
Journal of Nonlinear Modeling and Analysis http://jnma.ca; http://jnma.ijournal.cn

Volume 2, Number 3, September 2020, 431–446 DOI:10.12150/jnma.2020.431

Complete Hyper-elliptic Integrals of the First
Kind and the Chebyshev Property∗

Jihua Yang1,†

Abstract This paper is devoted to study the following complete hyper-
elliptic integral of the first kind

J(h) =

∮
Γh

α0 + α1x+ α2x
2 + α3x

3

y
dx,

where αi ∈ R, Γh is an oval contained in the level set {H(x, y) = h, h ∈
(− 5

36
, 0)} and H(x, y) = 1

2
y2 − 1

4
x4 + 1

9
x9. We show that the 3-dimensional

real vector spaces of these integrals are Chebyshev for α0 = 0 and Chebyshev
with accuracy one for αi = 0 (i = 1, 2, 3).

Keywords Complete hyper-elliptic integral of the first kind, Chebyshev,
ECT-system.
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1. Introduction and main results

In 1990, Arnold [1] proposed ten problems among which the 7th problem is on the
number of zeros of Abelian integrals, which can be stated in the following way:
consider the Abelian integral

I(h) =

∮
Γh

P (x, y)dy +Q(x, y)dx, h ∈ J,

where Γh is a family of closed curves of a real polynomial H(x, y) = h, P (x, y),
Q(x, y) andH(x, y) are polynomials satisfying max{degP,degQ} = n and deg{H} =
m + 1, J is an open interval. How large can the number of isolated zeros of the
function I(h) in the open interval J? And for the complete hyper-elliptic integral
of the first kind

J(h) =

∮
Γh

α0 + α1x+ · · ·+ αg−1x
g−1

y
dx, H(x, y) = y2 + U(x),

where degU = 2g + 1 > 4, αi (i = 1, 2, · · · g − 1) are real parameters. Is the
g-dimensional family of J(h) a Chebyshev family in the open interval? Where
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Chebyshev family means that the number of the isolated zeros of J(h) is smaller
than g − 1.

It is known to all that the first part of the 7th problem is so-called the weakened
16th Hilbert problem compare to Hilbert in [13]. On the theme there have been
many excellent works, see [2–6,10,11,14–18,20,21,23–28] and the references therein.

However, there are few works on the second part of the 7th problem, especially
for g > 2. Gavrilov and Iliev [8] obtained that the g-dimensional real vector space
of J(h) is not Chebyshev for any g > 1, and when g = 2 and deg U = 5 there exist
exceptional families of ovals {Γh} of y2+U(x) = h such that every Abelian integral
of the form

J(h) =

∮
Γh

α0 + α1x

y
dx, α2

0 + α2
1 ̸= 0

has at most one isolated zero for h in an open interval I. Wang, Wang and Xiao [22]
studied the Chebyshev property of the above J(h) for three classes of degenerate
families of ovals Γh in [8]. It is shown that the three classes of complete hyper-
elliptic integrals are Chebyshev, and the exact bounds on the number of zeros of
these Abelian integrals are one.

In this paper, motivated by the above results, especially by [1,8,22], we investi-
gate the following hyper-elliptic Hamilton system

ẋ = y, ẏ = −x3(x5 − 1), (1.1)

whose Hamiltonian is

H(x, y) =
1

2
y2 − 1

4
x4 +

1

9
x9 :=

1

2
y2 + U(x). (1.2)

The oval H(x, y) = − 5
36 corresponds to the center C(1, 0), the oval H(x, y) = 0

corresponds to the homoclinic through the nilpotent saddle point O(0, 0), see Figure
1. It intersects the positive x-axis at point ( 12

5
√
72, 0). The corresponding complete

hyper-elliptic integral of the first kind is

Figure 1. The level curves of H(x, y) = h.

J (h) =

∮
Γh

α0 + α1x+ α2x
2 + α3x

3

y
dx

:=α0J0(h) + α1J1(h) + α2J2(h) + α3J3(h),
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where

Γh = {(x, y)|H(x, y) = h, h ∈ (− 5

36
, 0)}, Ji(h) =

∮
Γh

xi

y
dx, i = 0, 1, 2, 3.

For the sake of convenience, we denote by Vk the 3-dimensional real vector spaces
generated by vectors {J0(h),J1(h),J2(h),J3(h)}\{Jk(h)}, k = 0, 1, 2, 3. The main
result is as follows.

Theorem 1.1. (i) V0 is Chebyshev on (− 5
36 , 0), and the exact bound on the num-

ber of zeros of J (h) = α1J1(h) + α2J2(h) + α3J3(h) is two on (− 5
36 , 0) for all

(α1, α2, α3) ∈ R3 (counting the multiplicity).

(ii) V1 is Chebyshev with accuracy one on (− 5
36 , 0), and there exists (α0, α2, α3) ∈

R3 such that J (h) = α0J0(h) + α2J2(h) + α3J3(h) has two zeros on (− 5
36 , 0)

(counting the multiplicity).

(iii) V2 is Chebyshev with accuracy one on (− 5
36 , 0), and there exists (α0, α1, α3) ∈

R3 such that J (h) = α0J0(h) + α1J1(h) + α3J3(h) has two zeros on (− 5
36 , 0)

(counting the multiplicity).

