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Oscillation of Second Order Impulsive Differential
Equations with Nonpositive Neutral Coefficients∗

Arun Kumar Tripathy1,† and Gokula Nanda Chhatria1

Abstract In this work, sufficient conditions are established for a class of
nonlinear second order neutral impulsive differential equations to have oscil-
latory solutions with nonpositive neutral coefficient. Our results extend and
complement some of the known results in the literature. Examples are given
to illustrate our results.
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1. Introduction
Consider the class of second order impulsive nonlinear neutral differential equations
of the form:

(E)


[x(t) + p(t)x(t− τ)]′′ + g(t, x(t), x(t− σ)) = 0, t ̸= θk, t ≥ t0, (1.1)
x(θ+k ) = Ik(x(θk)), k ∈ N, (1.2)
x′(θ+k ) = Jk(x

′(θk)), k ∈ N, (1.3)

where τ, σ ∈ N, 0 ≤ t0 < θ1 < · · · < θk < · · · with limk→∞ θk = ∞ and θk+1 − θk >
ρ = max{τ, σ}. Throughout our work, we assume that the following hypotheses
hold:

(A1) g ∈ C([t0 − ρ,∞) × R × R,R), ug(t, u, v) > 0 for uv > 0, g(t,u,v)
h(v) ≥ q(t) for

v ̸= 0, where q(t) ∈ C([t0−ρ,∞),R+) and q(t) ̸≡ 0 on all interval of the form
(θk, θk+1], k ≥ 1, xh(x) > 0 for all x ̸= 0 and h′(x) ≥ ε > 0;

(A2) Ik, Jk ∈ C(R,R), Ik(0) = 0 = Jk(0) and there exist positive numbers ck, c∗k,
dk, d∗k, such that c∗k ≤ Ik(u)

u ≤ ck, d∗k ≤ Jk(u)
u ≤ dk, k ∈ N;

(A3) p ∈ PC(R+,R) and p(t), p′(t) are left continuous on (θk, θk+1], k ≥ 1 such
that p(θ+k ) = dkp(θk), p′(θ+k ) = dkp

′(θk).

In the literature (see for e.g. [11]), the impulse operators are often treated as
under control, that is, one may expect that either the impulse act as a control and
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cease the oscillation of the system, or operate to keep the system oscillating. In par-
ticular, impulse can make oscillating systems become nonoscillating and conversely
by the imposition of suitable impulse control (see for e.g. [5]- [9], [13]- [17], [23], [27]).

One of the important application of second order differential equations with
impulse is in impact theory. Billiard-type systems, models describing viscoelastic
bodies colliding, systems with delay and impulse are more appropriate to apply
(see for e.g. [10]). Of course, some extra conditions are required while we study
impulsive equations (see for e.g. [2, 3, 21, 22, 26, 28]) to that of nonimpulsive equa-
tions. Furthermore, it is more challenging to study nonlinear neutral equations
as we find a class of second order delay differential equations as special cases. In
this respect, by using comparison technique, the second order impulsive neutral
differential equations

(E∗)


[r(t)(v(t) + p(t)v(t− τ))′]′ + q(t)v(t− σ) = 0, t ̸= θk, t ≥ t0,

v(θ+k ) = (1 + dk)v(θk), k ∈ N,
v′(θ+k ) = (1 + dk)v

′(θk), k ∈ N,

has been studied by Li et al. [13], where τ, σ ∈ N, q(t) > 0, r(t) > 0, bk > −1
and p(t) = p ≥ 0; they have extended and generalised the work of [6] to impulse
equations.

By using the Riccati transfomation technique, Bonotto et al. [4] have considered
the second order neutral differential equations with impulse of the form:

(E∗)


[r(t)(v(t) + p(t)v(t− τ))′]′ + f(t, v(t), v(t− σ)) = 0, t ̸= θk, t ≥ t0,

v(θk) = Ik(v(θ
−
k )), k ∈ N,

v′(θk) = Jk(v
′(θ−k )), k ∈ N,

where τ, σ ∈ N, p ∈ PC([t0,∞),R+), r(t) > 0, θk+1 − θk > σ = max{τ, σ} and
c∗k ≤ Ik(u)

u ≤ ck, Jk(u) = dku, k ∈ N, c∗k, ck, dk > 0 and f(t, v(t), v(t − σ)) ≥
q(t)f(x(t − σ)), and f(x) = x . In this work, the authors have extended and
generalised the work of [12] to impulsive equations in the range 0 ≤ p(t) < 1.

However, it seems that there is no known results regarding the oscillation of
second order impulsive neutral differential equations when the neutral coefficient
p(t) ≤ 0. More exactly, the existing literature does not provide any criteria which
ensure oscillation of all solutions of (E) when p(t) ≤ 0. In view of this motiva-
tion, our aim in this paper is to present sufficient conditions which ensure that all
solutions of (E) are oscillatory.

