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The Dynamics of Stochastic Predator-prey Models
with Non-constant Mortality Rate and General

Nonlinear Functional Response∗
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Abstract In this paper, we investigate the dynamics of stochastic predator-
prey models with non-constant mortality rate and general nonlinear functional
response. For the stochastic system, we firstly prove the existence of the global
unique positive solution. Secondly, we establish sufficient conditions for the
extinction and persistence in the mean of autonomous stochastic model and
obtain a critical value between them. Then by constructing a appropriate
Lyapunov function, we prove that there exists a unique stationary distribution
and it has ergodicity in the case of persistence. Finally, numerical simulations
are introduced to illustrate our theoretical results.
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1. Introduction
The dynamics of the predator-prey system has always been one of the hot topics
of ecological science research. In the past decades, a lot of predator-prey models
have been proposed and used to describe the food supply relationship between two
species [1]. In [2], Cavani and Farkas considered the following predator-prey system
with Holling type-II functional responseṄ(t) = εN(t)

(
1− N(t)

K

)
− aP (t)N(t)

β+N(t) ,

Ṗ (t) = P (t)
(
−M(P (t)) + bN(t)

β+N(t)

)
,

(1.1)

where N(t) and P (t) are the densities of the prey and the predator at time t,
respectively. All the parameters are positive constants. ε represents specific growth
rate of the prey without predation and environmental constraints; K denotes the
carrying capacity of the prey in the absence of predators; a, b and β are satiation
coefficients or conversion rates; and here the function M(P ) is the specific mortality
rate of predators in the absence of prey. At the same time, M(P ) could be constant
or non-constant. If M(P ) is a constant (such as M(P ) = n), the model (1.1) is the
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classic predator-prey model with Holling type-II functional response. In this paper,
the mortality rate of predators

M(P ) =
γ + δP

1 + P
= δ +

γ − δ

1 + P
, (0 < γ < δ)

is non-constant and it depends on the quantity of predator; here, γ is the mortality
at low density, and δ is the maximal mortality with the natural assumption δ >
γ. Compared with the common models, the advantage of this model is that the
predator mortality rate is neither a constant nor an unbounded function, and it
increases with the increase of the quantity of predator. There have been many
papers published about the model and its deformations, see [3–5].

In population dynamics, one significant component of the relationship between
the predator and the prey is the functional response of the predator, which refers
to the change in the density of prey attached by per unit time per predator as the
density of prey changes. There have been several well-known types of nonlinear func-
tional response: Holling type-II, type-III [6], Hassell-Varley type [7], Beddington-
DeAngelis type [8–10], Crowley-Martin type [11], ratio-dependence type [12], etc.
These important nonlinear response functions allow us to gain insight into the dy-
namic relationship between predators and preys. Therefore, it is reasonable to use
a nonlinear functional response when we establish a predator-prey model. Based on
model (1.1), we consider the following predator-prey model with general nonlinear
functional responseṄ(t) = εN(t)

(
1− N(t)

K

)
− aφ(N(t))P (t),

Ṗ (t) = P (t)
(
−γ+δP (t)

1+P (t) + bφ(N(t))
)
,

(1.2)

where φ(N) is a general functional response.
However, environmental noise is ubiquitous in nature and population models

are inevitably affected by environmental noise, which is an important part of reality
[13,14]. Deterministic models have certain limitations in the mathematical modeling
process of ecological models. For example,they are not easy to fit datas and not
easy for us to accurately predict the future dynamics of the system. Therefore,
it is necessary to consider stochastic fluctuations in the modeling process of the
population model. In recent years, there have been many significant papers on
the dynamics of stochastic population models [15, 16]. However, few papers have
considered stochastic predator-prey models with non constant mortality rate and
general nonlinear functional response in stochastic environments. In this paper, we
will study the dynamics of the following stochastic predator-prey modeldN =

(
εN(t)

(
1− N(t)

K

)
− aφ(N(t))P (t)

)
dt+ σ1N(t)dB1(t),

dP = P (t)
(
−γ+δP (t)

1+P (t) + bφ(N(t))
)
dt+ σ2P (t)dB2(t).