(iv) V3 is Chebyshev with accuracy one on (− 5
36 , 0), and there exists (α0, α1, α2) ∈

R3 such that J (h) = α0J0(h) + α1J1(h) + α2J2(h) has two zeros on (− 5
36 , 0)

(counting the multiplicity).

2. Preliminaries

For the reader’s convenience, we first introduce some helpful results in the literature.
For more details, one can see [7, 9, 19].

Definition 2.1. The real vector space of functions V is said to be Chebyshev on
an open interval I ⊂ R provided that every function f ∈ V \{0} has at most dimV -
1 zeros on I. V is said to be Chebyshev with accuracy m on I if any function
f ∈ V \{0} has at most dimV +m− 1 zeros on I.

Definition 2.2. Let f0, f1, · · · , fn−1 be analytic functions on an open interval I ⊂
R.

(i) {f0, f1, · · · , fn−1} is a Chebyshev system (in short, T-system) on I if any non-
trivial real linear combination

α0f0(x) + α1f1(x) + · · ·+ αn−1fn−1

has at most n− 1 zeros on I.

(ii) {f0, f1, · · · , fn−1} is a complete Chebyshev system (in short, CT-system) on I
if {f0, f1, · · · , fk−1} is a Chbyshev system on I for each k = 1, 2, · · · , n.

(iii) {f0, f1, · · · , fn−1} is an extended complete Chebyshev system (in short, ECT-
system) on I if for each k = 1, 2, · · · , n, any nontrivial real linear combination

α0f0(x) + α1f1(x) + · · ·+ αk−1fk−1

has at most k − 1 isolated zeros on I (counted with multiplicities).
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(iv) {f0, f1, · · · , fn−1} is a Chebyshev system (in short, T-system) with accuracy
m on I if for any nontrivial real linear combination

α0f0(x) + α1f1(x) + · · ·+ αn−1fn−1

has at most n+m− 1 isolated zeros on I.

Remark 2.1. According to Definition 1 and Definition 2, {f0, f1, · · · , fn−1} is an
ECT-system on I if and only if the real vector space V generated by the vectors
{f0, f1, · · · , fn−1} is Chebyshev on I, and {f0, f1, · · · , fn−1} is a T-system with
accuracy m on I if and only if the real vector space V generated by the vectors
{f0, f1, · · · , fn−1} is Chebyshev with accuracy m on I.

Definition 2.3. Let f0, f1, · · · , fn−1 be analytic functions on an open interval I ⊂
R. The continuous Wronskian of (f0, f1, · · · , fk−1) at x ∈ I is

W [f0, f1, · · · , fk−1](x) = det(f
(i)
j (x))0≤i,j≤k−1 =

∣∣∣∣∣∣∣∣∣∣∣∣

f0(x) f1(x) · · · fk−1(x)

f ′0(x) f ′1(x) · · · f ′k−1(x)

· · · · · · · · · · · ·

f
(k−1)
0 (x) f

(k−1)
1 (x) · · · f (k−1)

k−1 (x)

∣∣∣∣∣∣∣∣∣∣∣∣
,

where f ′(x) is the first order derivative of f(x) and f (i)(x) is the ith order derivative
of f(x).

The following relation between an ECT-system and their continuous Wronskian
is well known.

Lemma 2.1. {f0, f1, · · · , fn−1} is an ECT-system on I if and only if for each
k = 1, 2, · · · , n, W [fk](x) ̸= 0 for all x ∈ I.

Let H(x, y) = A(x) + y2

2 be an analytic function in some open subset of R2

that has a local minimum at the origin, and let H(0, 0) = 0. Then there exists a
punctured neighborhood P of the origin foliated by ovals Γh ⊂ {(x, y)|H(x, y) =
h, h0 < h < 0 or 0 < h < h1}. The projection of P on the x-axis is an interval
(xl, xr) with xl < 0 < xr. Suppose that xA′(x) > 0 for all x ∈ (xl, xr)\{0}. Then
there exists a unique analytic involution function z(x) with xl < z(x) < 0 such that
A(x) = A

(
z(x)

)
for x ∈ (0, xr).

We consider the Abelian integrals Ii(h) =
∫
Γh

gi(x)y
2s−1dx for h ∈ (h0, 0) or

h ∈ (0, h1), where gi (i = 0, 1, · · · , n − 1) are analytic functions on the interval
(xl, xr) and s ∈ N.

Define a new analytic function in the interval (0, xr) as follows

li(x) =
gi(x)

A′(x)
− gi(z(x))

A′(z(x))
. (2.1)

Then from Lemma 2.1 we have the following algebraic criterion(see Theorem B
in [9] and Theorem A in [19]).

Lemma 2.2. (i) If s > n − 2 and W [l0, l1, · · · , li] is different from zero in the
interval (0, xr) for each i = 0, 1, · · · , n − 1, then {I0(h), I1(h), · · · , In−1(h)} is an
extended complete Chebyshev system on the interval (h0, 0) or (0, h1).
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(ii) If s > n+m−2 and assume that W [l0, l1, · · · , li] is different from zero in (0, xr)
for each i = 0, 1, · · · , n − 2 and W [l0, l1, · · · , ln−1] has m zeros on (0, xr) counted
with multiplicities, then {I0(h), I1(h), · · · , In−1(h)} has at most n + k − 1 isolated
zeros on (0, xl) counted with multiplicities. We call {I0(h), I1(h), · · · , In−1(h)} is a
Chebyshev system with accuracy m on the interval (h0, 0) or (0, h1).