Definition 1.1. A real valued continuous function x(t) is said to be a solution of
(E) satisfying the initial condition, if the following conditions are satisfied

1. x(t) = ψ(t) for t0 − ρ ≤ t ≤ t0, x(t) ∈ C2[t0,∞,R) and t ̸= θk, k ∈ N;
2. y(t) = x(t) + p(t)x(t − τ) ∈ C1([t0,∞),R) and y′(t) ∈ C1([t0,∞),R), t ̸=
θk, t ̸= θk + τ, t ̸= θk + σ, k ∈ N and satisfies (1.1);

3. x(θ+k ), x(θ
−
k ), x

′(θ+k ) and x′(θ−k ) exist, x(θ−k ) = x(θk), x′(θ−k ) = x′(θk) and
satisfies (1.2) and (1.3) respectively.

Definition 1.2. A nontrivial solution x(t) of (E) is said to be nonoscillatory, if
there exists a point t0 ≥ 0 such that x(t) has a constant sign for t ≥ t0. Otherwise,
the solution x(t) is said to be oscillatory. (E) is oscillatory, if all its solutions are
oscillatory.
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2. Some preliminaries
Throughout the paper, we use the following notations:

y(t) = x(t) + p(t)x(t− τ),

γk = max{ck, dk}, k ∈ N.

PC([t0,∞),R+)= { x : [t0,∞) → R; x(t) and x′(t) are continuously differentiable at
t ̸= θk and x(θ−k ), x(θ

+
k ), x′(θ

−
k ), x′(θ

+
k ) exist and x(θ−k ) = x(θk), x′(θ−k ) = x′(θk)}.

Proposition 2.1. [24] A product
∏∞

k=1(1+dk) where all the terms dk are positive
is convergent if and only if the series

∑∞
k=1 dk converges.

Lemma 2.1. [11] Suppose that

(i) the sequence {θk}k∈N satisfies 0 ≤ t0 < θ1 < · · · < θk < · · · with limk→∞ θk =
∞,

(ii) v, v′ ∈ PC(R+,R) and v(t) is left continuous at θk, k ∈ N.
(iii) k ∈ N and t ≥ t0, we have

v′(t) ≤ p(t)v(t) + q(t), t ̸= θk

v(θ+k ) ≤ akv(θk) + bk,

where p, q ∈ C(R+,R), ak and bk are real constants with ak ≥ 0 hold. Then
the following inequality holds

v(t) ≤ v(t0)
∏

t0<θk<t

ak exp
(∫ t

t0

p(s)ds
)
+

∫ t

t0

∏
s<θk<t

ak exp
(∫ t

s

p(δ)dδ
)
q(s)ds

+
∑

t0<θk<t

( ∏
θk<θj<t

aj exp
(∫ t

θk

p(s)ds
))
bk.

Lemma 2.2. [26] Let x(t) be a solution of of (E) and c∗k, dk ≥ 1 for k ∈ N.
Assume that there exists T ≥ t0 such that x(t) > 0 for t ≥ T and

(A4)
∫∞
T

∏
T<θk<s

dk

γk
ds = ∞.

Then y′(θ+k ) ≥ 0 and y′(t) ≥ 0 for t ∈ (θk, θk+1] and θk ≥ T .

Proof. Let x(t) be a nonoscillatory of (E) for t ≥ t0. Without loss of generality,
we may assume that x(t) > 0, x(t− τ) > 0 and x(t− σ) > 0 for t ≥ t1 > t0 + ρ =
max{τ, σ}. Set

y(t) = x(t) + p(t)x(t− τ).

Therefore, from (E) we have

y′′(t) = −g(t, x(t), x(t− σ)) ≤ −q(t)h(x(t− σ)) ≤ 0

and hence y′(t) is monotonically decreasing in all interval of the form (θk, θk+1], k ∈
N and θk > t2 > t1+σ. We assert that y′(θk) ≥ 0, θk ≥ t2, k ∈ N. If not, then there
exists θj ≥ t2 such that y′(θj) < 0. Let y′(θk) = −α, α > 0. Since θk+1 − θk > τ ,
θk+1 − τ is not a impulsive point for all k ∈ N. Therefore, from (E), we have

y(θ+k ) = x(θ+k ) + p(θ+k )x(θ
+
k − τ)
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= Ik(x(θk)) + dkp(θk)x(θk − τ),

≤ ckx(θk) + dkp(θk)x(θk − τ),

≤ γky(θk),

that is,
y(θ+k ) ≤ γky(θk)

and

y′(θ+k ) = x′(θ+k ) + p′(θ+k )x(θ
+
k − τ) + p(θ+k )x

′(θ+k − τ),

= Jk(x
′(θk)) + dkp

′(θk)x(θk − τ) + dkp(θk)x
′(θk − τ),

≤ dkx
′(θk) + dkp

′(θk)x(θk − τ) + dkp(θk)x
′(θk − τ),

= dky
′(θk),

that is,
y′(θ+k ) ≤ dky

′(θk).

