Eigenvalues of Fourth-order Singular Sturm-Liouville Boundary Value Problems*

Lina Zhou ${ }^{1, \dagger}$, Weihua Jiang ${ }^{2}$ and Qiaoluan Li^{1}

Abstract

In this paper, by using Krasnoselskii's fixed-point theorem, some sufficient conditions of existence of positive solutions for the following fourthorder nonlinear Sturm-Liouville eigenvalue problem: $$
\left\{\begin{array}{l} \frac{1}{p(t)}\left(p(t) u^{\prime \prime \prime}\right)^{\prime}(t)+\lambda f(t, u)=0, t \in(0,1) \\ u(0)=u(1)=0 \\ \alpha u^{\prime \prime}(0)-\beta \lim _{t \rightarrow 0^{+}} p(t) u^{\prime \prime \prime}(t)=0 \\ \gamma u^{\prime \prime}(1)+\delta \lim _{t \rightarrow 1^{-}} p(t) u^{\prime \prime \prime}(t)=0 \end{array}\right.
$$

are established, where $\alpha, \beta, \gamma, \delta \geq 0$, and $\beta \gamma+\alpha \gamma+\alpha \delta>0$. The function p may be singular at $t=0$ or 1 , and f satisfies Carathéodory condition.

Keywords Sturm-Liouville problems, Eigenvalue, Krasnoselskii's fixed-point theorem.
MSC(2010) 34B15, 34B25.

1. Introduction

In this paper, we will study the existence of positive solutions for the following fourth-order nonlinear Sturm-Liouville eigenvalue problem:

$$
\left\{\begin{array}{l}
\frac{1}{p(t)}\left(p(t) u^{\prime \prime \prime}\right)^{\prime}(t)+\lambda f(t, u)=0, \quad t \in(0,1) \tag{1.1}\\
u(0)=u(1)=0 \\
\alpha u^{\prime \prime}(0)-\beta \lim _{t \rightarrow 0^{+}} p(t) u^{\prime \prime \prime}(t)=0 \\
\gamma u^{\prime \prime}(1)+\delta \lim _{t \rightarrow 1^{-}} p(t) u^{\prime \prime \prime}(t)=0
\end{array}\right.
$$

where $\lambda>0$ is a parameter, $\alpha, \beta, \gamma, \delta \geq 0$ are some constants satisfying $\beta \gamma+\alpha \gamma+$ $\alpha \delta>0, p \in C^{1}((0,1),(0,+\infty))$ satisfying $\int_{0}^{1} \frac{d s}{p(s)}<+\infty$, and $f:[0,1] \times R^{+} \rightarrow R^{+}$ satisfies Carathéodory condition. From the above conditions, the function p may be singular at $t=0$ or 1 .

[^0]Sturm-Liouville boundary problems have been widely investigated in various fields, such as mathematics, physics and meteorology. In recent decades, a vast amount of research was done on the existence of positive solutions of Sturm-Liouville boundary value problems. Within this development, they paid attention to the theory of eigenvalues and eigenfunctions of Sturm-Liouville problems [2-18]. In particular, many authors were interested in the nonlinear singular Sturm-Liouville problems [10-16]. In [10], Yao et al. proved that the BVP (1.1) has one or two positive solutions for some λ under the assumptions $f_{0}=f_{\infty}=0$ or $f_{0}=f_{\infty}=\infty$. In [13], by a new comparison theorem, Zhang et al. proved that the $\operatorname{BVP}(1.1)$ has at least a positive solution for large enough λ under the assumptions:
(1) $p \in C^{1}((0,1),(0,+\infty))$ and $\int_{0}^{1} \frac{d s}{p(s)}<+\infty$;
(2) $f(t, u) \in C((0,1) \times(0,+\infty),[0,+\infty))$ is decreasing in u;
(3) For any $\mu>0, f(t, \mu) \neq 0$ and $0<\int_{0}^{1} k(s) p(s) f(s, \mu s(1-s)) d s<+\infty$;
(4) For any $u \in[0,+\infty), \lim _{\mu \rightarrow+\infty} \mu f(t, \mu u)=+\infty$ uniformly on $t \in(0,1)$.

