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Qualitative Analysis and Periodic Cusp Waves to a
Class of Generalized Short Pulse Equations∗
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Abstract In this paper, we qualitatively study periodic cusp waves to a class
of generalized short pulse equations, which are of the general form of three
special generalized short pulse equations, from the perspective of dynamical
systems. We show the existence of smooth periodic waves, periodic cusp wave
and compactons, obtain exact expression of periodic cusp wave and illustrate
the limiting process of periodic cusp wave from smooth periodic waves.
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1. Introduction

In 2018, N. W. Hone, Novikov and Wang [4] obtained three generalized short pulse
equations

uxt = u+ 2uuxx + 2u2x, (1.1)

uxt = u+ 2uuxx + u2x, (1.2)

uxt = u+ 4uuxx + u2x, (1.3)

which possess an infinite hierarchy of local higher symmetries, when they were
classifying nonlinear partial differential equations of second order of the general
form

uxt = u+ c0u
2 + c1uux + c2uuxx + c3u

2
x + d0u

3 + d1u
2ux + d2u

2uxx + d3uu
2
x. (1.4)

Note that if we take c0 = c1 = c2 = c3 = 0, d0 = d1 = 0, d2 = 1, and d3 = 2,
Eq.(1.4) becomes the following short pulse equation

uxt = u+
1

3
(u3)xx, (1.5)

which was derived by Schäfer and Wayne [10] as a model of ultra-short optical pulses
in nonlinear media. In [9], the authors showed that the short pulse equation (1.5)
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is integrable, in the sense that it admits a Lax pair and a recursion operator that
generates infinitely many commuting symmetries, and they also found a hodograph-
type transformation which connects Eq.(1.5) with the sine-Gordon equation.

As suggested in [4], short pulses and their properties are a subject of current
interest in nonlinear optics and electrodynamics, both theoretically and experimen-
tally. For instance, a rigorous justification of the short pulse equation, starting from
a quasilinear Klein-Gordon equation (a toy model for Maxwells equations) was giv-
en in [8]. Moreover, for electrons accelerated in short laser pulses, it was shown
recently that, due to quantum effects, the radiation reaction can be quenched by
suitably tuning the pulse length, although the lengths required are currently out of
experimental reach [3].

In this paper, based on the forms of Eqs. (1.1), (1.2) and (1.3), we focus on a
class of generalized short pulse equations, which have the following general form

uxt = u+ αuuxx + βu2x, (1.6)

where we assume the parameters α > 0 and β > 0, for conveniently. Obviously,
taking α = 2, β = 2, Eq.(1.6) becomes Eq.(1.1). Similarly, taking α = 2, β = 1,
Eq.(1.6) becomes Eq.(1.2), and taking α = 4, β = 1, Eq.(1.6) becomes Eq.(1.3).
We intend to study the solutions to the general form (1.6) qualitatively from the
perspective of dynamical systems [2,6,7,11–14,17–24] and consequently, the results
about three special forms (1.1), (1.2) and (1.3) follow immediately.

2. Phase portrait

Employing the traveling wave transformation u(x, t) = ϕ(ξ), ξ = x−ct, where c > 0
is the wave speed, we can convert Eq.(1.6) into the following ordinary differential
equation

(αϕ+ c)ϕ′′ + ϕ+ β(ϕ′)2 = 0. (2.1)

Introducing y = ϕ′, we obtain a planar system
dϕ
dξ = y,

dy
dξ = −ϕ−βy2

αϕ+c ,
(2.2)

with first integral

H(ϕ, y) =(αϕ+ c)
2β
α y2 +

2

α(α+ 2β)
(αϕ+ c)

2β
α +1 − c

αβ
(αϕ+ c)

2β
α ,

for ϕ ≥ − c
α
,

H(ϕ, y) =(−αϕ− c)
2β
α y2 − 2

α(α+ 2β)
(−αϕ− c)

2β
α +1 − c

αβ
(−αϕ− c)

2β
α ,

for ϕ < − c
α
.

(2.3)

Transformed by dξ = (αϕ+ c)dτ , system (2.2) becomes a Hamiltonian system
dϕ
dτ = (αϕ+ c) y,

dy
dτ = −ϕ− βy2.

(2.4)
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Figure 1. The phase portrait of system (2.2).

Since the first integral of system (2.2) is the same as that of the Hamiltonian
system (2.4), we can analyze the phase portrait of system (2.2) from that of system
(2.4).

We can easily know that system (2.4) has a center O : (0, 0) on the ϕ–axis, and

two saddles S± :
(
− c
α ,±

√
c
αβ

)
on the singular line L : ϕ = − c

α . From the qual-

itative theories of differential equations and the bifurcation theories of dynamical
systems, we easily derive the phase portrait of system (2.2) in Figure 1.

3. Main results

To state conveniently, suppose that ϕ∗ = c
2β , h0 = H(0, 0) and h1 = H

(
−c
α ,±

√
c
αβ

)
.