Since y′(t) is monotonically decreasing for t ∈ (θj+i−1, θj+i], i = 1, 2, 3 · · · , then for
t ∈ (θj , θj+1], we have

y′(θj+1) ≤ y′(θ+j ) ≤ djy
′(θj) = −djα < 0.

For t ∈ (θj+1, θj+2], we have

y′(θj+2) ≤ y′(θ+j+1)

= x′(θ+j+1) + p′(θ+j+1)x(θ
+
j+1 − τ) + p(θ+j+1)x

′(θ+j+1 − τ),

= Jj+1(x
′(θj+1)) + dj+1p

′(θj+1)x(θj+1 − τ) + dj+1p(θj+1)x
′(θj+1 − τ),

≤ dj+1x
′(θj+1) + dj+1p

′(θj+1)x(θj+1 − τ) + dj+1p(θj+1)x
′(θj+1 − τ),

= dj+1y
′(θj+1)

= −djdj+1α < 0.

Consequently,
y′(θj+n) ≤ −djdj+1dj+2 · · · dj+n−1α < 0.

Proceeding inductively, we obtain

y′(t) ≤ −djdj+1dj+2 · · · dj+nα < 0,

for t ∈ (θj+n, θj+n+1]. Consider the following impulsive differential inequalities

y′′(t) ≤ 0, t ̸= θk, t > θj

y′(θ+k ) ≤ dky
′(θk), k = j + 1, j + 2, · · · .

Therefore, by Lemma 2.1, we get

y′(t) ≤ y′(θ+j )
∏

θj<θk<t

dk.

Again, consider the following impulsive differential inequalities

y′(t) ≤ −α
∏

θj<θk<t

dk, t ̸= θk, t > θj
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y(θ+k ) ≤ γky(θk), k = j + 1, j + 2, · · · .

Therefore, by Lemma 2.1, we get

y(t) ≤ y(θ+j )
∏

θj<θk<t

γk − α

∫ t

θj

∏
s<θk<t

γk

 ∏
θj<θk<t

dk

 ds
≤

∏
θj<θk<t

γk

y(θ+j )− α

∫ t

θj

 ∏
θj<θk<s

dk
γk

 ds


implies that

y(t) ≤
∏

θj<θk<t

γk

y(θ+j )− α

∫ t

θj

 ∏
θj<θk<s

dk
γk

 ds

 . (2.1)

(2.1) is not possible, if y(t) > 0 due to (A4). Indeed, y(t) > 0 when p(t) ≥ 0. Let
−1 < p ≤ p(t) ≤ 0. We claim that y(t) > 0 for t ≥ t2. If not, then (2.1) implies
y(t) → −∞ as t → ∞. Hence, there exists a t3 > t2 > θj and C > 0 such that
y(t) ≤ −C for t ≥ t3. We arise two possible cases:
Case 1. If x(t) is unbounded, then there exists a sequence {sn} such that sn → ∞,
x(s+n ) → ∞ as n→ ∞ and x(s+n ) = max{x(t) : t3 ≤ t ≤ sn} (if sn is not impulsive
point, then x(s+n ) = x(sn)). Since t− τ < t, then

x(s+n − τ) = max{x(t) : t3 ≤ t ≤ sn − τ} ≤ max{x(t) : t3 ≤ t ≤ sn} = x(s+n ).

Therefore, for all large n

0 > y(s+n ) = x(s+n ) + p(s+n )x(s
+
n − τ) ≥ (1 + p(s+n ))x(s

+
n ) > 0,

a contradiction.
Case 2. If x(t) is bounded, then y(t) is bounded, a contradiction to y(t) → −∞ as
t→ ∞.

We have noticed that y′(θk) > 0 for any θk > t2. Since y′′(t) < 0 for any
t ∈ (θk+i−1, θk+i], then y′(t) > y′(θ+k ), that is,

y′(t) ≥ y′(θ+k ) = x′(θ+k ) + p′(θ+k )x(θ
+
k − τ) + p(θ+k )x

′(θ+k − τ)

= Ik(x
′(θk)) + dkp

′(θk)x(θk − τ) + dkp(θk)x
′(θk − τ),

≥ d∗kx(θk) + dkp
′(θk)x(θk − τ) + dkp(θk)x

′(θk − τ) ≥ d∗y′(θk) > 0.