The following lemma in [9] gave a formula which promotes the power of y in the
integrand of Abelian integral Ii(h) into a higher order that we want.

Lemma 2.3. Let F (x) such that F (x)
A′(x) is analytic at x = 0. Then for any k ∈ N,∮

Γh

F (x)y2s−1dx =

∮
Γh

G(x)y2s+1dx,

where G(x) = 1
2s+1

(
F
A′

)′
(x).

3. Proof of Theorem 1.1

Since the origin is not the local minimum of H(x, y), we shift the center C(1, 0) of
system (1.1) to the origin by the transformation x = 1−u, y = −v, and still denote
the variable pair by (x, y) after the transformation for the sake of convenience. Then
system (1.1) can be written

ẋ = y, ẏ = (x− 1)3 + (x− 1)8, (3.1)

which has the Hamiltonian

H(x, y) =
1

2
y2 − 1

9
x9 + x8 − 4x7 +

28

3
x6 − 14x5 +

55

4
x4 − 25

3
x3 +

5

2
x2

:=
1

2
y2 +A(x)

with a local minimum at origin and the continuous family of ovals γl surrounding
the center (0, 0), where

A(x) = −1

9
x9 + x8 − 4x7 +

28

3
x6 − 14x5 +

55

4
x4 − 25

3
x3 +

5

2
x2,

γl =
{
(x, y)|H(x, y) = l, 0 < l <

5

36

}
.

The homoclinic γl defined by l = 5
36 intersects the x-axis at the points (1− 1

2
5
√
72, 1).

It is easy to check that xA′(x) > 0 for x ∈ (1− 1
2

5
√
72, 1)\{0}. Thus for x ∈ (0, 1), we

can define an involution z(x) with 1− 1
2

5
√
72 < z(x) < 0 such that A(x) = A(z(x)),

where z(x) is implicity defined by q(x, z) = 0, here

q(x, z) =− 90x− 336x5 − 36x7 + 4x8 + 300x2 − 495x3 + 504x4 + 144x6 + 300z2

− 495z3 + 504z4 − 336z5 + 144z6 − 36z7 + 4z8 − 90z + 4z2x6 − 36z2x5

+ 144z2x4 − 336z2x3 − 495zx2 + 300zx+ 4x5z3 + 504z2x2 − 495z2x

+ 4zx7 − 36zx6 + 144zx5 − 336zx4 + 504zx3 − 36x4z3 + 4x4z4

+ 144x3z3 − 36x3z4 + 4x3z5 + 144x2z4 − 336x2z3 − 36x2z5 + 4x2z6

+ 504xz3 − 336xz4 + 144xz5 − 36xz6 + 4xz7.
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And we have

dz

dx
= −∆1(x, z)

∆2(x, z)
=: Θ, (3.2)

where

∆1(x, z) =− 90 + 600x+ 864x5 + 32x7 − 1485x2 + 2016x3 − 1680x4 − 252x6

− 495z2 + 504z3 − 336z4 + 144z5 − 36z6 + 4z7 + 300z + 24z2x5 − 180z2x4

+ 576z2x3 + 1512zx2 − 990zx− 1008z2x2 + 1008z2x+ 28zx6 − 216zx5

+ 720zx4 − 1344zx3 + 12x2z5 + 20x4z3 − 144x3z3 + 16x3z4 − 108x2z4

+ 432x2z3 − 672xz3 + 288xz4 − 72xz5 + 8xz6,

∆2(x, z) =− 90 + 300x+ 144x5 + 4x7 − 495x2 + 504x3 − 336x4 − 36x6 − 1485z2

+ 2016z3 − 1680z4 + 864z5 − 252z6 + 32z7 + 600z + 12z2x5 − 108z2x4

+ 432z2x3 + 1008zx2 − 990zx− 1008z2x2 + 1512z2x+ 8zx6 − 72zx5

+ 288zx4 − 672zx3 + 24x2z5 + 16x4z3 − 144x3z3 + 20x3z4 − 180x2z4

+ 576x2z3 − 1344xz3 + 720xz4 − 216xz5 + 28xz6.

Lemma 3.1. {J1(h),J2(h),J3(h)} is an ECT-system on (− 5
36 , 0).

Proof. We only need to verify that {J1(l), J2(l), J3(l)} is an ECT-system on

(0, 5
36 ), where Ji(l) =

∮
γl

xi

y dx, i = 0, 1, 2, 3. We can not apply Lemma 2.2 directly

for {J1(l), J2(l), J3(l)}, since n = 3 and s = 0. Note that 1
2y

2 +A(x) = l along the
oval γl with 0 < l < 5

36 , then for i = 0, 1, 2, 3, by Lemma 2.3, we have

Ji(l) =
1

l

∮
γl

xi
(
1
2y

2 +A(x)
)

y
dx

=
1

l

[ ∮
γl

1

2
xiydx+

∮
γl

xiA(x)

y
dx

]
=

1

l

∮
γl

[1
2
xi +

(xiA(x)
A′(x)

)′]
ydx

=
1

l

∮
γl

fi(x)ydx.

where

fi(x) =
1

2
xi +

(xiA(x)
A′(x)

)′
.

