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Revealing the Escape Dynamics in a Hamiltonian
System with Five Exits
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Aggarwal6 and Charanpreet Kaur7

Abstract The scope of this work is to reveal, by means of numerical method-
s, the escape process in a Hamiltonian system with five exits which describes
the problem of rearrangement multichannel scattering. For determining the
influence of the energy on the nature of the orbits we classify starting condi-
tions of orbits in planes of two dimensions. All the complex basins of escape,
associated with the five escape channels of the system, are illustrated by using
color-coded diagrams. The distribution of time of the escape is correlated with
the corresponding escape basins. The uncertainty (fractal) dimension along
with the (boundary) basin entropy are computed for quantifying the degree of
fractality of the dynamical system.
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1. Introduction

One of the most fascinating topics in nonlinear mechanics and dynamics is, without
any doubt, the problem of escapes in dynamical systems (e.g., [1–17]). In these
systems a finite energy of escape exists. Consequently, the test particles which are
usually launched in the central region of the system find, sooner or later, one of
the channels of escape in the zero velocity curve and escape. However, it should
be pointed out that the existence of escape channels does not necessarily mean
that all orbits must escape to infinity. This is true, taking into account that in
many dynamical system bounded orbits exist for which an additional integral of
motion prohibit them from escaping. Furthermore, for some orbits the required
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time for escape could be extremely long, in relation to the natural crossing time of
the system.

It is well-known that the problem of escapes in dynamical systems is also closely
related with the topic of chaotic scattering (e.g., [18]). In this case a test particle,
coming outside from the system (usually from infinity), enters the scattering region,
where its trajectory is altered, and then either it stays bounded to the system or
escapes again to infinity. Over the years, the phenomenon of chaotic scattering has
been extensively studied from the point of view of chaos theory (e.g., [19,20,22–24,
46]).

In dynamical systems, where escape channels are present, an important issue is
to locate the escape basins, associated with the channels of escape (e.g., [3,25–27]).
The escape basins are similar to the attraction basins in dissipative systems (e.g.,
[28–32]) and also similar to the Newton-Raphson convergence basins (e.g., [33–35]).

For revealing the basins of escape in a dynamical system we have to scan, and
therefore classify, starting conditions of orbits in planes of two dimensions. In this
work, we will adopt the numerical approach successfully used in several previous
papers for determining the basins of escape in simple Hamiltonian system, such as
the Hénon-Heiles system (e.g., [28,36,37]) but also in more complicated ones, such
as the restricted problem of three bodies (e.g., [38,39]) or open billiards (e.g., [40])
and other applied leaking systems (e.g., [41]). According to this approach, the usual
polar coordinates (r, ϕ) will be used for expressing the initial velocities of the orbits,
in an attempt to maintain the intrinsic symmetries of the system.

Potential holes over many dimensional configuration spaces with several exit
channels play an important role in reactive scattering (e.g., [42, 43]). As a typical
process of reactive scattering we can think of a fragment consisting of k particles
colliding with another fragment of N −k particles. So we have in total a N particle
system. When all particles have attractive interactions among each other, then the
total potential has a minimum when all particles are close together and energy is
needed to split the whole collection of particles into two or more fragments. In
general, there are many possibilities to separate the system into various groups of
particles and each one of these possible groupings defines one asymptotic arrange-
ment channel. Each one of these arrangement channels has its own energy threshold
where this arrangement starts to exist. For each fixed value of the energy a finite
number of arrangement channels are open, i.e. energetically accessible. In our study
we only think of scattering processes at moderate values of the total energy, where
a description by some effective potential is appropriate. We do not consider events
with the production of particle-antiparticle pairs which become relevant at very
high energies. We also do not include the production of photons by the scattering
process. If some of the particles are of the same type, then the energy is invariant
under an exchange of these equal particles. This leads to a corresponding discrete
symmetry of the dynamics in the phase space. Also the effective potential will then
show this discrete symmetry. Therefore, it is relevant to study scattering potentials
with discrete symmetries. For our analysis we will use a simple Hamiltonian with
five escape channels, which may represent the effect of reactive scattering.