Therefore, y′(θ+k ) > 0 and y′(t) > 0 for t ∈ [θk+i−1, θk+i), t ≥ t2. This completes
the proof of the lemma.

Remark 2.1. Let x(t) be an eventually negative solution of (E). Then using (A4),
it is easy to prove that y′(θ+k ) ≤ 0 and y′(t) ≤ 0 for t ∈ (θk, θk+1], θk ≥ T .

3. Impulsive conditions for oscillation
Theorem 3.1. Assume that −1 < p ≤ p(t) ≤ 0, c∗k ≥ 1, k ∈ N and (A4) hold.
Furthermore, assume that there exists a function f(t) ∈ PC([t0,∞),R+) such that
(A5) limt→∞

∫ t

t0

∏
t0<θk<s

1
dk

(
q(l)− εf2(l)

4

)
exp

(∫ l

t2
εf(s)ds

)
dl = ∞

hold, then every unbounded solution of (E) oscillates.
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Proof. On the contrary, let x(t) be an unbounded nonoscillatory solution of (E).
Without loss of generality, we may assume that x(t) > 0, x(t− τ) > 0, x(t−σ) > 0
for t ≥ t0 > ρ. From Lemma 2.2, it follows that y′(t) > 0 and y′(θ+k ) > 0 for
t ∈ (θk, θk+1], k ∈ N, t ≥ t1 and hence y′(t−σ) > 0 for t ≥ t1+σ. Here, we consider
two cases namely, y(t) < 0 and y(t) > 0.
Case 1. Since x(t) is unbounded for t ∈ (θk, θk+1], then proceeding as in the proof
of Lemma 2.2 (Case 1), we get a contradiction to y(t) < 0 for all t(θk, θk+1], k ∈ N.
Case 2. For t ∈ (θk+i−1, θk+i], and for any θk, k ∈ N

y(θ+k ) = x(θ+k ) + p(θ+k )x(θ
+
k − τ) = Ik(x(θk)) + dkp

′(θk)x(θk − τ),

≥ c∗kx(θk) + dkp(θk)x(θk − τ),

≥ min{c∗k, dk}y(θk) ≥ y(θk) > 0.

Clearly −1 < p ≤ p(t) ≤ 0 and y(t) > 0 implies that y(t) ≤ x(t). We may note that

g(t, x(t), x(t− σ)) ≥ q(t)h(x(t− σ)) ≥ q(t)h(y(t− σ))

for t ̸= θk, t ≥ t2 > t1 + σ. Therefore, (1.1) can be written as

y′′(t) + q(t)h(y(t− σ)) ≤ 0, t ̸= θk, t ≥ t2.

For t ≥ t2, define

w(t) =
y′(t)

h(y(t− σ))
. (3.1)

Then, w(θ+k ) ≥ 0 and w(t) ≥ 0 for θk ≥ t2. Differentiating (3.1), it follows that

w′(t) =
y′′(t)h(y(t− σ))− y′(t)h′(y(t− σ))y′(t− σ)

h2(y(t− σ))

≤ −q(t)h(y(t− σ))

h(y(t− σ))
− y′(t)h′(y(t− σ))y′(t− σ)

h2(y(t− σ))

≤ −q(t)− (y′(t))2

h2(y(t− σ))
h′(y(t− σ))

≤ −q(t)− εw2(t)

= −
(
q(t)− εf2(t)

4

)
−
(
εw2(t) +

εf2(t)

4

)
for t ̸= θk. Since a2 + b2 ≥ 2ab, then the last inequality can be written as

w′(t) ≤ −
(
q(t)− εf2(t)

4

)
− εw(t)f(t), for t ̸= θk, t ≥ t2.

For t = θk,

w(θ+k ) =
y′(θ+k )

h(y(θ+k − σ))
≤ dky

′(θk)

h(c∗ky(θk − σ))
≤ dky

′(θk)

h(y(θk − σ))
= dkw(θk).

Consider the impulsive inequalities:

w′(t) ≤ −
(
q(t)− εf2(t)

4

)
− εw(t)f(t), t ̸= θk, t ≥ t2
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w(θ+k ) ≤ dkw(θk), k ∈ N

and applying Lemma 2.1, we get

w(t) ≤ w(t+2 )
∏

t2<θk<t

dkexp

(∫ t

t2

−εf(s)ds
)
−
∫ t

t2

∏
s<θk<t

dkexp

(∫ t

s

−εf(δ)dδ
)

×
(
q(s)− εf2(s)

4

)
ds

≤
∏

t2<θk<t

dkexp

(∫ t

t2

−εf(s)ds
)[

w(t+2 )−
∫ t

t2

∏
t2<θk<s

1

dk
Q1(s)ds

]
,

where Q1(t) =
(
q(t)− εf2(t)

4

)
exp

(∫ t

t2
εf(s)ds

)
. Letting t → ∞ and using (A5),

we obtain w(t) < 0 which is a contradiction. Hence, the theorem is proved.