(1.3)

where B1(t), B2(t) are mutually independent standard Brownian motions defined
on a complete probability space (Ω,F ,Ft≥0,P) with a σ-field filtration {Ft}t≥0

satisfying the usual conditions, and σ2
i represent the intensities of the white noise,

i = 1, 2.
For the sake of biologically reality, we give the general assumption for φ(N)

above. Again, for the sake of clarity, we make two further assumptions for the
generic nature
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A1 : φ ∈ C2([0,+∞), [0,+∞)) and φ′(N) ≤ c1, φ(N) ≤ c2 for any N ∈ (0,+∞),
where c1, c2 are positive constants.

A2 : φ′′(N) ≥ c3, for any N ∈ (0,+∞). Where c3 is a constant which requires no
assumption on the sign.

For the predator-prey system, we consider the following prototypes of response
functions that are often found in the literature. There are several special response
functions:

(i) Lotka-Volterra function or Holling type-I function:

φ(N) = mN, 0 ≤ N ≤ k

m
; φ(N) = k, N ≥ k

m
(1.4)

where m > 0 denotes a constant and represents the maximal per capita con-
sumption rate.

(ii) Michaelis-Menten function or Holling type-II function:

φ(N) =
αN

β +N
, (1.5)

where α > 0 and β > 0 are constants. Here α is the maximal growth rate of
the species and β is called the half-saturation (or Michaelis-Menten) constant.

(iii) Holling type-III response function [17]:

φ(N) =
mN2

αN2 + βN + 1
(1.6)

where m and α are positive constants and β is a constant. When β > −2
√
α

(so that αN2 + βN + 1 > 0 for all x ≥ 0), the function φ(N) is called the
generalized Holling type-III functional response [18].

(iv) Ivlev functional response [19]:

φ(N) = h
(
1− e−cN

)
(1.7)

where c and h are positive constants.
This paper is organized as follows: In section 2, we basically give a theorem

concerning the existence and uniqueness of the global positive solution to model
(1.3). In section 3, we investigate persistence in the mean and extinction of model
(1.3) and furthermore, we try to obtain the critical value between them. In section
4, we show that the model exists a unique stationary distribution. In section 5, we
use numerical simulations to illustrate our theoretical results. Finally, conclusion is
given to end this paper.

2. Existence and uniqueness of the global positive
solution

For simplicity, we introduce the following notations.
R2

+ := {x = (x1, x2) ∈ R2 : xi > 0, i = 1, 2}.
⟨f⟩t = 1

t

∫ t

0
f(s)ds.

If f(t) is a continuous bounded function, define f l = inft∈[0,∞) f(t), fu =
supt∈[0,∞) f(t).
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Theorem 2.1. For any initial value (N(0), P (0)) ∈ R2
+, there is a unique solution

(N(t), P (t)) of system (1.3) on t ≥ 0, and the solution will remain in R2
+ with

probability 1.

Proof. Obviously, the coefficients of model (1.3) are locally Lipschitz continuous,
so there is a unique local solution (N(t), P (t)) on t ∈ [0, τe) for any initial value
(N(0), P (0)) ∈ R2

+, where τe is the explosion time. If τe = ∞ a.s., then this local
solution is global. Let k0 be sufficiently large for every component of (N(0), P (0))
lying within the interval [1/k0, k0]. For each integer k ≥ k0, define the stopping
time

τk = inf{t ∈ [0, τe)|N(t) /∈ (1/k, k) or P (t) /∈ (1/k, k)},

where throughout this paper we set inf ∅ = ∞ (∅ denotes the empty set). Clearly,
τk is increasing as k → ∞. Set τ∞ = limk→∞ τk, which implies τ∞ < τe a.s. If we
show that τ∞ = ∞ a.s., then τe = ∞ a.s. This means that (N(t), P (t)) ∈ R2

+ a.s.
for all t > 0. If τe < ∞a.s., then there is a pair of constants T > 0 and ϵ ∈ (0, 1)
such that

P{τ∞ ≤ T} > ϵ.

Hence there is an integer k1 ≥ k0 such that

P{τk ≤ T} > ϵ for all k ≥ k1. (2.1)

Define a C2-function V : R2
+ → R+ as follow:

V (N,P ) =
4bc1
δ

(
N − δ

4bc1
− δ

4bc1
log

4bc1N

δ

)
+

2ac1
δ

(
P − δ

2ac1
− δ

2ac1
log

2ac1P

δ

)
.