The article is structured as follows: In Section 2 we describe the mathematical
formulation of the Hamiltonian system under consideration. The following Section
3 presents the main numerical outcomes of our investigation, regarding the orbital
and escape dynamics of the system. In Section 4 we provide quantitative arguments
about fractal degree of the Hamiltonian system, while we also compare the results of
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the different methods. Our article ends with Section 5, where we give the discussion
on our work.

2. Dynamical properties of the system

In the case of a perturbed harmonic oscillator, in two dimensions, the corresponding
potential reads

V (x, y) =
1

2

(
ω1x

2 + ω2y
2
)
+ ϵV1(x, y), (2.1)

where the parameters ω1 and ω2 are the unperturbed frequencies, along the x and
y axes of the oscillations respectively, while all the perturbing terms are contained
in the V1(x, y) function.

For simplicity (mainly for more convenient calculations), we consider the case
of the 1 : 1 resonance, that is when ω1 = ω2 = ω. In addition, without the loss of
the generality we may set ω = ϵ = 1.

It is well-known that the perturbation function V1(x, y) is of paramount im-
portance, since it strongly influences the geometry of the curves of zero velocity.
For our purposes, we require a dynamical system with several escape channels.
An ideal scenario is the case where the zero velocity curves contain five channels
of escape, thus describing the problem of rearrangement multichannel scattering
(e.g., [44–46]). According to [16] the corresponding potential with five channels of
escape is given by

V (x, y) =
1

2

(
x2 + y2

)
−
(
1

5
x5 − 2x3y2 + xy4

)
. (2.2)

The respective set of equations of motion of a particle with unit mass (m = 1)
is

ẍ = −∂V

∂x
= −Vx,

ÿ = −∂V

∂x
= −Vy, (2.3)

where

Vx = ω2x−
(
x4 − 6x2y2 + y4

)
,

Vy = ω2y + 4xy
(
x2 − y2

)
. (2.4)

are the derivatives of the first order of the potential.
Similarly, the derivatives of the second order are

Vxx =
∂2V

∂x2
= ω2 − 4x

(
x2 − 3y2

)
,

Vxy =
∂2V

∂x∂y
= 4y

(
3x2 − y2

)
,

Vyx =
∂2V

∂y∂x
= Vxy,

Vyy =
∂2V

∂xy
= ω2 + 4x

(
x2 − 3y2

)
. (2.5)
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Figure 1. The open curves of zero velocity on the configuration plane (x, y), for E = 0.35. Pi, i = 1, ..., 6
indicate the positions of the points of equilibrium (red). The purple, dashed line delimits the scattering
region (cyan), while the five escape channels are also numbered in blue. (Color figure online).

The integral of the planar motion, related to the total energy of the orbits, is
given by the following Hamiltonian

H(x, y, ẋ, ẏ) =
1

2

(
ẋ2 + ẏ2

)
+ V (x, y) = E. (2.6)

The planar motion of the test body inside the force field of the potential V (x, y)
defines the energetically allowed areas of motion, where E ≤ V (x, y).

The dynamical system, described by the potential of Eq. (2.2), has six equilib-
rium points Pi, i = 1, ..., 6. The coordinates of the libration points are

P1 : (x, y) = (0, 0),

P2 : (x, y) = (1, 0),

P3 : (x, y) =

(
1

2
a,

1

2

√
a+ 3

)
,

P4 : (x, y) =

(
1

2
b,
1

2

√
b+ 3

)
,

P5 : (x, y) =

(
1

2
b,−1

2

√
b+ 3

)
,

P6 : (x, y) =

(
1

2
a,−1

2

√
a+ 3

)
, (2.7)

where a = −
(
1−

√
5
)
/2 and b = −

(
1 +

√
5
)
/2.

Our numerical analysis suggests that the central equilibrium point P1 is linearly
stable, while all the other peripheral libration points Pi, i = 2, ..., 5 are linearly
unstable.
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The value of the total energy corresponding to the equilibrium points Pi, i =
2, ..., 6 is equal to 3/10 and it is called energy of escape Eesc. This is true because
for E > Eesc the zero velocity curves (ZVCs), on the configuration plane (x, y) open
and five channels of escape emerge. In Fig. 1 we depict the structure of the zero
velocity curves for E = 0.35, while at the same diagram we also label the different
escape channels. It is interesting to point out that geometry of the equipotential
curves display a 2π/5 symmetry, which is an intrinsic symmetry of the particular
system.