Remark 3.1. Let Ik = I and Jk = J , where I and J are identity function, then
(E) reduces to

(E′) [x(t) + p(t)x(t− τ)]′′ + q(t)h(x(t− σ)) = 0, t ≥ t0.

By [1, Theorem 3.4.3], every unbounded solution of (E′) oscillates. We may note
that Theorem 3.1 improves or generalizes the known result [1, Theorem 3.4.3].

Example 3.1. Consider the impulsive differential system
[x(t)− 1

eπ x(t− π)]′′ + 2e2tx(t− 2π) = 0, t ̸= θk, t > 2π,

x(θ+k ) =
k

k+1x(θk), k ∈ N,

x′(θ+k ) =
1

k+1x
′(θk), k ∈ N,

(3.2)

where τ = π, σ = 2π, p(t) = − 1
eπ , q(t) = 4e2t ≥ 0, h(u) = u, and f(t) = 0,

c∗k = ck = k
k+1 , d∗k = dk = 1

k+1 , θk = 3kπ, θk+1 − θk = 3π > 2π, k ∈ N. Here∫ ∞

T

∏
T<θk<s

dk
γk

ds =

∫ ∞

2

∏
2<θk<s

1

k
ds

=

∫ θ1

2

∏
2<θk<s

1

k
ds+

∫ θ2

θ+
1

∏
2<θk<s

1

k
ds+

∫ θ3

θ+
2

∏
2<θk<s

1

k
ds+ · · ·

=
1

2
(θ1 − 2) +

1

2
× 2

3
(θ2 − θ1) +

1

2
× 2

3
× 3

4
(θ3 − θ2) + · · ·

=
1

2
× (3π − 2) +

1

3
× 3π +

1

4
× 3π +

1

5
× 3π + · · ·

=
1

2
× (3π − 2) + π +

3

4
× π +

3

5
× π + · · ·

≥ 1

2
+

1

3
+

1

4
+

1

5
+ · · · =

∞∑
i=2

1

i
= ∞

and ∫ ∞

2

∏
2<θk<s

1

dk
q(s)ds =

∫ ∞

2

∏
2<θk<s

(k + 1)4e2sds = ∞.
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By Theorem 3.1, (3.2) is oscillatory. Clearly, if (3.2) is without impulse, then
x(t) = et cos t is an unbounded oscillatory solution of (3.2).

Theorem 3.2. Let (A4) hold and −1 < p ≤ p(t) ≤ 0. Assume that there exists a
positive integer k0 such that c∗k ≥ 1, dk ≥ 1 for k ≥ k0 and

(A6)
∑∞

k=1 |dk − 1| <∞,

(A7) h satisfies
∫ ±∞
±α

du
h(u) <∞, α > 0,

(A8)
∑∞

k=1

∫ θk+1

θk

( ∫∞
t0

∏
t0<θk<v

1
dk
q(v)dv

)
ds = ∞

hold. Then every unbounded solution of (E) oscillates.

Proof. Let’s assume that x(t) be an unbounded nonoscillatory solution of (E).
By Lemma 2.2, we get y′(t) > 0 and y′(θ+k ) > 0 for t ∈ (θk, θk+1], k ∈ N, t ≥ t1 and
hence we have

y(θ+k ) = x(θ+k ) + p(θ+k )x(θ
+
k − τ)

≥ c∗kx(θk) + dkp(θk)x(θk − τ)

≥ x(θk) + p(θk)x(θk − τ)

≥ y(θk),

that is, y(t) is nondecreasing for t ∈ (θk, θk+1], k ∈ N. Especially,

y(t+1 ) ≤ y(θ1) ≤ y(θ+1 ) ≤ y(θ2) ≤ · · · (3.3)

represents that y(t) is monotonically nondecreasing for t ∈ [t1,∞). From (E), we
get

y′′(t) ≤ −q(t)h(y(t− σ)), t ̸= θk, t ≥ t1

y′(θ+k ) ≤ dky
′(θk), k ∈ N.

Let z(t) = y′(t), then the last impulsive inequality can be written as

z′(t) ≤ −q(t)h(y(t− σ)), t ̸= θk, t ≥ t1

z(θ+k ) ≤ dkz(θk), k ∈ N.