Applying Itô’s formula we have

dV (N,P ) =LV (N,P )dt+
4bc1σ1

δ

(
N − δ

4bc1

)
dB1(t)

+
2ac1σ2

δ

(
P − δ

2ac1

)
dB2(t),

where LV : R2
+ → R+ is defined by

LV (N,P ) =
4bc1
δ

(
N − δ

4bc1

)(
ε− εN

K
− aφ(N)P

N

)
+

σ2
1

2

+
2ac1
δ

(
P − δ

2ac1

)(
−δ − γ − δ

1 + P
+ bφ(N)

)
+

σ2
2

2

=
4bc1ε

δK
N2 +

(
4bc1ε

δ
+

ε

K

)
N − 4abc1

δ
φ(N)P +

aφ(N)P

N

− ε+
σ2
1

2
− 2ac1P +

2ac1(δ − γ)

δ

P

1 + P
+

2abc1
δ

φ(N)P

− γ − δ

1 + P
− bφ(N) + δ +

σ2
2

2
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≤4bc1ε

δK
N2 +

(
4bc1ε

δ
+

ε

K

)
N − 2abc1

δ
φ(N)P

+ ac1P − 2ac1P − ε+
σ2
1

2
+ δ +

σ2
2

2
+ 2ac1

≤4bc1ε

δK
N2 +

(
4bc1ε

δ
+

ε

K

)
N − ε+

σ2
1

2
+ δ +

σ2
2

2
+ 2ac1

≤M,

where M is a positive constant. We therefore obtain

EV (N(τk ∧ T ), P (τk ∧ T )) ≤ V (N(0), P (0)) +ME(τk ∧ T ) ≤ V (N(0), P (0)) +MT
(2.2)

Set Ωk = {τ ≤ T} for k ≥ k1 and by (2.1), we have P(Ωk) ≥ ϵ. Noting that for
every ω ∈ Ωk, there is at least one of N(τk, ω), P (τk, ω) equals either k or 1/k,
therefore

V (N(τk, ω), P (τk, ω)) ≥
4bc1
δ

(
k − δ

4bc1
− δ

4bc1
log

4bc1k

δ

)
∧4bc1

δ

(
1

k
− δ

4bc1
− δ

4bc1
log

4bc1
δk

)
∧2ac1

δ

(
k − δ

2ac1
− δ

2ac1
log

2ac1k

δ

)
∧2ac1

δ

(
1

k
− δ

2ac1
− δ

2ac1
log

2ac1
δk

)
.

It then follows from (2.2) that

V (N(0), P (0)) +MT ≥E(IΩk
V (N(τk, ω), P (τk, ω)))

≥ϵ
{4bc1

δ

(
k − δ

4bc1
− δ

4bc1
log

4bc1k

δ

)
∧ 4bc1

δ

(1
k
− δ

4bc1
− δ

4bc1
log

4bc1
δk

)
∧ 2ac1

δ

(
k − δ

2ac1
− δ

2ac1
log

2ac1k

δ

)
∧ 2ac1

δ

(1
k
− δ

2ac1
− δ

2ac1
log

2ac1
δk

)}
.

Letting k −→ ∞ leads to the contradiction

∞ > V (N(0), P (0)) +MT = ∞,

so we must have τ∞ = ∞ a.s. The proof is completed.

3. The persistence in mean and extinction
In the section, we investigate the persistence and extinction of stochastic predator-
prey model (1.3) under a certain condition. In addition, by using the ergodic prop-
erty of stochastic Logistic model, we try to give the critical value which determines
the extinction and persistence of model (1.3). To this end, we first give the definition
of the persistence and the extinction and lemmas.
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Definition 3.1. [20]

(1) The model (1.3) is said to be extinct if limt→∞ P (t) = 0 a.s.

(2) The model (1.3) is said to be persistent in mean if lim inft→∞⟨P ⟩t > 0 a.s.

Lemma 3.1. [20] Suppose that Z(t) ∈ C(Ω× [0,∞),R+).

(I) If there are two positive constants T and δ0 such that

lnZ(t) ≤ δt− δ0

∫ t

0

Z(s)ds+

n∑
i=1

αiB(t) a.s.

for all t > T , where αi, δ are constants, then{
lim supt→∞⟨Z⟩t ≤ δ

δ0
a.s., if δ ≥ 0;

limt→∞ Z(t) = 0 a.s., if δ < 0.