In this paper, we consider the existence of positive solutions of the $\operatorname{BVP}(1.1)$, under the following conditions:
$\left(H_{1}\right) p \in C^{1}((0,1),(0,+\infty))$ and $\int_{0}^{1} \frac{d s}{p(s)}<+\infty$;
$\left(H_{2}\right) f:[0,1] \times R^{+} \rightarrow R^{+}$satisfies Carathéodory condition, that is $f(\cdot, u)$ is measurable for each fixed $u \in R^{+}$, and $f(t, \cdot)$ is continuous for a.e. $t \in[0,1]$;
$\left(H_{3}\right)$ for any $r>0$, there exists $h_{r}(t) \in L^{1}[0,1]$, such that $f(t, u) \leq h_{r}(t)$, a.e. $t \in[0,1]$, where $u \in[0, r]$, and $0<\int_{0}^{1} k(s) p(s) h_{r}(s)<+\infty$.

By Krasnoselskii's fixed-point theorem, two main results are obtained under $\left(H_{1}\right)-\left(H_{3}\right)$.

2. Preliminaries

In this section, we present some necessary definitions, theorems and lemmas.
Definition 2.1. A function u is called a solution of the $\operatorname{BVP}(1.1)$ if $u \in C^{3}([0,1]$, $[0,+\infty))$ satisfies $p(t) u^{\prime \prime \prime}(t) \in C^{1}([0,1],[0,+\infty))$ and the $\operatorname{BVP}(1.1)$. Also, u is called a positive solution if $u(t)>0$ for $t \in[0,1]$ and u is a solution of the BVP (1.1). For some λ, if the BVP (1.1) has a positive solution u, then λ is called an eigenvalue and u is called a corresponding eigenfunction of the BVP (1.1).

Theorem 2.1. ([1], [19]) Let X be a real normal linear space, and let $P \subset X$ be a cone in X. Assume Ω_{1}, Ω_{2} are relatively open subsets of X with $0 \in \Omega_{1} \subset \bar{\Omega}_{1} \subset \Omega_{2}$, and let $T: \bar{\Omega}_{2} \rightarrow P$ be a completely continuous operator such that, either
(1) $\|T u\| \leq r_{1}, u \in \partial \Omega_{1} ; \quad\|T u\| \geq r_{2}, u \in \partial \Omega_{2}$ or
(2) $\|T u\| \geq r_{1}, u \in \partial \Omega_{1} ; \quad\|T u\| \leq r_{2}, u \in \partial \Omega_{2}$.

Then T has a fixed point in $P \bigcap\left(\bar{\Omega}_{2} \backslash \Omega_{1}\right)$.
In this paper, we always make the following assumption:
$\left(H_{1}\right) p \in C^{1}((0,1),(0,+\infty))$ and $\int_{0}^{1} \frac{d s}{p(s)}<+\infty$.
Now we denote by $H(t, s)$ and $G(t, s)$, respectively, the Green's functions for the following boundary value problems:

$$
\left\{\begin{array}{l}
-u^{\prime \prime}=0,0<t<1 \\
u(0)=u(1)=0
\end{array}\right.
$$

and

$$
\left\{\begin{array}{l}
\left.-\left(p(t) u^{\prime}(t)\right)\right)^{\prime}=0,0<t<1 \\
\alpha u(0)-\beta \lim _{t \rightarrow 0^{+}} p(t) u^{\prime}(t)=0 \\
\gamma u(1)+\delta \lim _{t \rightarrow 1^{-}} p(t) u^{\prime}(t)=0
\end{array}\right.
$$

It is well known that $H(t, s)$ and $G(t, s)$ can be written as

$$
H(t, s)=\left\{\begin{array}{l}
s(1-t), 0 \leq s \leq t \leq 1 \\
t(1-s), 0 \leq t \leq s \leq 1
\end{array}\right.
$$

and

$$
G(t, s)=\frac{1}{\rho} \begin{cases}(\beta+\alpha B(0, s))(\delta+\gamma B(t, 1)), & 0 \leq s \leq t \leq 1 \\ (\beta+\alpha B(0, t))(\delta+\gamma B(s, 1)), & 0 \leq t \leq s \leq 1\end{cases}
$$

where $B(t, s)=\int_{t}^{s} \frac{d v}{p(v)}, \rho=\alpha \delta+\alpha \gamma B(0,1)+\beta \gamma>0$ (see [13]).
We also have the conclusion ${ }^{[13]}$ that $u(t)$ is a solution of the $\operatorname{BVP}(1.1)$ if and only if it is a solution of the integral equation $u(t)=\int_{0}^{1} H(t, \xi) \int_{0}^{1} G(\xi, s) p(s) f(s, u(s)) d s d \xi$.