But by Lemma 2.2 s > n− 2 is still not satisfied since n = 3 and s = 1, we need to
promote the power of y.

Ji(l) =
1

l2

∮
γl

fi(x)
(1
2
y2 +A(x)

)
ydx

=
1

l2

[ ∮
γl

1

2
fi(x)y

3dx+

∮
γl

fi(x)A(x)ydx
]

=
1

l2

∮
γl

[1
2
fi(x) +

1

3

(fi(x)A(x)
A′(x)

)′]
y3dx
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=
1

l2

∮
γl

gi(x)y
3dx,

where

gi(x) =
1

2
fi(x) +

1

3

(fi(x)A(x)
A′(x)

)′
. (3.3)

Define

J̄i(l) =

∮
γl

gi(x)y
3dx, i = 0, 1, 2, 3, 4.

It is only to prove {Ī1(l), Ī2(l), Ī3(l)} is an ECT-system on (0, 5
36 ). For i = 1, 2, 3,

set

φi(x) =
gi(x)

A′(x)
− gi(z(x))

A′(z(x))
.

Then we get φi(x, z) = η1(x, z)mi(x, z), i = 1, 2, 3, where

η1(x, z) =
x− z

11664(x− 1)11(z − 1)11(z4 − 5z3 + 10z2 − 10z + 5)5(x4 − 5x3 + 10x2 − 10x+ 5)5
,

and mi(x, z) are polynomials of (x, z). By Lemma 2.2, we only need to assert that
for all 1− 1

2
5
√
72 < z < 0 < x < 1

(i) W [m1](x, z) ̸= 0; (ii) W [m1,m2](x, z) ̸= 0; (iii) W [m1,m2,m3](x, z) ̸= 0.

In fact, for i = 1, 2, 3, let

ai(x, z) =
∂mi

∂x
+
∂mi

∂z
Θ, bi(x, z) =

∂ai
∂x

+
∂ai
∂z

Θ,

where Θ is defined by (3.2). Then

W [m1](x, z) = m1(x, z),

W [m1,m2](x, z) =

∣∣∣∣∣∣m1 m2

a1 a2

∣∣∣∣∣∣ = ξ0(x, z)

ξ(x, z)
σ1(x, z),

W [m1,m2,m3](x, z) =

∣∣∣∣∣∣∣∣∣
m1 m2 m3

a1 a2 a3

b1 b2 b3

∣∣∣∣∣∣∣∣∣ =
ξ30(x, z)

ξ3(x, z)
σ2(x, z),

where z = z(x) satisfies q(x, z) = 0, σi(x, z) are polynomials in (x, z) for i = 1, 2,
and

ξ0(x, z) = (x− z)(z4 − 5z3 + 10z2 − 10z + 5)(x4 − 5x3 + 10x2 − 10x+ 5),

ξ(x, z) =4x7 + 8x6z + 12x5z2 + 16x4z3 + 20x3z4 + 24x2z5 + 28xz6 + 32z7 − 36x6

− 72x5z − 108x4z2 − 144x3z3 − 180x2z4 − 216xz5 − 252z6 + 144x5

+ 288x4z + 432x3z2 + 576x2z3 + 720xz4 + 864z5 − 336x4 − 672x3z

− 1008x2z2 − 1344xz3 − 1680z4 + 504x3 + 1008x2z + 1512xz2

+ 2016z3 − 495x2 − 990xz − 1485z2 + 300x+ 600z − 90.

(3.4)
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Now we rely on the symbolic computation by Maple to compute the resultant be-
tween two polynomials and apply Sturm’s theorem to assert nonexistence of zeros
of two polynomials.

The resultant with respect to x between q(x, z) and m1(x, z) is (z4 − 5z3 +
10z2−10z+5)4(x−1)30ζ0(z) with ζ0(z) a polynomial of degree 386 in z. Applying
Sturm’s theorem, we can assert that ζ0(z) ̸= 0 for all z ∈ (1 − 1

2
5
√
72, 0). Hence

W [m1](x, z) ̸= 0 for all 1− 1
2

5
√
72 < z < 0 < x < 1.

The resultant with respect to x between q(x, z) and ξ(x, z) is

R(z) = 5135673858195456z7(z4 − 5z3 + 10z2 − 10z + 5)7(z − 1)21.

It is easy to check that R(z) ̸= 0 for all z ∈ (1− 1
2

5
√
72, 0). Thus, W [m1,m2](x, z)

and W [m1,m2,m3](x, z) are well defined for 1− 1
2

5
√
72 < z < 0 < x < 1.

The resultant with respect to x between q(x, z) and σ1(x, z) is 557256278016(z
4−

5z3 + 10z2 − 10z + 5)6(z − 1)64ζ1(z) with ζ1(z) a polynomial of degree 756 in z.
Applying Sturm’s theorem, we obtain that ζ1(z) = 0 has a root z∗ on (1− 1

2
5
√
72, 0),

where

z∗ ≈ −0.0566261441438041451626293538974365468929151313629

7305422922277039097954332795357548772879565736549666.