(II) If there exist three positive constants T , δ, δ0 such that

lnZ(t) ≥ δt− δ0

∫ t

0

Z(s)ds+

n∑
i=1

αiB(t) a.s.

for all t > T , then lim inft→∞⟨Z⟩t ≥ δ
δ0

a.s..

Lemma 3.2. [21] Consider the following one-dimensional stochastic Logistic model

dX(t) = εX(t)
(
1− X(t)

K

)
dt+ σ1X(t)dB1(t) (3.1)

with X(0) = N(0). If ε − σ2
1

2 > 0, model (3.1) has a unique ergodic stationary

distribution ν(·) with stationary density µ(x) = Cx
2ε−σ2

1
σ2
1

−1
e
− 2ε

Kσ2
1
x
, where C =

(2ε/Kσ2
1)

(2ε−σ2
1)/σ

2
1/Γ((2ε− σ2

1)/σ
2
1), and

P
{

lim
t→∞

1

t

∫ t

0

f(X(s))ds =

∫
R+

f(x)µ(x)dx
}
= 1,

where f is a function integrable with respect to the measure ν.

Remark 3.1. From stochastic comparison theory it follows that N(t) ≤ X(t) a.s.
and

lim
t→∞

1

t

∫ t

0

φ(X(s))ds =

∫ ∞

0

φ(x)µ(x)dx, a.s. (3.2)

Theorem 3.1. Assume that ε − σ2
1/2 > 0. Let (N(t), P (t)) be a positive solution

of model (1.3) with initial value (N(0), P (0)) ∈ R2
+.

(i) If λ := −γ − σ2
2

2 + b
∫∞
0

φ(x)µ(x)dx < 0, then the predator populations go to
extinction a.s.

(ii) If λ > 0, then system (1.3) will be persistent in the mean.
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Proof. (i). An application of Itô’s formula to the second equation of (1.3) shows
that

d logP (t) =

(
−γ + δP (t)

1 + P (t)
+ bφ(N)− σ2

2

2

)
dt+ σ2dB2(t)

=

(
−γ − σ2

2

2
− (δ − γ)P (t)

1 + P (t)
+ bφ(N)

)
dt+ σ2dB2(t),

(3.3)

Integrating above inequality from 0 to t and dividing t on both sides, we get

logP (t)− logP (0)

t
=− γ − σ2

2

2
− (δ − γ)⟨ P

1 + P
⟩t +

b

t

∫ t

0

φ(N((s))ds+
M2(t)

t

≤− γ − σ2
2

2
+

b

t

∫ t

0

φ(N((s))ds+
M2(t)

t

≤− γ − σ2
2

2
+

b

t

∫ t

0

φ(X((s))ds+
M2(t)

t
,

where Mi(t) =
∫ t

0
σidBi(t), i = 1, 2 are real-valued continuous local martingales.

By strong law of large numbers [22], we have limt→∞
Mi

t = 0 a.s., i = 1, 2. Applying
(I) in Lemma 3.1 we obtain

lim sup
t→∞

logP (t)

t
≤ −γ − σ2

2

2
+ b

∫ ∞

0

φ(x)µ(x)dx.

Obviously, the predator populations P (t) tends to zero a.s. when λ < 0.
(ii). Applying Itô’s formula to the first equation of (1.3) and (3.1) respectively,

we have

d logN(t) =

(
ε

(
1− N(t)

K

)
− a

φ(N(t))P (t)

N(t)
− σ2

1

2

)
dt+ σ1dB1(t),

and
d logX(t) =

(
ε

(
1− X(t)

K

)
− σ2

1

2

)
dt+ σ1dB1(t).

Then integrating above equality from 0 to t and dividing t on both sides, we get

logN(t)− logN(0)

t
= ε− σ2

1

2
− 1

t

∫ t

0

ε

K
N(s)ds− a

t

∫ t

0

φ(N(s))P (s)

N(s)
ds+

M1(t)

t
,

and
logX(t)− logX(0)

t
= ε− σ2

1

2
− 1

t

∫ t

0

ε

K
X(s)ds+

M1(t)

t
.