It is easy to verify the following properties of $H(t, s)$ and $G(t, s)$.
Lemma 2.1. (Remark 2.1, [13])
(i) For any $t, s \in[0,1]$,

$$
s(1-s) t(1-t) \leq H(t, s) \leq t(1-t) \quad(\text { or } s(1-s))
$$

(ii) For any $t, s \in[0,1]$,

$$
\omega k(t) k(s) \leq G(t, s) \leq \frac{k(t)}{\rho} \quad\left(\text { or } \frac{k(s)}{\rho}\right)
$$

where $k(t)=(\beta+\alpha B(0, t))(\delta+\gamma B(t, 1)), \omega=\frac{\rho}{(\beta+\alpha B(0,1))(\delta+\gamma B(0,1))}$.

3. Main results

In this section, we will prove the existence of positive solutions for the $\mathrm{BVP}(1.1)$ by using the Krasnoselskii's fixed-point theorem.

Let the Banach space $X=C[0,1]$ be equipped with the norm $\|u\|:=\max _{t \in[0,1]} \mid$ $u(t) \mid$, and P be a cone of X defined by $P=\{u(t) \in X: u(t) \geq t(1-t)\|u\|\}$.

To obtain our results in this paper, We need the following lemma.
Lemma 3.1. Assume that $\left(H_{1}\right)-\left(H_{3}\right)$ hold, and define the operator $T_{\lambda}: P \rightarrow X$ by

$$
\left(T_{\lambda} u\right)(t)=\lambda \int_{0}^{1} H(t, \xi) \int_{0}^{1} G(\xi, s) p(s) f(s, u(s)) d s d \xi
$$

Then $T_{\lambda}: P \rightarrow P$ is completely continuous.
Proof. First, we prove that $T_{\lambda}: P \rightarrow P$. From lemma 2.1, for $u(t) \in P$, we have

$$
\left(T_{\lambda} u\right)(t)=\lambda \int_{0}^{1} H(t, \xi) \int_{0}^{1} G(\xi, s) p(s) f(s, u(s)) d s d \xi
$$

$$
\begin{aligned}
& \geq t(1-t) \lambda \int_{0}^{1} \xi(1-\xi) \int_{0}^{1} G(\xi, s) p(s) f(s, u(s)) d s d \xi \\
& \geq t(1-t) \lambda \int_{0}^{1} H\left(t^{\prime}, \xi\right) \int_{0}^{1} G(\xi, s) p(s) f(s, u(s)) d s d \xi \\
& =\left(T_{\lambda} u\right)\left(t^{\prime}\right) t(1-t)
\end{aligned}
$$

By the arbitrariness of t^{\prime}, we can obtain $\left(T_{\lambda} u\right)(t) \geq t(1-t)\left\|T_{\lambda} u\right\|$, i.e. $T_{\lambda}(P) \subset P$.
According to the Lebesgue Dominated Convergence Theorem, we have $T_{\lambda}: P \rightarrow$ P is continuous.

Next, we show that T_{λ} is uniformly bounded.
Let $\bar{\Omega}=\{u(t) \in P:\|u\| \leq r\}$ and $\int_{0}^{1} k(s) p(s) h_{r}(s) d s=M_{r}$. For any $u(t) \in \bar{\Omega}$, by $\left(H_{3}\right)$, we have

$$
\begin{aligned}
\left(T_{\lambda} u\right)(t) & =\lambda \int_{0}^{1} H(t, \xi) \int_{0}^{1} G(\xi, s) p(s) f(s, u(s)) d s d \xi \\
& \leq \lambda \int_{0}^{1} \xi(1-\xi) d \xi \int_{0}^{1} \frac{k(s)}{\rho} p(s) h_{r}(s) d s \\
& \leq \frac{\lambda M_{r}}{4 \rho}
\end{aligned}
$$

Hence T_{λ} is uniformly bounded.
Finally, we will show that T_{λ} is equicontinuous.
Since $H(t, s)$ is continuous in $[0,1] \times[0,1]$, it is uniformly continuous. Thus, for any $\varepsilon>0$, there exists $\delta>0$, such that for any fixed $s \in[0,1]$, when $\left|t_{1}-t_{2}\right|<\delta$, we have $\left|H\left(t_{1}, s\right)-H\left(t_{2}, s\right)\right|<\frac{\rho}{\lambda M_{r}} \varepsilon$.