Substituting z = z∗ into q(x, z) = 0, we get q(x∗, z∗) = 0, where

x∗ ≈ 0.06991788767359290989555335841335720199584576104974

179314378944664647772053534775414886366796445399978.

But substituting x = x∗, z = z∗ into W [m1,m2](x, z), we obtain

W [m1,m2](x
∗, z∗) = 4.977931511645031242995757183291304776358458262240122

962780914455864450384677265249171924291484023951× 1021.

Hence W [m1,m2](x, z) ̸= 0 for all 1− 1
2

5
√
72 < z < 0 < x < 1.

The resultant with respect to x between q(x, z) and σ2(x, z) is

1971117274719741650707244872321990656(z4−5z3+10z2−10z+5)6(z−1)104ζ2(z)

with ζ2(z) a polynomial of degree 1092 in z. Applying Sturm’s theorem, we can
assert that ζ2(z) ̸= 0 for all z ∈ (1− 1

2
5
√
72, 0). Hence W [m1,m2,m3](x, z) ̸= 0 for

all 1− 1
2

5
√
72 < z < 0 < x < 1.

Lemma 3.2. For h ∈ (− 5
36 , 0), each of the following function sequences is a T-

system with accuracy one:

(i) {J1(h),J2(h),J0(h)}; (ii) {J0(h),J3(h),J1(h)}; (iii) {J0(h),J3(h),J2(h)}.

Proof. Without loss of generality, we only prove (i). The others can be shown in
a similar way. Note that 1

2y
2 +A(x) = l along the oval γl with 0 < l < 5

36 , then for
i = 0, 1, 2, 3, 4, by Lemma 2.3, we have

Ji(l) =
1

l3

∮
γl

gi(x)(
1

2
y2 +A(x))y3dx
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=
1

l3

∮
γl

[1
2
gi(x) +

1

5

(gi(x)A(x)
A′(x)

)′]
y5dx

=
1

l2

∮
γl

hi(x)y
5dx,

where gi(x) is defined by (3.3) and hi(x) =
1
2gi(x) +

1
5

(
gi(x)A(x)

A′(x)

)′
. Define

J̃i(l) =

∮
γl

hi(x)y
5dx, i = 0, 1, 2, 3, 4.

We need to prove that {J̃1(l), J̃2(l), J̃0(l)} is a T-system with accuracy one on
(0, 5

36 ). For i = 0, 1, 2, 3, 4, let

ψi(x) =
hi(x)

A′(x)
− hi(z(x))

A′(z(x))
.

Then we get ψi(x, z) = η2(x, z)ni(x, z), i = 0, 1, 2, 3, 4, where

η2(x, z) =
x− z

2099520(x− 1)15(z − 1)15(z4 − 5z3 + 10z2 − 10z + 5)7(x4 − 5x3 + 10x2 − 10x+ 5)7
,

and ni(x, z) are rational functions of (x, z). For i = 1, 2, 3, 4, let

ci(x, z) =
∂ni

∂x
+
∂ni

∂z
Θ, di(x, z) =

∂ci
∂x

+
∂ci
∂z

Θ,

where Θ is defined by (3.2). Then

W [n1, n2, n0](x, z) =

∣∣∣∣∣∣∣∣∣
n1 n2 n0

c1 c2 c0

d1 d2 d0

∣∣∣∣∣∣∣∣∣ =
84(x− z)3

ξ(x, z)3
τ(x, z),

where z = z(x) satisfies q(x, z) = 0, ξ(x, z) is defined as (3.4), and τ(x, z) is a poly-
nomial in (x, z). By Lemma 3.1, we obtain that W [n1](x, z) ̸= 0, W [n1, n2](x, z) ̸=
0, and W [n1, n2](x, z) and W [n1, n2, n0](x, z) are well defined.

Now we assert that W [n1, n2, n0](x, z) has only one zero for 1 − 1
2

5
√
72 < z <

0 < x < 1. In fact, the resultant with respect to x between q(x, z) and τ(x, z) is

660123187103394274955004739584(z4 − 5z3 + 10z2 − z + 5)18(z − 1)140p(z)

with p(z) a polynomial of degree 1528 in z. Applying Sturm’s theorem, we can get
that p(z) = 0 has only one root z∗1 on (1− 1

2
5
√
72, 0), where

z∗1 ≈ −0.172496110743238959188185788130729469073712042401

8317766718528107309383339901918800259628714533100000.

Substituting z = z∗1 into q(x, z) = 0, we get q(x∗1, z
∗
1) = 0, where

x∗1 ≈ 0.58817242331132175244900691015066764547638901392688

22395545058507080769650831951383791271107371609875.

Substituting x = x∗1, z = z∗1 into W [n1, n2, n0](x, z) gives W [n1, n2, n0](x
∗
1, z

∗
1) = 0.

Using the similar arguments as in the proof of Lemma 3.1, we get the following
lemma.
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Lemma 3.3. {J0(h),J1(h)}, {J0(h),J2(h)} and {J0(h),J3(h)} are ECT-systems
for h ∈ (− 5

36 , 0).