Near the openings of the ZVCs and in the vicinity of the peripheral equilibrium
points there exist highly unstable periodic orbits, which are called Lyapunov orbits.

3. Escape dynamics

For determining the character of the orbits we will adopt the numerical methods
and approach used in the pioneer works of [28,37–39]. In particular, we will classify
starting conditions of orbits on the configuration (x, y) plane, for many values of the
total energy E. The choice of the starting conditions is of paramount importance.
As we have seen, the system with five escape channels possess a 2π/5 symmetry.
This symmetry should be displayed on the dynamics of the system. In addition,
the five channels of escape should be equiprobable, due to the same symmetry.

The above-mentioned conditions (the symmetry as well as the equiprobable
channels) are fulfilled only by the use of polar coordinates. Specifically, the condi-
tion ṙ = 0 defines a particular surface of section, of two dimensions, on the polar
plane (r, ϕ), while two disjoint parts ϕ̇ < 0 and ϕ̇ > 0 correspond to this surface
of section. For our computations we choose the ϕ̇ < 0 part, simply because our
previous experience indicates that the corresponding orbital structure is more reich
and therefore interesting.

For evert value of E, we define a grid of 1024×1024 starting conditions (x0, y0),
with R =

√
x2
0 + y20 ≤ 1.4. The circular region R ≤ 1.4 is in fact the scattering

region of our system. The initial velocities of the orbits are given by the following
relations

ẋ0 =
y0
r

√
2 (E − V (x0, y0)),

ẏ0 = −x0

r

√
2 (E − V (x0, y0)), (3.1)

where r =
√

x2
0 + y20 .

The starting conditions of the orbits will be categorized as: (i) orbits performing
bounded orbits inside the scattering region and (ii) orbits escaping from the scat-
tering region of the system. Furthermore, for all the escaping orbits we will keep
records, regarding the particular channel of escape. An escape occurs when r > 10,
with velocity pointing outward.

It would be very informative if we could further distinguish between order and
chaos. For this task we choose the smaller alignment index (SALI) method [47]. In
our computations, all the starting conditions of the orbits are integrated numerically
for 104 time units, using a variable time step.

The orbital dynamics of the configuration plane (x, y), for nine values of E, is
revealed in Fig. 2, using color-coded diagrams. One may observe that the geometry
of the several types of basins displays the 2π/5 symmetry of the system. As we
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Figure 2. Color-coded diagrams depicting the dynamics of the configuration plane (x, y), when (a):
E = 0.31; (b): E = 0.35; (c): E = 0.40; (d): E = 0.45; (e): E = 0.50; (f): E = 0.55; (g): E = 0.60;
(h): E = 0.65; (i): E = 0.80. The colors regarding the character of orbits are: chaotic trapped orbits
(yellow); sticky trapped orbits (black); regular non-escaping orbits (green); escaping orbits over channel
1 (blue); escaping orbits over channel 2 (orange); escaping orbits over channel 3 (cyan); escaping orbits
over channel 4 (red); escaping orbits over channel 5 (magenta). The zero velocity curves are shown in
black, while the boundaries of the scattering region are indicated by black dashed line. (Color figure
online).

explained earlier this is achieved by using polar coordinates, while all other types
of initial conditions are not able to maintain this symmetry.

The most important changes on the orbital dynamics of the configuration plane
(x, y), with increasing value of E, are the following:

• For energies just above Eesc the central area of the scattering region is domi-
nated by starting conditions which correspond to regular non-escaping orbits.
However, as the value of the energy increases, the percentage of the regu-
lar orbits is reduced, while for E > 0.80 there is no numerical indication of
bounded motion.
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Figure 3. Distributions of the corresponding time of escape of the orbits, on the configuration plane
(x, y), for the respective values E of Fig. 2. Starting conditions of bounded (chaotic, sticky and regular)
orbits are plotted in white. (Color figure online).

Figure 4. (a-left): Orbital dynamics of the (x,C) plane, when E ∈ (0, 1.5] The colors are the same as
in Fig. 2. (b-right): The distribution of the time of escape of the orbits. (Color figure online).
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Figure 5. Parametric evolution of the (a-left): average time of escape and (b-right): percentage of
areas displaying a fractal-like geometry, as a function of E. The vertical, purple, dashed line indicates
the energy of escape eesc. (Color figure online).