For all $u(t) \in \bar{\Omega}, t_{1}, t_{2} \in[0,1],\left|t_{1}-t_{2}\right|<\delta$, we obtain

$$
\begin{aligned}
\left|\left(T_{\lambda} u\right)\left(t_{1}\right)-\left(T_{\lambda} u\right)\left(t_{2}\right)\right| & \leq \lambda \int_{0}^{1}\left|H\left(t_{1}, \xi\right)-H\left(t_{2}, \xi\right)\right| \int_{0}^{1} G(\xi, s) p(s) f(s, u(s)) d s d \xi \\
& \leq \frac{\lambda}{\rho} \int_{0}^{1}\left|H\left(t_{1}, \xi\right)-H\left(t_{2}, \xi\right)\right| d \xi \int_{0}^{1} k(s) p(s) h_{r}(s) d s \\
& \leq \frac{\lambda M_{r}}{\rho} \int_{0}^{1}\left|H\left(t_{1}, \xi\right)-H\left(t_{2}, \xi\right)\right| d \xi \\
& \leq \frac{\lambda M_{r}}{\rho} \frac{\rho}{\lambda M_{r}} \varepsilon \\
& =\varepsilon
\end{aligned}
$$

This implies that T_{λ} is equicontinuous.
By the Arzela-Ascoli theorem, $T_{\lambda}: P \rightarrow P$ is completely continuous.
For the convenience, we introduce the following notations:

$$
\begin{aligned}
& \liminf _{u \rightarrow 0^{+}} \inf _{s \in[0,1] \backslash E_{0}} \frac{f(s, u)}{u}=f_{0} \\
& \limsup _{u \rightarrow 0^{+}} \sup _{s \in[0,1] \backslash E_{0}} \frac{f(s, u)}{u}=f^{0} \\
& \liminf _{u \rightarrow+\infty} \inf _{s \in[0,1] \backslash E_{0}} \frac{f(s, u)}{u}=f_{\infty}
\end{aligned}
$$

where $E_{0} \subset[0,1]$ and $m\left(E_{0}\right)=0$.

Theorem 3.1. Assume that $\left(H_{1}\right)-\left(H_{3}\right)$ hold, $f_{0}>0$, and suppose that there exist $R_{1}>0$ and $h_{R_{1}}(t)$, such that

$$
\omega f_{0} \int_{0}^{1} \xi(1-\xi) k(\xi) d \xi \int_{0}^{1} k(s) p(s) s(1-s) d s>\frac{\int_{0}^{1} k(s) p(s) h_{R_{1}}(s) d s}{\rho R_{1}}
$$

where $h_{R_{1}}(t)$ is defined by $\left(H_{3}\right)$. Then for each λ satisfying

$$
\frac{4}{\omega f_{0} \int_{0}^{1} \xi(1-\xi) k(\xi) d \xi \int_{0}^{1} k(s) p(s) s(1-s) d s}<\lambda<\frac{4 \rho R_{1}}{\int_{0}^{1} k(s) p(s) h_{R_{1}}(s) d s}
$$

the $B V P(1.1)$ has at least one positive solution.
Proof. Let $\Omega_{1}=\left\{u(t) \in P:\|u\|<R_{1}\right\}$. Then for any $u(t) \in \partial \Omega_{1}$, by Lemma 2.1 and $\left(H_{3}\right)$, we have

$$
\begin{aligned}
\left(T_{\lambda} u\right)(t) & =\lambda \int_{0}^{1} H(t, \xi) \int_{0}^{1} G(\xi, s) p(s) f(s, u(s)) d s d \xi \\
& \leq \lambda \int_{0}^{1} \xi(1-\xi) d \xi \int_{0}^{1} \frac{k(s)}{\rho} p(s) h_{R_{1}}(s) d s \\
& \leq \frac{\lambda}{4 \rho} \int_{0}^{1} k(s) p(s) h_{R_{1}}(s) d s
\end{aligned}
$$

Thus, $\left\|T_{\lambda} u\right\| \leq R_{1}=\|u\|$, if $\lambda<\frac{4 \rho R_{1}}{\int_{0}^{1} k(s) p(s) h_{R_{1}}(s) d s}$.
On the other hand, if $\lambda>\frac{4}{\omega f_{0} \int_{0}^{1} \xi(1-\xi) k(\xi) d \xi \int_{0}^{1} k(s) p(s) s(1-s) d s}$, there exists $\eta_{1}>0$ small enough, such that $f_{0}-\eta_{1}>0$ and

$$
\lambda>\frac{4}{\omega\left(f_{0}-\eta_{1}\right) \int_{0}^{1} \xi(1-\xi) k(\xi) d \xi \int_{0}^{1} k(s) p(s) s(1-s) d s}
$$

