7)

Define a continuous function p : C+ → R+ by

p(ϕ) := min
x∈Ω

ϕ3(x, 0), ∀ϕ ∈ C+.

From Lemma 3.3, it is easy to see that p−1(0,∞) ⊆ X0. Moreover, if p(ϕ) > 0
or p(ϕ) = 0 with ϕ ∈ X0, we have p(Φ(t)(ϕ)) > 0, ∀t > 0. In other words, p is
a generalized distance function for the semiflow Φ(t) : C+ → C+ (see e.g., [19]).
Note that any forward orbit of Φ(t) in G∂ converges to (S0(x), V0(x), 0) by (3.7), and
Lemma 3.4 implies that (S0(x), V0(x), 0) is isolated in C+ andW s(S0(x), V0(x), 0)∩
X0 = ∅, where W s(S0(x), V0(x), 0) = {x ∈ Ω : limt→∞ d(Φ(t), {S0(x), V0(x), 0})}
is the stable set of (S0(x), V0(x), 0). Meanwhile, we easily observe that there is no
cycle in G∂ from (S0(x), V0(x), 0) to (S0(x), V0(x), 0). Then, by [19, Theorem 3],
there exists δ′ > 0 such that

min {p(ϕ) : ϕ ∈ ω(ϕ)} > δ′, ∀ϕ ∈ X0.

This implies that lim inft→∞ I(·, t, ϕ) ≥ δ′, ∀ϕ ∈ X0. From Lemma 3.3, we can
choose δ ∈ (0, δ′] such that lim inft→∞ S(·, t, ϕ) ≥ δ and lim inft→∞ V (·, t, ϕ) ≥ δ,
∀ϕ ∈ X0. Thus, the uniform persistence stated in the conclusion (ii) holds.

By using [15, Theorem 3.7], we obtain that Φ(t) : X0 → X0 admits a global
attractor A0. It then follows from [15, Theorem 4.7] that Φ(t) has an equilibrium
u∗(x) ∈ X0. Clearly, Lemma 3.3 implies that u∗(x) is a positive steady state of
system (1.9). We then complete all the proof.
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4. Numerical simulations

In this section, we study the influences of heterogeneous spatial infections, diffusion
coefficients and vaccination rate on the spread of the disease by the numerical
method. For the spatially heterogeneous system (1.9), we cannot give the explicit
formula for R0 = r(L), which is the spectral radius of the next infection operator.
We can numerically compute R0 by using the orthogonal projection method in
computation of eigenvalues for compact linear operators [2, Section 3.1]. To use
the n-th order Fourier projection (see e.g., [11]), we assume the spatial domain
Ω = (0, 1) and the orthonormal basis is ek(x) = e2kπxi with k being a nonnegative
constant.

In order to estimate the spatial heterogeneity effect on R0, we take β1(x) and
β2(x), which describe the variation of transmission coefficients of susceptible and
vaccinated individuals, respectively, for an example. Then by [8], the Green function
associated with D∆, subjecting to a homogeneous Neumann boundary condition,
reads that

Γ(D, t, x, y) = 1 + 2
∞∑

n=1

e−n2π2Dt cos(nπx) cos(nπy).

For the operator L defined in (3.6), the Galerkin matrix An = (ajk)n×n with

ajk =

∫ 1

0

ej(x)

∫ 1

0

K(x, y)ek(y)dydx,

where

K(x, y) = (β1(x)S0(x) + β2(x)V0(x))

(
1

µ+ γ
+ 2

∞∑
n=1

cos(nπx) cos(nπy)

DIn2π2 + µ+ γ

)
.

Set µ = 0.04, α = 0.04, τ = 4, Π = 1, γ = 0.3, ω = 0.1, DS = DV = DI = 1
and

β1(x) = 0.009(1 + c cos(πx)), β2(x) = 0.006(1 + c cos(πx)),

where 0 ≤ c ≤ 1 is the magnitude of infection heterogeneity. Note that
∫ 1

0
β1(x)dx =

0.009 and
∫ 1

0
β2(x)dx = 0.006. It follows that for any c, the spatial average of β1(x)

and β2(x) on the interval [0, 1] are same to the spatial homogeneous case (i.e. c = 0).
Numerically, we find that R0 is increasing with respect to c, which reveals that the
spatially heterogeneous infection may improve R0 (see Figure 1(a)). This indicates
that the spatial heterogeneity may induce the persistence of disease compared to
the homogeneous habitat.