• Near the origin of the coordinates there exist a propeller-shaped structure.
The size of this configuration of basins of escape is amplified, as we proceed
to higher levels of E.

• The fractal areas on the configuration (x, y) space are reduced, while at the
same time the basin boundaries become more smooth, with increasing width
of the channels of escape.

The respective distributions of the time of escape of the orbits are illustrated
in Fig. 3(a-d). It becomes evident that the highest levels of the escape time are
encountered near the basin boundaries, where all the fractal structures exist.

The basin diagrams on the configuration plane (x, y) provide sufficient informa-
tion on the escape dynamics of the system however, for only a specific value of E.
In order to overcome this restriction we can use starting conditions on the (x,E)
plane with y = 0.

The orbital dynamics of the (x,E) plane, when E ∈ (0, 1.5], is illustrated in
part (a) of Fig. 4, while the distribution of the time of escape of the orbits is given
in part (b) of the same figure. In this type of diagram we can clearly observe the
following aspects: (i) starting conditions of chaotic trapped orbits mainly appear
near the boundaries of the regular basins; (ii) inside the same regions of the (x,E)
plane we identify the areas with the highest degree of fractality; (iii) with increasing
values of E well-formed basins of escape dominate, while at the same time all the
fractal basin boundaries become smoother.

Additional useful information can also be extracted from the basin diagram on
the (x,E) plane. In particular, in part (a) of Fig. 5 we present the parametric
evolution of the average time of escape, as a function of E. The highest values
of the time of escape are exhibited above, yet very close, to Eesc. For relatively
high values of the energy (E > 1) the test particle needs no more than a couple
of time units of numerical integration for escaping from the system. In part (b)
of Fig. 5 we show the evolution of the percentage of the fractal area of the (x,E)
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plane, compared to E. It is seen, that just above Eesc about 45% of the total initial
conditions lie in domains which display a fractal-like geometry. The percentage of
fractal regions is reduced with increasing energy and for E > 1 more than 90% of
the areas on the (x,E) plane are covered by basins of escape, while less than 10%
of the same type of plane is still occupied by fractal regions.

We would also like to present some qualitative arguments for explaining the
numerical results shown in parts (a-b) of Fig. 5, which encircle the main findings
of our analysis. In panel (a) we seen that in the vicinity of the energy of escape
the time of escape of the orbits is very high. This however is anticipated because
for these values of E the five channels of escape are very small (the corresponding
width of the channel is small) and consequently the test particle should spend a
considerable amount of time inside the scattering region, before it finds one of the
exits and eventually escape from the system. With increasing value of E the width of
the escape channels increases which leads to the observable decrease of the required
escape time. A similar explanation exists also for the decrease of the fractal area. It
is well known, that fractal regions mainly appear near the basin boundaries, where
the unpredictability of the system is high. However, with increasing E the extent
of the stability basins decreases and consequently all the fractal regions decrease.

4. The fractality of the system

In the color-coded diagrams, presented in the previous section, we have seen that
near the basin boundaries there are highly fractal regions. Inside these fractal re-
gions the fate (final state) of the orbits of the test particle is extremely sensitive.
So far, when using the term “fractal” regions, we simple implied that the corre-
sponding areas on the two-dimensional color-coded diagrams exhibit a fractal-like
geometry. Nevertheless, it would be very informative to conduct additional quan-
titative calculations, regarding the degree of fractality of the basin diagrams, as
in [36,48].

A safe method for determining the degree of fractality is be measuring the uncer-
tainty dimension [49], for many values of E. Fig. 6 shows the parametric evolution
of the uncertainty dimension D0, of the configuration plane (x, y), as a function of
E. Taking into account that the corresponding color-coded basin diagrams are two-
dimensional we have that D0 ∈ (1, 2), where D0 = 1 means zero fractality, while
D0 = 2 implies total fractality. One may observe, that the uncertainty dimension
increases rapidly, as soon as E > Eesc. The highest values of D0 are displayed in
the energy interval (0.65, 0.8), while for E > 1.1 its value seems to saturate around
1.68 thus implying that for such high energy levels the degree of fractality is almost
unaffected by the shift on the orbital energy.