From the definition of f_{0}, there exists $r_{1}>0$ such that $\frac{f(s, u)}{u}>f_{0}-\eta_{1}$ for $0<u \leq$ r_{1}. Let $\Omega_{2}=\left\{u(t) \in P:\|u\|<R_{2}\right\}$, where $R_{2}<\min \left\{R_{1}, r_{1}\right\}$. For any $u \in \partial \Omega_{2}$, we obtain that

$$
\begin{aligned}
\left(T_{\lambda} u\right)(t) & =\lambda \int_{0}^{1} H(t, \xi) \int_{0}^{1} G(\xi, s) p(s) f(s, u(s)) d s d \xi \\
& \geq \omega \lambda t(1-t) \int_{0}^{1} \xi(1-\xi) k(\xi) d \xi \int_{0}^{1} k(s) p(s)\left(f_{0}-\eta_{1}\right) u(s) d s \\
& \geq \omega \lambda\left(f_{0}-\eta_{1}\right) t(1-t) \int_{0}^{1} \xi(1-\xi) k(\xi) d \xi \int_{0}^{1} k(s) p(s) s(1-s)\|u\| d s \\
& \geq \omega \lambda\left(f_{0}-\eta_{1}\right) t(1-t) \int_{0}^{1} \xi(1-\xi) k(\xi) d \xi \int_{0}^{1} k(s) p(s) s(1-s) d s\|u\| .
\end{aligned}
$$

Hence

$$
\left|\left(T_{\lambda} u\right)\left(\frac{1}{2}\right)\right| \geq \lambda \frac{\omega\left(f_{0}-\eta_{1}\right)}{4}\left(\int_{0}^{1} \xi(1-\xi) k(\xi) d \xi \int_{0}^{1} k(s) p(s) s(1-s) d s\right)\|u\|
$$

From the definition of norm, we have $\left\|T_{\lambda} u\right\|=\max _{t \in[0,1]}\left|\left(T_{\lambda} u\right)(t)\right| \geq\left|\left(T_{\lambda} u\right)\left(\frac{1}{2}\right)\right|$. Hence

$$
\left\|T_{\lambda} u\right\| \geq \lambda \frac{\omega\left(f_{0}-\eta_{1}\right)}{4}\left(\int_{0}^{1} \xi(1-\xi) k(\xi) d \xi \int_{0}^{1} k(s) p(s) s(1-s) d s\right)\|u\|
$$

Then, for each

$$
\lambda>\frac{4}{\omega f_{0} \int_{0}^{1} \xi(1-\xi) k(\xi) d \xi \int_{0}^{1} k(s) p(s) s(1-s) d s}
$$

$\left\|T_{\lambda} u\right\| \geq\|u\|=R_{2}$.
In summary, for each λ with

$$
\frac{4}{\omega f_{0} \int_{0}^{1} \xi(1-\xi) k(\xi) d \xi \int_{0}^{1} k(s) p(s) s(1-s) d s}<\lambda<\frac{4 \rho R_{1}}{\int_{0}^{1} k(s) p(s) h_{R_{1}}(s) d s}
$$

T_{λ} has a fixed point in $P \bigcap\left(\bar{\Omega}_{2} \backslash \Omega_{1}\right)$, i.e. the $\operatorname{BVP}(1.1)$ has a positive solution $u(t)$ such that $R_{1} \leq\|u\| \leq R_{2}$.
Theorem 3.2. Assume that $\left(H_{1}\right)-\left(H_{3}\right)$ hold, $f^{0}>0, f_{\infty}>0$, and suppose that there exist $0<\theta_{1}<\theta_{2}<1$ such that

$$
f_{\infty}>f^{0} \frac{\int_{0}^{1} k(s) p(s) d s}{\rho \omega \delta\left(\theta_{1}, \theta_{2}\right) \int_{\theta_{1}}^{\theta_{2}} k(s) p(s) d s \int_{0}^{1} \xi(1-\xi) k(\xi) d \xi}
$$