Lemma 3.4. For 0 < −h≪ 1, Jk(h), k = 0, 1, 2, 3, have the following asymptotic
expansions

J0(h) =
√
2r1(−h)−

1
4 +O

(
(−h) 5

4

)
,

J1(h) =

√
2

2
+

√
2

2
ln(−h) +O

(
(−h) 5

4

)
,

J2(h) =
2π

5
√
9
√
2
√
π

5Γ( 45 )Γ(
7
10 ) sin(

1
5π)

+
√
2r2(−h)

1
4 +O

(
(−h) 5

4

)
,

J3(h) =
π

5
√
648

√
2
√
π

5Γ( 35 )Γ(
9
10 ) sin(

2
5π)

− 6
√
2

3
r1(−h)

3
4 +O

(
(−h) 5

4

)
,

where r1 > 0 and r2 < 0 are constants and Γ(·) is the Gamma function.

Proof. Noting that

Ji(h) =
dIi(h)

dh
, (3.5)

where

Ii(h) =

∮
Γh

xkydx, i = 0, 1, 2, 3.

We first calculate asymptotic expansions of Ii(h) (i = 0, 1, 2, 3) for 0 < −h ≪ 1.
From the reference [12], we have

I(h) =α0I0(h) + α1I1(h) + α2I2(h) + α3I3(h)

=c1 + c2(−h)
3
4 + c3h ln(−h) + c4h+ c5(−h)

5
4 + c6(−h)

7
4 +O

(
(−h) 9

4

)
,

where

c1 =
15

5
√

6
√
2Γ( 35 )Γ(

9
10 ) sin(

1
10π)

11
√
π

α0 +
5

5
√
432

√
2Γ( 45 )Γ(

7
10 ) sin(

3
10π)

26
√
π

α1+

3
√
2

10
α2 +

9π
5
√

9
√
2
√
π

238Γ( 45 )Γ(
7
10 ) sin(

1
5π)

α3,

c2 =− 4
√
2r1
3

α0, c3 =

√
2

2
α1, c5 = −4

√
2r2
5

α2, c6 =
24

√
2

7
r1α3,

and c4 can be computed to be

2π
5
√

9
√
2
√
π

5Γ( 45 )Γ(
7
10 ) sin(

1
5π)

α2 +
π

5
√
648

√
2
√
π

5Γ( 35 )Γ(
9
10 ) sin(

2
5π)

α3,

if c2 = 0 and c3 = 0, where r1 > 0 and r2 < 0 are constants. The conclusion follows
from (3.5).

In order to get the asymptotic expansions of Ji(h) (i = 0, 1, 2, 3) for 0 < h+ 5
36 ≪

1, we consider the following system

ẋ = y, ẏ = x3 − x8 + ϵ(α0 + α1x+ α2x
2 + α3x

3)y. (3.6)
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Lemma 3.5. For 0 < h+ 5
36 ≪ 1, Ji(h) (i = 0, 1, 2, 3) have the following asymptotic

expansions

J0(h) =
2
√
5

25
π +

151
√
5

750
π(h+

5

36
) +

170401
√
5

180000
π(h+

5

36
)2 ++O

((
h+

5

36

)3)
,

J1(h) =
2
√
5

25
π +

91
√
5

750
π(h+

5

36
) +

17381
√
5

36000
π(h+

5

36
)2 ++O

((
h+

5

36

)3)
,

J2(h) =
2
√
5

25
π +

43
√
5

750
π(h+

5

36
) +

33529
√
5

180000
π(h+

5

36
)2 ++O

((
h+

5

36

)3)
,

J3(h) =
2
√
5

25
π +

7
√
5

750
π(h+

5

36
) +

3073
√
5

180000
π(h+

5

36
)2 ++O

((
h+

5

36

)3)
.

Proof. We move the center C(1, 0) into the origin by letting x = u+ 1, y =
√
5v

and t = 1√
5
τ , then system (3.6) becomes

du

dτ
=v,

dv

dτ
=− u− 1

5
u8 − 8

5
u7 − 28

5
u6 − 56

5
u5 − 14u4 − 11u3 − 5u2

+ ϵ
1√
5

(
α0 + α1(u+ 1) + α2(u+ 1)2 + α3(u+ 1)3

)
v.

(3.7)

For ϵ = 0, the corresponding Hamiltonian of (3.7) is

Γh̄ : H̄(u, v) =
1

2
(u2 + v2) +

1

45
u9 +

1

5
u8 +

4

5
u7 +

28

5
u6 +

14

5
u5 +

11

4
u4 +

5

3
u3 = h̄,

where h̄ = 1
5 (h + 5

36 ), 0 < h̄ < 1
36 . Let u = r cos θ, v = r sin θ. Then Γh̄ can be

transformed into for 0 < h̄≪ 1

r

√
1 +

10

3
r cos3 θ +

11

2
r2 cos4 +

28

5
r3 cos5 θ +

56

15
r4 cos6 θ +

8

5
r5 cos7 θ +

2

5
r6 cos8 θ +

2

45
r7 cos9 θ

−
√

2h̄ = 0,

because 0 < h̄≪ 1 and 0 < r ≪ 1.
Let ρ =

√
2h̄ and

F(r, ρ) = −ρ+

r

√
1 +

10

3
r cos3 θ +

11

2
r2 cos4 θ +

28

5
r3 cos5 θ +

56

15
r4 cos6 θ +

8

5
r5 cos7 θ +

2

5
r6 cos8 θ +

2

45
r7 cos9 θ.