These imply that

0 ≥ logN(t)− logX(t)

t
=− 1

t

∫ t

0

ε

K
(N(s)−X(s))ds− a

t

∫ t

0

φ(N(s))P (s)

N(s)
ds

≥− ε

K
⟨N −X⟩t − a⟨φ(N)P

N
⟩t

≥− ε

K
⟨N −X⟩t − ac1⟨P ⟩t,
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that is to say,
ε

K
⟨X −N⟩t ≤ ac1⟨P ⟩t. (3.4)

From (6) we obtain

d logP (t) =

(
−γ − σ2

2

2
− (δ − γ)P (t)

1 + P (t)
+ bφ(N(t))

)
dt+ σ2dB2(t)

=
(
− γ − σ2

2

2
− (δ − γ)P (t)

1 + P (t)
+ bφ(X(t))− b

(
φ(X(t))− φ(N(t))

))
dt

+ σ2dB2(t)

≥

(
− γ − σ2

2

2
− (δ − γ)P (t) + bφ(X(t))− b

(
φ′(ξ(t))(X(t)−N(t))

))
dt

+ σ2dB2(t)

≥

(
− γ − σ2

2

2
− (δ − γ)P (t) + bφ(X(t))− bc1

(
(X(t)−N(t))

))
dt

+ σ2dB2(t), (3.5)

where ξ(t) ∈ (N(t), X(t)), t ∈ (0,∞). Integrating (3.5) from 0 to t, combining (3.4),
one can derive that

logP (t)− logP (0)

t
≥− γ − σ2

2

2
− (δ − γ)⟨P ⟩t + b⟨φ(X)⟩t − bc1⟨X −N⟩t +

M2(t)

t

≥− γ − σ2
2

2
− (δ − γ)⟨P ⟩t + b⟨φ(X)⟩t − bc1

ac1K

ε
⟨P ⟩t +

M2(t)

t

=− γ − σ2
2

2
− (δ − γ +

abc21K

ε
)⟨P ⟩t + b⟨φ(X)⟩t +

M2(t)

t
,

for sufficiently large t. By virtue of arbitrariness of ϵ and (II) in Lemma 3.1, we
derive that

lim inf
t→∞

⟨P ⟩t ≥
λ

δ − γ +
abc21K

ε

> 0, a.s.

That is to say model (1.3) will be persistent in the mean when λ > 0. The proof is
complete.

4. Existence of stationary distribution
Consider the stochastic equation:

dY (t) = f(Y (t))dt+

k∑
r=1

σr(Y )dBr(t), (4.1)

where Y (t) is a homogeneous Markov process in l-dimension Euclidean space Rl.
The diffusion matrix A(Y ) = (aij(Y )), aij(Y ) =

∑k
r=1 σ

i
r(Y )σj

r(Y ).
In the section, we will give a lemma which illustrates a criteria for the existence

of a unique stationary distribution, (see [23]). For the convenience, we give the
definition of stationary distribution.
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Definition 4.1. [23] Let P(t, Y, ·) be the probability measure induced by Y (t) =
(N(t), P (t)) with initial value (N(0), P (0)). That is,

P(t, Y, ·) = P(Y (t) ∈ B|Y (0) = (N(0), P (0))), for any Borel set B ⊂ R2
+

If there exists a probability measure µ(·) such that limt→∞ P(t, Y, ·) = µ(B) for all
Y (t) ∈ R2

+, then we say that Eq.(4.1) has a stationary distribution µ(·).

Lemma 4.1. [23] The Markov process Y (t) has a unique ergodic stationary dis-
tribution µ(·) if there exists a bounded domain D ⊂ El with regular boundary Γ
and

B1 : there is a positive number H such that
l∑

i,j=1

ai,j(y)ξiξj ≥ H|ξ|2, x ∈ D, ξ ∈ Rl.

B2 : there exists a nonnegative C2-function V such that LV is negative for any
El\D.

Then

P
{

lim
T→∞

1

T

∫ T

0

f(Y (s))ds =

∫
Rl

f(y)µ(dy)
}
= 1

for all y ∈ El, where f(·) is function integrable with respect to the measure µ.

Theorem 4.1. Assume that k1 = bφ′(K)
ε , k2 = max

{
0,− bKc3

2ε + k1
}

and A =

−γ − σ2
2

2 + bφ(K) − Kk2

2 σ2
1 > 0, then the model (1.3) admits a unique stationary

distribution and has the ergodic property.

Proof. It follows from Theorem 2.1 that for any initial value (N(0), P (0)) ∈ R2
+,

there exists a unique global positive solution (N(t), P (t)). In the following analysis,
for the simplification, we denote N(t), P (t) as N , P respectively.