where $\delta\left(\theta_{1}, \theta_{2}\right)=\min _{\theta_{1} \leq t \leq \theta_{2}}\{t(1-t)\}$. Then for each λ satisfying

$$
\frac{4}{\delta\left(\theta_{1}, \theta_{2}\right) \omega f_{\infty} \int_{0}^{1} \xi(1-\xi) k(\xi) d \xi \int_{\theta_{1}}^{\theta_{2}} k(s) p(s) d s}<\lambda<\frac{4 \rho}{f^{0} \int_{0}^{1} k(s) p(s) d s}
$$

the $B V P(1.1)$ has at least one positive solution.
Proof. If $\lambda<\frac{4 \rho}{f^{0} \int_{0}^{1} k(s) p(s) d s}$, there exists $\eta_{2}>0$ small enough, such that $\lambda<$ $\frac{4 \rho}{\left(f^{0}+\eta_{2}\right) \int_{0}^{1} k(s) p(s) d s}$. By the definition of f^{0}, there exists $R_{3}>0$ such that $\frac{f(s, u)}{u}<$ $f^{0}+\eta_{2}$ for $0<u \leq R_{3}$. Let $\Omega_{3}=\left\{u(t) \in P:\|u\|<R_{3}\right\}$. For any $u \in \partial \Omega_{3}$, we have

$$
\begin{aligned}
\left(T_{\lambda} u\right)(t) & =\lambda \int_{0}^{1} H(t, \xi) \int_{0}^{1} G(\xi, s) p(s) f(s, u(s)) d s d \xi \\
& \leq \frac{\lambda}{\rho} \int_{0}^{1} \xi(1-\xi) d \xi \int_{0}^{1} k(s) p(s)\left(f^{0}+\eta_{3}\right) u(s) d s \\
& \leq \frac{\lambda}{4 \rho}\left(f^{0}+\eta_{3}\right) \int_{0}^{1} k(s) p(s) d s\|u\|
\end{aligned}
$$

Thus, $\left\|T_{\lambda} u\right\| \leq\|u\|=R_{3}$, if $\lambda<\frac{4 \rho}{f^{0} \int_{0}^{1} k(s) p(s) d s}$.
On the other hand, if $\lambda>\frac{4}{\delta\left(\theta_{1}, \theta_{2}\right) \omega f_{\infty} \int_{0}^{1} \xi(1-\xi) k(\xi) d \xi \int_{\theta_{1}}^{\theta_{2}} k(s) p(s) d s}$, there exists $\eta_{3}>0$ small enough, such that $f_{\infty}-\eta_{3}>0$ and

$$
\lambda>\frac{4}{\delta\left(\theta_{1}, \theta_{2}\right) \omega\left(f_{\infty}-\eta_{3}\right) \int_{0}^{1} \xi(1-\xi) k(\xi) d \xi \int_{\theta_{1}}^{\theta_{2}} k(s) p(s) d s} .
$$

By the definition of f_{∞}, there exists $r_{3}>0$ such that $\frac{f(s, u)}{u}>f_{\infty}-\eta_{3}$ for $u \geq r_{3}$. From the definition of P, we have $u(t) \geq \delta\left(\theta_{1}, \theta_{2}\right)\|u\|$, for any $u(t) \in P$, $t \in\left[\theta_{1}, \theta_{2}\right]$. Let $\Omega_{4}=\left\{u(t) \in P:\|u\|<R_{4}\right\}$, where $R_{4}=\max \left\{R_{3}+1, \frac{r_{3}}{\delta\left(\theta_{1}, \theta_{2}\right)}\right\}$. For any $u \in \partial \Omega_{4}$, we have

$$
\begin{aligned}
\left(T_{\lambda} u\right)(t) & =\lambda \int_{0}^{1} H(t, \xi) \int_{0}^{1} G(\xi, s) p(s) f(s, u(s)) d s d \xi \\
& \geq \lambda \int_{0}^{1} H(t, \xi) \int_{\theta_{1}}^{\theta_{2}} G(\xi, s) p(s) f(s, u(s)) d s \\
& \geq \omega \lambda t(1-t) \int_{0}^{1} \xi(1-\xi) k(\xi) d \xi \int_{\theta_{1}}^{\theta_{2}} k(s) p(s)\left(f_{\infty}-\eta_{3}\right) u(s) d s \\
& \geq \omega \lambda\left(f_{\infty}-\eta_{3}\right) t(1-t) \int_{0}^{1} \xi(1-\xi) k(\xi) d \xi \int_{\theta_{1}}^{\theta_{2}} k(s) p(s) \delta\left(\theta_{1}, \theta_{2}\right)\|u\| d s \\
& \geq \omega \lambda\left(f_{\infty}-\eta_{3}\right) t(1-t) \delta\left(\theta_{1}, \theta_{2}\right) \int_{0}^{1} \xi(1-\xi) k(\xi) d \xi \int_{\theta_{1}}^{\theta_{2}} k(s) p(s) d s\|u\|
\end{aligned}
$$