Next, we plan to consider the effect of dispersal rate DI of the infected popula-
tion on R0. Let

β1(x) = 0.01(1 + 0.5 cos(πx)), β2(x) = 0.005(1 + 0.5 cos(πx))

and other parameters are the same to those in Figure 1(a) besides DI . Then our
numerical result suggests that R0 is a decreasing function of DI (see Figure 1(b)),
which means that the random movements of the infected population is conducive
to inhibit the spread of disease.
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(a) (b)

Figure 1. (a) R0 is an increasing function of c with µ = 0.04, α = 0.04, τ = 4, Π = 1, γ = 0.3,
ω = 0.1, DS = DV = DI = 1, β1(x) = 0.009(1 + c cos(πx)), β2(x) = 0.006(1 + c cos(πx)). (b) R0 is a
decreasing function of DI with β1(x) = 0.01(1 + 0.5 cos(πx)), β2(x) = 0.005(1 + 0.5 cos(πx)), and the
other parameters are the same to Figure 1(a).

(a) (b)

Figure 2. (a) The disease will persist if R0 = 1.0841 > 1 . (b) The disease will extinct if R0 = 0.9254 <
1.

From Figure 1(b), we can see that R0 = 1.0841 > 1 when DI = 0.01, and
R0 = 0.9254 < 1 when DI = 1. It follows from Theorem 3.1 that the disease is
persistent when DI = 0.01 (see Figure 2(a)), and extinct when DI = 1 (see Figure
2(b)).

In addition, we observe that R0 is a decreasing function of ω (see Figure 3(a)).
Hence, in biology, under some suitable parameters, when the vaccination rate in-
creases beyond a critical value, the disease will be extinct for the spatially hetero-
geneous model.

Finally, we investigate the influences of different distributions of spatially het-
erogeneous infections by taking

β1(x) = 0.01(1 + 0.5 cos(5π(x+ η))), β2(x) = 0.006(1 + 0.5 cos(5π(x+ η))),

where 0 ≤ η ≤ 1 defines the phase shift of spatially heterogeneous infections, and
keeping the other parameters are the same to those in Figure 3(a). Numerical
computations show that R0 is periodic in η (see Figure 3(b)). This means that a
suitable shift of spatial phase can reduce R0 to a value less than unity so that the
disease dies out.
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(a) (b)

Figure 3. (a) R0 is a decreasing function of ω with µ = 0.04, α = 0.04, τ = 4, Π = 1, γ = 0.3,
β1(x) = 0.01(1 + 0.5 cos(πx)), β2(x) = 0.005(1 + 0.5 cos(πx)). (b) Periodic fluctuation of R0 when η
varies with β1(x) = 0.01(1 + 0.5 cos(5π(x + η))), β2(x) = 0.006(1 + 0.5 cos(5π(x + η))) and the other
parameters are the same to Figure 3(a).

5. Discussions and conclusions

In this paper, we propose and study a diffusive epidemic model with latent period
and vaccination strategy in spatially heterogeneous habitat. We define the basic
reproduction number R0 by the spectral radius of the next infection operator. By
the comparison arguments and persistence theory, we show that R0 can be served
as a threshold which predicts the extinction or persistence of the disease. Specif-
ically, the disease will extinct if R0 < 1 and persist in the population if R0 > 1.
Moreover, our numerical results indicate that: (i) the greater the degree of spatial
heterogeneity, the greater the basic reproduction number and hence more infection
risk; (ii) the dispersal of the infected population may reduce the values of R0 in
heterogeneous habitat, which means that a more random mobility could result in
less infection risk. (iii) the vaccination rate reduce R0, which shows that increasing
the vaccination rate can effectively control the disease; (iv) a suitable shift of spatial
phase of disease transmission coefficients can lower the basic reproduction number
to a value less than unity, which, in return, leads to the extinction of the disease.

It is needful to point that system (1.9) admits at least one positive steady state
if R0 > 1, but its uniqueness and global asymptotic stability still remain open.
Meanwhile, if R0 = 1, system 3.1 may have more complex dynamical properties,
which require further investigation in the future.
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