Define a C2-function

V (t,N, P ) =M
(
− logP − k1N + k2

(
N −K −K log

N

K

)
+

aKc1k2 + δ − γ

γ
P
)

+

(
N + a

bP
)θ+1

θ + 1

=MV1(N,P ) + V2(N,P ),

here θ ∈ (0, 1), M are positive constants satisfying the following conditions respec-
tively

θ

2
σ2
2 < (δ − γ), (4.2)

−AM + fu + gu ≤ −2, (4.3)

and positive constant A and functions f(x), g(x) will be determined later. Applying
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Itô’s formula, we obtain

L(− logP ) =
γ + δP

1 + P
− bφ(N) +

σ2
2

2

=γ +
σ2
2

2
+

(δ − γ)P

1 + P
− bφ(N)

≤γ +
σ2
2

2
+ (δ − γ)P − bφ(N),

L(−N) =− εN
(
1− N

K

)
+ aφ(N)P,

L(P ) =− γ + δP

1 + P
P + bφ(N)P,

and

L
(
N −K −K log

N

K

)
=

(
1− K

N

)(
εN
(
1− N

K

)
− aφ(N)P

)
+

K

2
σ2
1

=− ε

K
(N −K)2 − aφ(N)P + aK

φ(N)

N
P +

K

2
σ2
1 .

LV1(N,P ) =γ +
σ2
2

2
+

(δ − γ)P

1 + P
− bφ(N)− k1εN

(
1− N

K

)
+ ak1φ(N)P

+ k2

(
− ε

K
(N −K)2 − aφ(N)P + aK

φ(N)

N
P +

K

2
σ2
1

)
+

aKc1k2 + δ − γ

γ

(
− γ + δP

1 + P
P + bφ(N)P

)
≤γ +

σ2
2

2
+ (δ − γ)P − bφ(N)− k1ε

K
N(K −N) + ak1φ(N)P

+ k2

(
− ε

K
(N −K)2 + aKc1P +

K

2
σ2
1

)
+

aKc1k2 + δ − γ

γ
(−γP + bφ(N)P )

≤γ +
σ2
2

2
− bφ(K) +

Kk2
2

σ2
1

+
(
− bφ(N) + bφ(K)− k1ε

K
N(K −N)− k2ε

K
(N −K)2

)
+
(
ak1 +

aKc1k2 + δ − γ

γ
b
)
φ(N)P

=−A+ F (N) +
(
ak1 +

aKc1k2 + δ − γ

γ
b
)
φ(N)P, (4.4)

where
−A = γ +

σ2
2

2
− bφ(K) +

Kk2
2

σ2
1 ,

and
F (N) = −bφ(N) + bφ(K)− k1ε

K
N(K −N)− k2ε

K
(N −K)2.

Then let us calculate

F ′(N) = −bφ′(N) +
k1ε

K
(2N −K)− 2k2ε

K
(N −K),
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and
F ′′(N) = −bφ′′(N) +

2k1ε

K
− 2k2ε

K
.

Let k1 = bφ′(K)
ε and k2 = max

{
0,− bKc3

2ε + k1
}

. So we get

F ′(K) = 0,

F ′′(N) ≤ −bc3 +
2k1ε

K
− 2k2ε

K
< 0.

Thus, we can have
F (N) ≤ F (K) = 0.

This, together with (4.2), implies that

LV1(N,P ) ≤−A+
(
ak1 +

aKc1k2 + δ − γ

γ
b
)
φ(N)P

≤−A+ k3φ(N)P

≤−A+ k3c2P.

(4.5)

where k3 is a positive constant and k3 ≥ ak1 +
aKc1k2+δ−γ

γ b. Also

LV2(N,P ) =
(
N +

a

b
P
)θ(

εN
(
1− N

K

)
− aφ(N)P +

a

b
P
(
− γ + δP

1 + P
+ bφ(N)

))
+

θ

2

(
N +

a

b
P
)θ−1(

σ2
1N

2 +
a2

b2
σ2
2P

2
)

≤
(
N +

a

b
P
)θ(

εN − ε

K
N2 − a

b

(δ − γ)P 2

1 + P

)
+

θ

2

(
N +

a

b
P
)θ−1(

σ2
1N

2 +
a2

b2
σ2
2P

2
)