Hence,

$$
\left|\left(T_{\lambda} u\right)\left(\frac{1}{2}\right)\right| \geq \frac{\omega \lambda\left(f_{\infty}-\eta_{3}\right) \delta\left(\theta_{1}, \theta_{2}\right)}{4} \int_{0}^{1} \xi(1-\xi) k(\xi) d \xi \int_{\theta_{1}}^{\theta_{2}} k(s) p(s) d s\|u\|
$$

From the definition of norm, we have $\left\|T_{\lambda} u\right\|=\max _{t \in[0,1]}\left|\left(T_{\lambda} u\right)(t)\right| \geq\left|\left(T_{\lambda} u\right)\left(\frac{1}{2}\right)\right|$. Thus

$$
\left\|T_{\lambda} u\right\| \geq \frac{\omega \lambda\left(f_{\infty}-\eta_{3}\right) \delta\left(\theta_{1}, \theta_{2}\right)}{4} \int_{0}^{1} \xi(1-\xi) k(\xi) d \xi \int_{\theta_{1}}^{\theta_{2}} k(s) p(s) d s\|u\|
$$

So we have that $\left\|T_{\lambda} u\right\| \geq\|u\|=R_{4}$, if $\lambda>\frac{4}{\delta\left(\theta_{1}, \theta_{2}\right) \omega f_{\infty} \int_{0}^{1} \xi(1-\xi) k(\xi) d \xi \int_{\theta_{1}}^{\theta_{2}} k(s) p(s) d s}$.
From Theorem 2.1, for each λ satisfying

$$
\frac{4}{\delta\left(\theta_{1}, \theta_{2}\right) \omega f_{\infty} \int_{0}^{1} \xi(1-\xi) k(\xi) d \xi \int_{\theta_{1}}^{\theta_{2}} k(s) p(s) d s}<\lambda<\frac{4 \rho}{f^{0} \int_{0}^{1} k(s) p(s) d s}
$$

T_{λ} has a fixed point in $P \bigcap\left(\bar{\Omega}_{4} \backslash \Omega_{3}\right)$, i.e. the $\operatorname{BVP}(1.1)$ has a positive solution $u(t)$ such that $R_{3} \leq\|u\| \leq R_{4}$.

4. Examples

To illustrate the usefulness of the results, we give some examples in this section.

Example 4.1. Let $p(x)=1$, and

$$
f(t, u)= \begin{cases}\cos ^{2} u+t, & t \in[0,1] \text { and } t \in R \backslash Q \\ 0, & t \in[0,1] \text { and } t \in Q\end{cases}
$$

For given $u \in R^{+}$, we have $f(t, u) \leq 1+t$. Let $E=\{t: t \in[0,1]$ and $t \in Q\}$. Then we have $m(E)=0$. Clearly, $\left(H_{1}\right)-\left(H_{3}\right)$ are satisfied, and $f_{0}=+\infty$. From Theorem 3.1, for each $0<\lambda<\frac{4(\beta \gamma+\alpha \gamma+\alpha \delta) R_{1}}{\frac{3}{2} \beta \delta+\frac{2}{3} \beta \gamma+\frac{5}{6} \alpha \delta+\frac{1}{4} \alpha \gamma}$, the BVP(1.1) has at least a positive solution for R_{1} enough large.

Example 4.2. Let $p(x)=1$, and

$$
f(t, u)= \begin{cases}e^{u}+\sqrt{t}-2, & t \in[0,1] \text { and } t \in R \backslash Q \\ 0, & t \in[0,1] \text { and } t \in Q\end{cases}
$$

Let $E=\{t: t \in[0,1]$ and $t \in Q\}$. Then we have $m(E)=0$. Clearly, $\left(H_{1}\right)-\left(H_{3}\right)$ are satisfied, $f^{0}=1$, and $f_{\infty}=+\infty$. From Theorem 3.2, for each $0<\lambda<$ $\frac{4(\beta \gamma+\alpha \gamma+\alpha \delta)}{\beta \delta+\frac{\beta \gamma}{2}+\frac{\alpha \gamma}{6}+\frac{\alpha \delta}{2}}$, the BVP(1.1) has at least a positive solution.