In order to enrich our numerical analysis, about the fractal geometry of the basin
diagrams, we decided to compute also the basin entropy, Sb, [50]. Part (a) of Fig.
7 depicts the evolution of Sb, as a function of E.

One may easily detect a striking as well as very interesting phenomenon. This
phenomenon refers of course to the almost exact parametric evolution of Sb and the
uncertainty dimension D0. Actually this is the second time that such a remarkable
similarity between these two dynamical quantities is verified. The first case was
in [51], where the parametric evolutions of D0 and Sb were found to coincide. The
fact that both D0 and Sb measure, yet in a different way, the fractal degree of a
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Figure 6. Evolution of the numerical value of the uncertainty dimension of the configuration plane
(x, y), as a function of E.

Figure 7. Evolution of the numerical value of the (a-left): basin entropy (Sb) and (b-right): boundary
basin entropy (Sbb), of the configuration plane (x, y), as a function of E.

2D plane, it is assumed to be the reason of this impressive coincidence of their
parametric evolution.

According to the “log 2 criterion”, the boundaries of the basins are fractal if the
boundary basins entropy Sbb > log 2. In part (b) of Fig. 7 we demonstrate how the
boundary basin entropy Sbb evolve, as a function of E. One can see, that the basin
boundaries on the configuration plane (x, y) are always fractal, because Sbb > log 2
when E ∈ (0, 1.5]. In the energy interval (0, 0.8) the parametric evolution of both
Sb and Sbb is very similar, while for higher values of E (E > 0.8) the boundary basin
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entropy displays an almost linear drop, in contrast to the almost constat evolution
of the respective basin entropy.

5. Discussion

The escape dynamics of a Hamiltonian system with five channels of escape have
been numerically investigated by classifying starting conditions of orbits. We suc-
cessfully determined the influence of the total energy on the character of the orbits.
Additionally, we connected the basins of escape with the corresponding distribu-
tions of the time of the escape of the orbits. The degree of the fractality of the
dynamical systems has been measured by calculating both the uncertainty (fractal)
dimension as well as the (boundary) basin entropy. As far as we know, this is the
first work containing quantitative information about the degree of the fractality of
a dynamical system with five channels of escape.

In [15, 16] we had also numerically investigated the escape dynamics in multi-
channel Hamiltonian systems. However in the present paper we used a more realistic
choice of initial conditions. To be more precise, in our previous studies, the choice
of the initial conditions was not able to display the fact that all the escape channels
of the system are in fact equiprobable. Using the particular choice of starting
conditions in the present paper, we managed to correctly, illustrate that the amount
of escaping orbits is exactly the same for all five escape channels.

The Hamiltonian with the five channels of escape may represent realistic physical
systems where rearrangement multichannel scattering occurs. In one case, potential
holes with several exit channels appear in reactive scattering, for example in nuclear
scattering and in molecular scattering. The same effective potential may also be
used in astronomical systems, where classical Hamiltonian dynamics is the appro-
priate form of description. For instance, we may consider the case of a star coming
close to a double or even better a triple star system and causing the rearrangement
of the stars.

For numerically integrating the grids of starting conditions we used a Bulirsch-
Stoer routine in standard FORTRAN 77 (e.g., [52]), with double precision. The re-
quired CPU time, per grid, was varying between 12 and 27 hours, using a Quad-Core
i7 vPro 4.0 GHz processor. All the graphics of the article have been constructed by
using the 11.3 version of the Mathematicar software [53].
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juán, Basin entropy: a new tool to analyze uncertainty in dynamical systems,
Scientific Reports, 2016, 6, 31416.

[51] E. E. Zotos, On the Newton-Raphson basins of convergence of the out-of-plane
equilibrium points in the Copenhagen problem with oblate primaries, Interna-
tional Journal of Non-Linear Mechanics, 2018, 103, 93-103.

[52] H. P. Press, S. A. Teukolsky, W. T. Vetterling and B. P. Flannery, Numerical
Recipes in FORTRAN 77 , 2nd Edition, Cambridge University Press, Cam-
bridge, 1992.

[53] S. Wolfram, The Mathematica Book , Wolfram Media, Champaign, 2003.


	Introduction
	Dynamical properties of the system
	Escape dynamics
	The fractality of the system
	Discussion