Using Lemma 2.1, we get

z(t) ≤ z(u)
∏

u<θk<t

dk −
∫ t

u

∏
s<θk<t

dkq(s)h(y(s− σ))ds, u ≥ t1

implies that

y′(t) ≤ y′(u)
∏

u<θk<t

dk −
∫ t

u

∏
s<θk<t

dkq(s)h(y(s− σ))ds, u ≥ t1, (3.4)

that is,

y′(u) ≥
∫ t

u

∏
u<θk<s

d−1
k q(s)h(y(s− σ))ds.
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Therefore,

y′(u)

h(y(u− σ))
≥
∫ t

u

∏
u<θk<s

d−1
k q(s)

h(y(s− σ))

h(y(u− σ))
ds,

≥
∫ t

u

∏
u<θk<s

d−1
k q(s)ds.

We notice from (3.4) that

y′(t) ≤ y′(u)
∏

u<θk<t

dk, u ≥ t1

which then implies that

y′(u) ≤ y′(u− σ)
∏

u−σ<θk<u

dk, u ≥ t1 + σ. (3.5)

Let u ∈ (θk, θk+1]. Using (3.5), we get∫ θk+1

θk

y′(u)

h(y(u− σ))
ds ≤

∫ θk+1

θk

∏
u−σ<θk<u

dk
y′(u− σ)

h(y(u− σ))
du.

Due to Proposition 2.1 and (A6), there exists t2 ≥ t1 + σ and a constant K > 0
such that

∏
u−σ<θk<u dk ≤ K. Therefore, the preceding inequality reduces to

∫ θk+1

θk

y′(u)

h(y(u− σ))
ds ≤ K

∫ θk+1

θk

y′(u− σ)

h(y(u− σ))
du, u ≥ t2

≤ K

∫ y(θk+1−σ)

y(θk−σ)

dv

h(v)

and hence ∫ θk+1

θk

(∫ t

s

∏
s<θk<u

d−1
k q(u)du

)
ds ≤ K

∫ y(θk+1−σ)

y(θk−σ)

dv

h(v)
.

Since (3.3) holds, then the above inequality becomes

∞∑
k=1

∫ θk+1

θk

(∫ t

s

∏
s<θk<u

d−1
k q(u)du

)
ds ≤ K

∫ ∞

y(θ1−σ)

dv

h(v)
<∞

due to (A7), a contradiction to (A8). Hence, the theorem is proved.

Remark 3.2. Let Ik = I and Jk = J , where I and J are identity function, then
(E) reduces to

(E′) [x(t) + p(t)x(t− τ)]′′ + q(t)h(x(t− σ)) = 0, t ≥ t0.

We may note that, by [1, Theorem 3.4.4], every unbounded solution of (E′) oscil-
lates. Therefore, Theorem 3.2 improves the existing result [1, Theorem 3.4.4].
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Theorem 3.3. Let −1 < p ≤ p(t) ≤ 0 and c∗k ≥ 1. Assume that (A4) and

(A9) there exists β > 0 such that |h(u)| ≥ β|u|,
(A10) lim supk→∞

∫ θk+σ

θk

(
t−σ
2

)
q(t)dt > dk

β , t > σ

hold. Then every unbounded solution of (E) oscillates.

Proof. Let x(t) be an unbounded nonoscillatory solution of (E) and we assume
that x(t) > 0 for t ≥ t0. By Theorem 3.1, we get y′(t) is nonincreasing for t ∈
(θk, θk+1], k ∈ N. From (1.1) and (A9), we have

y′′(t) ≤ −q(t)h(y(t− σ)) ≤ −βq(t)y(t− σ) ≤ 0, t ≥ t1. (3.6)

We note that∫ t

t1

y′(s)ds =

∫ θ1

t1

y′(s)ds+

∫ θ2

θ1

y′(s)ds+

∫ θ3

θ2

y′(s)ds+ · · ·+
∫ t

θk

y′(s)ds

= y(θ1)− y(t+1 ) + y(θ2)− y(θ+1 ) + y(θ3)− y(θ+2 ) + · · ·+ y(t)− y(θ+k )

= y(t)− y(t+1 ) +
∑

t1<θk<t

[y(θk)− Ik(y(θk))],

and since c∗k ≤ Ik(y(θk))
y(θk)

≤ ck, then the last integral can be viewed as∫ t

t1

y′(s)ds ≤ y(t)− y(t+1 ) +
∑

t1<θk<t

[y(θk)− c∗ky(θk)]

= y(t)− y(t+1 ) +
∑

t1<θk<t

(1− c∗k)y(θk)

≤ y(t)− y(t+1 ).

Therefore,

y(t) ≥ y(t+1 ) +

∫ t

t1

y′(s)ds ≥ y′(t)(t− t1), t ≥ t1.

that is,

y(t) ≥ t

2
y′(t), t ≥ t2 > 2t1.