Applying the Implicit Theorem to F(r, ρ) at (r, ρ) = (0, 0), we obtain that there
exist a smooth function r = ϕ(ρ) and a small positive number δ, 0 < δ ≪ 1 such
that F(ϕ(ρ), ρ) ≡ 0 as 0 < ρ < δ. It can be checked that ϕ(ρ) has the following
asymptotic expansion

ϕ(ρ) =ρ− 5

3
cos3 θρ2 +

(
− 11

4
cos4 θ +

125

18
cos6 θ

)
ρ3

+
(
− 14

5
cos5 θ +

55

2
cos7 θ − 1000

27
cos9 θ

)
ρ4

+
(
− 28

15
cos6 θ +

5677

96
cos8 θ − 1925

8
cos10 θ +

48125

216
cos12 θ

)
ρ5 +O(ρ6).

(3.8)
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Let us compute Abelian integrals I(h̄) in the coordinate (r, θ), where

I(h̄) =
1√
5

∮
Γh̄

(
α0 + α1(u+ 1) + α2(u+ 1)2 + α3(u+ 1)3

)
vdu.

From (3.8), we have

I(h̄) =
1√
5

∮
Γh̄

(
α0 + α1(u+ 1) + α2(u+ 1)2 + α3(u+ 1)3

)
vdu

=
1√
5

∫∫
intΓh̄

(
α0 + α1(u+ 1) + α2(u+ 1)2 + α3(u+ 1)3

)
dudv

=
1√
5

∫ 2π

0

dθ

∫ ϕ(ρ)

0

(
α0 + α1(r cos θ + 1) + α2(r cos θ + 1)2 + α3(r cos θ + 1)3

)
rdr.

(3.9)

Note that h̄ = 1
2ρ

2. With the help of symbolic computation in (3.9), we obtain
the asymptotic expansion of I(h̄) as h̄→ 0+

I(l) = c1h̄+ c2h̄
2 + c3h̄

3 +O(h̄4), (3.10)

where

c1 =
2
√
5

5
π(α0 + α1 + α2 + α3), c2 =

√
5

60
π(43α0 + 151α1 + 91α2 + 7α3),

c3 =

√
5

4320
π(170401α0 + 3073α1 + 33529α2 + 86905α3).

Since h̄ = 1
5h + 1

36 and I(h) = α0I0(h) + α1I1(h) + α2I2(h) + α3I3(h), we get the
conclusion from (3.5).

Since J0(h) is the period of ovals Γh, J0(h) ̸= 0 for h ∈ (− 5
36 , 0). Set

Pi(h) =
Ji(h)

J0(h)
, i = 1, 2, 3. (3.11)

Lemma 3.6. For i = 2, 3, Pi(h) are monotonic on (− 5
36 , 0).

Proof. By direct calculation, we obtain

P ′
2(h) =

d

dh

(J2(h)

J0(h)

)
=

J ′
2(h)J0(h)− J ′

0(h)J2(h)

J 2
0 (h)

,

P ′
3(h) =

d

dh

(J3(h)

J0(h)

)
=

J ′
3(h)J0(h)− J ′

0(h)J3(h)

J 2
0 (h)

.

From Lemmas 3.4 and 3.5, we have

P2(−
5

36
+) = 1, P3(−

5

36
+) = 1,

P2(0−) = 0, P3(0−) = 0,

P ′
2(−

5

36
+) = −9

5
, P ′

3(−
5

36
+) = −12

5
,

P ′
2(0−) = −∞, P ′

3(0−) = −∞.

(3.12)
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Now we assert that, for i = 2, 3, P ′
i (h) don’t have isolated zeros on (− 5

36 , 0). By
reductio ad absurdum. We assume that P ′

i (h) (i = 2, 3) have at least one zero on
(− 5

36 , 0). By (3.12) P ′
i (h) (i = 2, 3) have even isolated zeros on (− 5

36 , 0). Noting
that α0J0 +αiJi = J0

(
α0 +αiPi(h)

)
(i = 2, 3). Therefore, there exist values of α0

and αi such that α0J0+αiJi have at least two zeros on (− 5
36 , 0), which contradicts

that {J0(h),Ji(h)} (i = 2, 3) are ECT-systems proved in Lemma 3.3. Therefore,
Pi(h) (i = 2, 3) are monotonic on (− 5

36 , 0).

Theorem 3.1. For (α0, α1, α2, α3) ∈ R4 with α3 = 0, J (h) has two zeros on
(− 3

36 , 0).

Proof. For α3 = 0, we have

J (h) =α0J0(h) + α1J1(h) + α2J2(h)

=J0(h)
(
α0 + α1P1(h) + α2P2(h)

)
.

It is easy to obtain that P ′
2(h) < 0 for h ∈ (− 5

36 , 0) by (3.12). Let P = P2(h), we

get h = P−1
2 (P ), and then we define the curve

Σ1 = {(P, P1)(h)|P1(P ) = P1(P
−1
2 ), h ∈ (− 5

36
, 0)}.