≤
(
N +

a

b
P
)θ

εN −
(
N +

a

b
P
)θ ε

K
N2 −

(
N +

a

b
P
)θ a

b

(δ − γ)P 2

1 + P

+
θ

2

(
N +

a

b
P
)θ−1(

σ2
1N

2 +
a2

b2
σ2
2P

2
)

≤2θεN

(
Nθ +

(a
b
P
)θ)

− ε

K
N2+θ −

(a
b

)θ+1

(δ − γ)
P 2+θ

1 + P

+
θ

2
σ2
1N

1+θ +
θ

2

(a
b

)θ+1

σ2
2P

1+θ

≤2θεN1+θ + 2θ−1εaθN2 − ε

K
N2+θ +

θ

2
σ2
1N

1+θ

+ 2θ−1ε
(a
b

)θ
P 2θ +

θ

2

(a
b

)θ+1

σ2
2P

1+θ −
(a
b

)θ+1

(δ − γ)
P 2+θ

1 + P

= : f(N) + g(P ). (4.6)

Clearly
f(N) → −∞, as N → +∞.

Applying inequalities 0 < θ < 1 and (4.2) yields

g(P ) → −∞, as P → +∞.
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From (4.5) and (4.6), we obtain

LV (N,P ) ≤ M(−A+ k3c2P ) + f(N) + g(P ),

where M satisfy
−AM + fu + gu < −2.

To confirm condition B2 in Lemma 4.1, we consider the following bounded subset

Dϵ1 =
{
ϵ1 ≤ N ≤ 1

ϵ1
, ϵ1 ≤ P ≤ 1

ϵ1

}
where 0 < ϵ1 < 1 is a sufficiently small constant. In the set R2

+\Dϵ1 , we can choose
ϵ1 sufficiently small such that the following conditions hold

−MA+Mk3c2ϵ1 + fu + gu ≤ −1, (4.7)

−MA+ (Mk3c2P + g(P ))
u
+ fu ≤ −1, (4.8)

−MA+ fu +B −
(a
b

)θ+1 η

2

1

ϵ1+θ
1

≤ −1, (4.9)

−MA+ (Mk3c2P + g(P ))u + C − ε

2K

1

ϵ2+θ
1

< −1, (4.10)

where inequality (4.7) can be derived from (4.3), the constants η,B and C will be
determined later. Then

R2
+\Dϵ1 = D1 ∪D2 ∪D3 ∪D4,

with

D1 =
{
(N,P ) ∈ R2

+ | 0 < P < ϵ1

}
, D2 =

{
(N,P ) ∈ R2

+ | 0 < N < ϵ1

}
,

D3 =
{
(N,P ) ∈ R2

+ | P >
1

ϵ1

}
, D4 =

{
(N,P ) ∈ R2

+ | N >
1

ϵ1

}
.

Case 1. If (N,P ) ∈ D1, (4.7) implies that

LV ≤ M(−A+ k3c2P ) + f(N) + g(P ) ≤ −MA+Mk3c2ϵ1 + fu + gu ≤ −1.

Case 2. If (N,P ) ∈ D2, we obtain that

LV ≤ M(−A+ k3c2P ) + f(N) + g(P ) ≤ −MA+ (Mk3c2P + g(P ))
u
+ fu ≤ −1.

Case 3. If (N,P ) ∈ D3, we have

LV ≤ −MA+ fu +B − η
(a
b

)θ+1 P 2+θ

1 + P
≤ −MA+ fu +B −

(a
b

)θ+1 η

2

1

ϵ1+θ
1

≤ −1,

which follow from (4.9), where η and B satisfy θ
2σ

2
2 < (δ − γ)− η and

B = sup
P∈(0,∞)

{
Mk3c2P+2θ−1ε

(a
b

)θ
P 2θ+

θ

2

(a
b

)θ+1

σ2
2P

1+θ−
(a
b

)θ+1

(δ−γ−η)
P 2+θ

1 + P

}
< ∞.
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Case 4. If (N,P ) ∈ D4, we have by (4.10)

LV ≤ −MA+Mk3c2P+g(P )+C− ε

2K
N2+θ ≤ −MA+(Mk3c2P+g(P ))u+C− ε

2K

1

ϵ2+θ
1

< −1,

where

C = sup
N∈(0,∞)

{
2θεN1+θ + 2θ−1εaθN2 − ε

K

N2+θ

2
+

θ

2
σ2
1N

1+θ
}
< ∞.