For θk+1 − θk > ρ = σ,

y(t− σ) ≥
(
t− σ

2

)
y′(t− σ), t ≥ t3 > t2 + σ

and hence (3.6) becomes

y′′(t) + β

(
t− σ

2

)
q(t)y′(t− σ) ≤ 0. (3.7)

Integrating (3.7) from θk to θk + σ, we get

y′(θk + σ)− y′(θ+k ) + β

∫ θk+σ

θk

(
t− σ

2

)
q(t)y′(t− σ)dt ≤ 0,
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that is,

y′(θk + σ)− y′(θ+k ) + βy′(θk)

∫ θk+σ

θk

(
t− σ

2

)
q(t)dt ≤ 0.

Consequently,

y′(θk + σ) + y′(θ+k )

[
β

dk

∫ θk+σ

θk

(
t− σ

2

)
q(t)dt− 1

]
≤ 0

which is not possible due to (A10). This completes the proof of the theorem.

Remark 3.3. The prototype of h satisfying (A9) could be of the form

h(u) = u(β + |u|γ), u ∈ R, γ > 0.

Example 3.2. Consider the impulsive differential system
[x(t)− 1

tx(t− 1)]′′ + (t+ 1)[x(t− 2) + x3(t− 2)] = 0, t ̸= θk, t > 2,

x(θ+k ) =
k−1
k x(θk), k ∈ N, k > k0,

x′(θ+k ) =
1
kx

′(θk), k ∈ N, k > k0,

(3.8)

where τ = 1, σ = 2, p(t) = − 1
t , q(t) = (t + 1), c∗k = ck = k−1

k , d∗k = dk = 1
k ,

θk = 2k, θk+1 − θk = 2k > 1, k ∈ N, k > k0 = 1, h(u) = u(1 + u2). Clearly,∫ ∞

T

∏
T<θk<s

dk
γk

ds

=

∫ ∞

1

∏
1<θk<s

1

k − 1
ds

=

∫ θ2

1

∏
1<θk<s

1

k − 1
ds+

∫ θ3

θ+
2

∏
1<θk<s

1

k − 1
ds+

∫ θ4

θ+
3

∏
1<θk<s

1

k − 1
ds+ · · ·

= (θ2 − 1) +
1

2
× (θ3 − θ2) +

1

2
× 1

3
× (θ4 − θ3) + · · ·

= 2 +
1

2
× 22 +

1

2
× 1

3
× 23 +

1

2
× 1

3
× 1

4
× 24 + · · ·

≥ 1 +
1

2
+

1

3
+

1

4
+ · · · = 1 +

∞∑
i=2

1

i
= ∞

and let’s choose σ > 2h+ 1 for 0 < h < 1
4 . Then θk = 2k and θ+k = 2k + 2h,

lim sup
k→∞

(∫ θk+σ

θk

(t+ 1)

(
t− σ

2

)
dt
)
≥ lim sup

k→∞

(∫ θk+σ

θk

(
t− 2

2

)
dt
)
> 1.

By Theorem 3.3, (3.8) is oscillatory.

Next, we show the Kamenev-type oscillation criteria for (E) when f(t) = 0.

Theorem 3.4. Let −1 ≤ p ≤ p(t) ≤ 0. If (A4) and
(A11) lim supk→∞

1
tm

∫ θk+1

θk
(t− s)mq(s)ds = ∞ for some m > 1

hold, then every unbounded solution of (E) oscillates.



536 A. K. Tripathy & G. N. Chhatria

Proof. We proceed as in the proof of Theorem 3.1 to obtain

w′(t) ≤ −q(t) for t ̸= θk, t ≥ t2.

Clearly, w(t) is nonincreasing and positive for t ≥ t2. Multiplying (t− s)m (t > s)
for some m > 1 to both sides of the above inequality and then integrating from θk
to θk+1, we get ∫ θk+1

θk

(t− s)mw′(s)ds ≤ −
∫ θk+1

θk

(t− s)mq(s)ds.

Indeed,∫ θk+1

θk

(t− s)mw′(s)ds

=

∫ θk+1

θk

m(t− s)m−1w(s)ds+ (t− θk+1)
mw(θk+1)− (t− θk)

mw(θ+k ).

Therefore,∫ θk+1

θk

(t− s)mq(s)ds

≤ −
∫ θk+1

θk

m(t− s)m−1w(s)ds− (t− θk+1)
mw(θk+1) + (t− θk)

mw(θ+k )

≤ (t− θk)
mw(θ+k )

≤ dk(t− θk)
mw(θk),

that is,

1

tm

∫ θk+1

θk

(t− s)mq(s)ds ≤ dk(
t− θk
t

)mw(θk).