So the number of zeros of J (h) is the number of intersection points of the straight
line

L : α0 + α2P + α1P1 = 0

and the curve Σ1. By direct calculation, we have

d2P1

dP 2
2

=
P ′′
1 (h)P

′
2(h)− P ′′

2 (h)P
′
1(h)

P 2
2 (h)

.

It follows from Lemmas 3.4 and 3.5 that d2P1

dP 2
2
(0−) = −∞ and

d2P1

dP 2
2

(− 5

36
+) =

14701243

24300000
π2 − 15506491

√
5

9720000
π ≈ −5.23580712800000026 < 0.

Hence, Σ1 is strictly concave for 0 < h+ 5
36 ≪ 1 and 0 < −h ≪ 1. We assert that

Σ1 is globally concave for h ∈ (− 5
36 , 0). In fact, if Σ1 has at least one inflection

point, then it will have even number of inflection points and this number will be at
least 2. Therefore, there exists (α∗

0, α
∗
1, α

∗
2) such that L and Σ1 with (α0, α1, α2) =

(α∗
0, α

∗
1, α

∗
2) have at least 4 intersection points (counting the multiplicity), which

yields that α∗
0J0(h) + α∗

1J1(h) + α∗
2J2(h) has at least 4 zeros in (− 5

36 , 0) (counting
the multiplicity). But this contradicts the fact that {J1(h),J2(h),J0(h)} is an
ECT-system with accuracy 1 proved in Lemma 3.2. Therefore, Σ1 has no inflection
point and is globally concave on (− 5

36 , 0), which yields that there exists (α∗
0, α

∗
1, α

∗
2)

such that L and Σ1 have exactly 2 intersection points (counting the multiplicity).

Theorem 3.2. For (α0, α1, α2, α3) ∈ R4 with α2 = 0, J (h) has two zeros on
(− 5

36 , 0).

Proof. For α2 = 0, we have

J (h) =α0J0(h) + α1J1(h) + α3J3(h)

=J0(h)
(
α0 + α1P1(h) + α3P3(h)

)
.
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It is easy to get that P ′
3(h) < 0 for h ∈ (− 5

36 , 0) from (3.12). Let P = P3(h), we get

h = P−1
3 (P ), and then we define the curve

Σ2 = {(P, P1)(h)|P1(P ) = P1(P
−1
3 ), h ∈ (− 5

36
, 0)}.

So the number of zeros of J (h) is the number of intersection points of the straight
line

L : α0 + α3P + α1P1 = 0

and the curve Σ2. From Lemmas 3.4 and 3.5 that d2P1

dP 2
3
(0−) = −∞ and

d2P1

dP 2
3

(− 5

36
+) =

13522747

32400000
π2 − 15506491

√
5

12960000
π ≈ −4.28584575899999986 < 0.

Using the similar arguments as in the proof of Theorem 3.1, the conclusion can be
concluded.

Theorem 3.3. For (α0, α1, α2, α3) ∈ R4 with α1 = 0, J (h) has two zeros on
(− 5

36 , 0).

Proof. For α1 = 0, we have

J (h) =α0J0(h) + α2J2(h) + α3J3(h)

=J0(h)
(
α0 + α2P2(h) + α3P3(h)

)
.

It is easy to obtain that P ′
2(h) < 0 for h ∈ (− 5

36 , 0) from (3.12). Let P = P2(h), we

get h = P−1
2 (P ), and then we define the curve

Σ3 = {(P, P3)(h)|P3(P ) = P3(P
−1
2 ), h ∈ (− 5

36
, 0)}.

So the number of zeros of J (h) is the number of intersection points of the straight
line

L : α0 + α2P + α3P3 = 0

and the curve Σ3. From Lemmas 3.4 and 3.5 that d2P3

dP 2
2
(0−) = +∞ and

d2P3

dP 2
2

(− 5

36
+) =

2830951

24300000
π2 − 1192807

√
5

9720000
π ≈ 0.287746749999999996 > 0.

Hence, Σ3 has strictly convex for 0 < h + 5
36 ≪ 1 and 0 < −h ≪ 1. We assert

that Σ3 is globally convex for h ∈ (− 5
36 , 0). In fact, if Σ3 has at least one inflection

point, then it will have even number of inflection points and this number will be at
least 2. Therefore, there exists (α∗

0, α
∗
2, α

∗
3) such that L and Σ3 with (α0, α2, α3) =

(α∗
0, α

∗
2, α

∗
3) have at least 4 intersection points (counting the multiplicity), which

yields that α∗
0J0(h) + α∗

2J2(h) + α∗
3J3(h) has at least 4 zeros in (− 5

36 , 0) (counting
the multiplicity). But this contradicts Lemma 3.2. Therefore, Σ3 has no inflection
point and is globally convex on (− 5

36 , 0), which yields that there exists (α∗
0, α

∗
2, α

∗
3)

such that L and Σ3 have exactly 2 intersection points (counting the multiplicity).
That is J (h) has two zeros on (− 5

36 , 0).

Remark 3.1. Theorem 1.1 follows from Remark 2.1, Lemma 3.1 and Theorems
3.1-3.3.
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