From the above discussion it follows that

LV ≤ −1, (N,P ) ∈ R2
+\Dϵ1 .

Thus, the condition B2 in Lemma 4.1 satisfied. We take Dσ to be a neighborhood
of Dϵ1 with Dσ ⊂ R2

+. It is obvious that there is H = min
(N,P )∈Dσ

{σ2
1N

2, σ2
2P

2} > 0,

such that
2∑

i,j=1

ei,j(y)ξiξj = σ2
1N

2ξ21 + σ2
2P

2ξ22 ≥ H|ξ|2, (N,P ) ∈ Dσ, ξ ∈ R2
+.

Then the condition B1 in Lemma 4.1 holds. According to Lemma 4.1, we know
that the model (1.3) has a unique stationary distribution. The proof is completed.

5. Numerical simulations
In this section, in order to verify the above results, we will numerically simulate the
solution of system (1.3) based on the Milstein’s Higher Order Method proposed by
Higham [24]. At the same time, we will select a functional response for numerical
simulation. we choose the function (1.6), so the model (1.3) will be transformed
into the following form:dN =

(
εN(t)

(
1− N(t)

K

)
− amP (t)N(t)2

αN(t)2+βN(t)+1

)
dt+ σ1N(t)dB1(t),

dP = P (t)
(
−γ+δP (t)

1+P (t) + bmN(t)2

αN(t)2+βN(t)+1

)
dt+ σ2P (t)dB2(t).

(5.1)

Example 5.1. In autonomous stochastic model (5.1), let the parameters be

ε = 0.08, K = 100, a = 1, α = 2, m = 1, β = 0, γ = 0.2, δ = 0.4, b = 0.9.

and the initial value (N(0), P (0)) = (0.9, 0.6).
Case 1. Let the environmental noise intensities be σ1 = σ2 = 0.1. Then ε > σ2

1/2
and we will use Theorem 3.1 to verify.

λ = −γ − σ2
2

2
+ b

∫ ∞

0

φ(x)µ(x)dx = 0.2450 > 0.

It can be seen from Theorem 3.1 that the stochastic model (5.1) is persistent in
the mean. As shown in Figure 1.
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Figure 1. The left figure is the solution (N(t), P (t)) of deterministic model (1.2). The right figure is
the solution of autonomous stochastic model (5.1) with σ1 = σ2 = 0.1.

Case 2. We choose environment noise σ1 = 0.1, σ2 = 0.8. Then ε > σ2
1/2 and

λ = −γ − σ2
2

2
+ b

∫ ∞

0

φ(x)µ(x)dx = −0.07003 < 0.

According to the result of Theorem 3.1, we can know that the predator populations
go to extinction and the prey is persistent in the mean. As shown in Figure 2.
Hence large environmental noise can make population species extinct.
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Figure 2. The left figure is the solution (N(t), P (t)) of deterministic model (1.2). The right figure is
the solution of autonomous stochastic model (5.1)with σ1 = 0.1 and σ2 = 0.8.

Case 3. Let the environmental noise intensities be σ1 = σ2 = 0.05. Then

A = −γ − σ2
2

2
+ bφ(K)− Kk2

2
σ2
1 = 0.2487 > 0
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Theorem 4.1 means that stochastic system (5.1) admits a unique stationary distri-
bution, Figure 3 confirms this.
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Figure 3. The left figure is the solution (N(t), P (t)) of autonomous stochastic model (1.2). The right
figure is density function diagrams of (N(t), P (t)) with σ1 = σ2 = 0.05.

6. Conclusion
The present paper is concerned with the dynamics of stochastic predator-prey mod-
els with non-constant mortality rate and general nonlinear functional response. By
constructing suitable stochastic Lyapunov functions, we establish sufficient condi-
tions for persistence in the mean and extinction of system (1.3). In addition, we also
establish sufficient condition for the existence of ergodic stationary distribution to
the stochastic system (1.3). In addition, the predator-prey models may be disturbed
by the coloured noise, that is, the telegraph noise which can make the system switch
from one environmental regime to another. This noise means a random switching
between two or more environmental regimes will distinguished by factors such as
nutrition and rainfall. For this problem, we can construct a new model. We will
leave these investigations for future work.
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