As a result

lim sup
k→∞

1

tm

∫ θk+1

θk

(t− s)mq(s)ds ≤ dk(1−
θk
t
)mw(θk) <∞,

which contradicts (A11). Hence, the theorem is proved.

Theorem 3.5. Let 0 ≤ p(t) ≤ p2 <∞ and σ > 2τ . If (A4), (A9) and
(A12) lim supk→∞

1
dk

∫ θk+τ

θk

(
t−σ
2

)
Q(t)dt > 1+p2

β

hold, then every solution of (E) oscillates, where Q(t) = min{q(t), q(t− τ)}, t ≥ τ .

Proof. Suppose on the contrary that x(t) is a nonoscillatory solution of (E).
Proceeding as in the proof of Theorem 3.1, we get y′(t) is nonincreasing for t ∈
(θk, θk+1], k ∈ N. From (1.1), it is easy to see that

0 ≥ y′′(t) + βq(t)x(t− σ) + p2y
′′(t− τ) + p2βq(t− τ)x(t− τ − σ)

≥ y′′(t) + p2y
′′(t− τ) + βQ(t)[x(t− τ) + p2x(t− τ − σ)]

≥ y′′(t) + p2y
′′(t− τ) + βQ(t)y(t− σ),
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that is,

y′′(t) + p2y
′′(t− τ) + βQ(t)y(t− σ) ≤ 0. (3.9)

From Theorem 3.3, it follows that

y(t− σ) ≥
(
t− σ

2

)
y′(t− σ), t > t3.

Therefore, (3.9) becomes

y′′(t) + p2y
′′(t− τ) + β

(
t− σ

2

)
Q(t)y′(t− σ) ≤ 0.

Integrating the above inequality from θk to θk + τ , we get

y′(θk + τ)− y′(θ+k ) + p2y
′(θk)− p2y

′(θ+k − τ) + β

∫ θk+τ

θk

(
t− σ

2

)
Q(t)y′(t− σ)dt ≤ 0.

Using y′(θk + τ) ≤ y′(θk) and y′(θ+k ) ≤ y′(θ+k − τ) in the above inequality, we find

y′(θk + τ) + p2y
′(θk + τ)− y′(θ+k − τ)− p2y

′(θ+k − τ)

+ β

∫ θk+τ

θk

(
t− σ

2

)
Q(t)y′(t− σ)dt ≤ 0,

that is,

(1 + p2)y
′(θk + τ)− (1 + p2)y

′(θ+k − τ) + βy′(θk + τ − σ)

∫ θk+τ

θk

(
t− σ

2

)
Q(t)dt ≤ 0.

Since σ ≥ 2τ , then the above relation reduces to

(1 + p2)y
′(θk + τ)− (1 + p2)y

′(θ+k − τ) + βy′(θk − τ)

∫ θk+τ

θk

(
t− σ

2

)
Q(t)dt ≤ 0,

that is,

(1 + p2)y
′(θk + τ) + y′(θ+k − τ)

[ β
dk

∫ θk+τ

θk

(
t− σ

2

)
Q(t)dt− (1 + p2)

]
≤ 0,

which is not possible due to (A12). Thus, the theorem is proved.

Remark 3.4. We may note that, Theorem 3.5 improves the known result [1, The-
orem 3.4.8].

Remark 3.5. Theorem 3.5 extends the result of [25, Theorem 3.2] when T = R,
γ = 1 and r(t) = 1. In fact, when c∗k = ck = d∗k = dk = 1 for k ∈ N, (E) is no more
a impulsive differential system. Therefore, (A12) reduces to

lim sup
t→∞

∫ t+τ

t

(
t− σ

2

)
Q(t)dt >

1 + p2
β

which is same as in [25, Theorem 3.2].
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4. Conclusion
Remark 4.1. We may note that, Theorem 3.1- Theorem 3.4 gives a partial answer
to the open problem raised by Bonotto et al. [4], that is, every unbounded solution
of (E) are oscillatory when the neutral coefficient −1 < p ≤ p(t) ≤ 0.

Remark 4.2. In [26], the authors have studied the impulsive system (E) and
established the sufficient conditions for oscillation in the range 0 ≤ p(t) < 1. In this
work also, we have made an effort to establish sufficient conditions for oscillation
when −1 < p(t) ≤ 0 and 0 ≤ p(t) <∞.

On the basis of Remark 4.1 and 4.2, two interesting problems for future research
can be formulated as follows:

• Is it possible to suggest a different method to study (E) and obtain some
sufficient conditions which ensure that all solutions of (E) are oscillatory?

• Is it possible to establish oscillation criteria for (E) for the range −∞ < p(t) <
−1?
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