Theorem 3.1. Eq.(1.6) has a family of smooth periodic waves, a periodic cusp
wave

u(ξ) =
c

2β
−

(√
c(α+ 2β)

2αβ
− 1√

2(α+ 2β)
|ξ − 2iT0|

)2

, (3.1)

where i = 0,±1,±2, · · · , ξ = x−ct ∈ [(2i−1)T0, (2i+1)T0], and T0 = (α+2β)
√

c
αβ ,

and a family of compactons. Moreover, the smooth periodic waves converge to the
periodic cusp wave (3.1) when h→ h1 − 0.

From Theorem 3.1 and the relations among Eqs.(1.1), (1.2), (1.3) and (1.6), we
immediately have the following results.

Corollary 3.1. (i) Eq.(1.1) has periodic cusp wave

u(ξ) =
c

4
− 1

12

(
3
√
c− |ξ − 2iT1|

)2
,

where i = 0,±1,±2, · · · , ξ = x− ct ∈ [(2i− 1)T1, (2i+ 1)T1], and T1 = 3
√
c.

(ii) Eq.(1.2) has periodic cusp wave

u(ξ) =
c

2
−

(
√
c−
√

2

4
|ξ − 2iT2|

)2

,

where i = 0,±1,±2, · · · , ξ = x− ct ∈ [(2i− 1)T2, (2i+ 1)T2], and T2 = 2
√

2c.
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(iii) Eq.(1.3) has periodic cusp wave

u(ξ) =
c

2
− 1

12

(
3
√
c− |ξ − 2iT3|

)2
,

where i = 0,±1,±2, · · · , ξ = x− ct ∈ [(2i− 1)T3, (2i+ 1)T3], and T3 = 3
√
c.

4. The derivation to Theorem 3.1

In this section, we show the procedure of deriving Theorem 3.1.

Corresponding to the family of periodic orbits passing through (ϕ0, 0) with ϕ0 ∈
(− c

α , 0) defined by H(ϕ, y) = h, h ∈ (h0, h1) in Figure 1, Eq.(1.6) has a family of
smooth periodic waves. Further, when h→ h1, the periodic orbits become periodic
cusp orbit [1], which can be expressed as, from (2.3),

y = ±
√

2

α+ 2β

√
ϕ∗ − ϕ, for − c

α
≤ ϕ ≤ ϕ∗, (4.1)

and

ϕ = − c
α
, for |y| ≤

√
c

αβ
. (4.2)

Substituting (4.1) into the first equation of system (2.2) and integrating along
the periodic cusp orbit, we have∫ ϕ

− c
α

1√
ϕ∗ − s

ds =

√
2

α+ 2β
|ξ|, (4.3)

which give rise to the periodic cusp wave (3.1).

We illustrate the limiting process of periodic cusp wave from smooth periodic
waves in Figure 2 by taking α = 2, β = 2, c = 4 and the initial point (a) ϕ0 =
−1.5, y0 = 0; (b) ϕ0 = −1.8, y0 = 0; (c) ϕ0 = −1.9, y0 = 0; (d) ϕ0 = −1.999, y0 = 0,
respectively.

Additionally, according to the theory of singular nonlinear waves [5, 15, 16] cor-
responding to the family of orbits passing through (ϕ0, 0) with ϕ0 ∈ (ϕ∗,+∞)
defined by H(ϕ, y) = h, h ∈ (h1,+∞) (bounded by the singular line L) in Figure
1, Eq.(1.6) has a family of compactons, which are illustrated in Figure 3 by taking
α = 2, β = 2, c = 4 and the initial point (a) ϕ0 = 1.01, y0 = 0; (b) ϕ0 = 1.2, y0 = 0;
(c) ϕ0 = 1.5, y0 = 0; (d) ϕ0 = 2, y0 = 0, respectively.

5. Conclusions

In this paper, we qualitatively study a class of generalized short pulse equations
(1.6), which can be viewed as the general form of Eqs.(1.1), (1.2) and (1.3). From
the phase portrait and Eq.(2.3), we show the existence of smooth periodic waves,
periodic cusp wave and compactons, obtain exact expression of periodic cusp wave
and illustrated the limiting process of periodic cusp wave from smooth periodic
waves. It is worth noting that the so-called loop solutions are not found in Eq.(1.6),
compared to the original short pulse equation (1.5) [25].
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(a) (b)

(c) (d)

Figure 2. The limiting process of periodic cusp waves from smooth periodic waves by taking α = 2, β =
2, c = 4 and the initial point (a) ϕ0 = −1.5, y0 = 0; (b) ϕ0 = −1.8, y0 = 0; (c) ϕ0 = −1.9, y0 = 0; (d)
ϕ0 = −1.999, y0 = 0.

(a)

Figure 3. The illustration of the family of compactons by taking α = 2, β = 2, c = 4 and the initial
point ϕ0 = 1.01, y0 = 0, ϕ0 = 1.2, y0 = 0, ϕ0 = 1.5, y0 = 0, ϕ0 = 2, y0 = 0, respectively..
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