References

[1] W. Ge, Boundary value problems for nonlinear ordinary differential equations, Science Press, Beijing, 2007.
[2] S. Ge, W. Wang and J. Suo, Dependence of eigenvalues of a class of fourthorder Sturm-Liouville problems on the boundary, Applied Mathematics and Computation, 2013, 220, 268-276.
[3] J. Suo and W. Wang, Eigenvalues of a class of regular fourth-order SturmLiouville problems, Applied Mathematics and Computation, 2012, 218, 97169729.
[4] M. Dehghan, An efficient method to approximate eigenfunctions and highindex eigenvalues of regular Sturm-Liouville problems, Applied Mathematics and Computation, 2016, 279, 249-257.
[5] P. Binding, P. Browne and B. Watson, Sturm-Liouville problems with boundary conditions rationally dependent on the eigenparameter II, Journal of Computational and Applied Mathematics, 2002, 148, 147-168.
[6] C. Fulton, D. Pearson and S. Pruess, New characterizations of spectral density functions for singular Sturm-Liouville problems, Journal of Computational and Applied Mathematics, 2008, 212, 194-213.
[7] A. Rattana and C. Bckmann, Matrix methods for computing eigenvalues of Sturm-Liouville problems of order four, Journal of Computational and Applied Mathematics, 2013, 249, 144-156.
[8] G. Yang and H. Feng, New results of positive solutions for the Sturm-Liouville problem, Boundary Value Problems, 2016, 64.
[9] H. Su, L. Liu and X. Wang, Sturm-Liouville BVP in Banach space, Advances in Difference Equations, 2011, 65.
[10] Q. Yao and Z. Bai, Existence of solutions of BVP for $u^{(4)}(t)-\lambda h(t) f(t, u(t))=$ 0, Chinese Annals of Mathematics, Series A, 1999, 20, 575-578.
[11] Z. Bai and H. Wang, On positive solutions of some nonlinear fourth-order beam equations, Journal of Mathematical Analysis and Applications, 2002, 270, 357368.
[12] L. Liu, X. Zhang and Y. Wu, Positive solutions of fourth-order nonlinear singular Sturm-Liouville eigenvalue problems, Journal of Mathematical Analysis and Applications, 2007, 326, 1212-1224.
[13] X. Zhang, L. Liu and H. Zou, Eigenvalues of fourth-order singular SturmLiouville boundary value problems, Nonlinear Analysis, 2008, 68, 384-392.
[14] E. Arpat, An eigenfunction expansion of the non-self adjoint Sturm-Liouville operator with a singular potential, Journal of Mathematical Chemistry, 2013, 51, 2196-2213.
[15] J. Zhao and W. Ge, Existence results of a kind of Sturm-Liouville type singular boundary value problem with non-linear boundary conditions, Journal of Inequalities and Applications, 2012, 197.
[16] P. Wong, Eigenvalues of higher order Sturm-Liouville boundary value problems with derivatives in nonlinear terms, Boundary Value Problems, 2015, 12.
[17] X. Hu, L. Liu, L. Wu and H. Zhu, Singularity of the n-th eigenvalue of high dimensional Sturm-Liouville problems, Journal of Differential Equations, 2019, 266, 4106-4136.
[18] X. Cheng and G. Dai, Positive solutions of sub-superlinear Sturm-Liouville problems, Applied Mathematics and Computation, 2015, 261, 351-359.
[19] X. Han, S. Zhou and R. An, Existence and Multiplicity of Positive Solutions for Fractional Differential Equation with Parameter, Journal of Nonlinear Modeling and Analysis, 2020, 2(1), 15-24.

[^0]: \dagger the corresponding author.
 Email address: lnazhou@163.com(L. Zhou)
 ${ }^{1}$ School of Mathematical Science, Hebei Normal University, Shijiazhuang, Hebei 050024, China
 ${ }^{2}$ College of Science, Hebei University of Science and Technology, Shijiazhuang, Hebei 050018, China
 *The authors were supported by the Natural Science Foundation of China (11971145, 11775169), the Natural Science Foundation of Hebei Province (A2019205133, A2018208171).

