Global Regularity of the Logarithmically Supercritical MHD System in Two-dimensional Space

Min Cheng ${ }^{1, \dagger}$

Abstract

In this paper, we study the global regularity of logarithmically supercritical MHD equations in 2 dimensional, in which the dissipation terms are $-\mu \Lambda^{2 \alpha} u$ and $-\nu \mathcal{L}^{2 \beta} b$. We show that global regular solutions in the cases $0<\alpha<\frac{1}{2}, \beta>1,3 \alpha+2 \beta>3$.

Keywords Logarithmically supercritical, MHD system, Global regularity.
MSC(2010) 35Q35, 35B65, 76D05.

1. Introduction

We consider the two-dimensional logarithmically supercritical magnetohydrodynamics (MHD) system:

$$
\begin{align*}
& u_{t}+u \cdot \nabla u+\nabla \pi+\mu \Lambda^{2 \alpha} u-b \cdot \nabla b=0 \tag{1.1}\\
& b_{t}+u \cdot \nabla b+\nu \mathcal{L}^{2 \beta} b-b \cdot \nabla u=0 \tag{1.2}\\
& (u, b)(x, 0)=\left(u_{0}, b_{0}\right) \text { in } \mathbb{R}^{2} \tag{1.3}\\
& \operatorname{div} u=\operatorname{div} b=0 \tag{1.4}
\end{align*}
$$

where $u=u(x, t) \in \mathbb{R}^{2}$ is the unknown velocity field, $b=b(x, t) \in \mathbb{R}^{2}$ is the magnetic field, and $\pi=\pi(x, t) \in \mathbb{R}$ represents the pressure. $\alpha, \beta \geq 0$ are real parameters. $\Lambda=(-\Delta)^{1 / 2}$ is defined in terms of the Fourier transform $\widehat{\widehat{\Lambda f}}(\xi)=|\xi| \widehat{f}(\xi)$, and $\mathcal{L}^{2 \beta}$ defined through a Fourier transform,

$$
\widehat{\mathcal{L}^{2 \beta}} f(\xi)=m(\xi) \hat{f}(\xi), m(\xi)=\frac{|\xi|^{2 \beta}}{g^{2}(|\xi|)}, \beta \in \mathbb{R}^{+}
$$

with $g: \mathbb{R}^{+} \longrightarrow \mathbb{R}^{+}$a radially symmetric, non-decreasing function such that $g \geq 1$.
When

$$
\mathcal{L}^{2 \beta}=\Lambda^{2 \beta}
$$

For the system (1.1)-(1.4), We identify the case $\mu=\nu=0$ as the GMHD system with zero velocity and zero magnetic diffusion respectively (so called ideal MHD equations). The author in [1] studied the global existence of a weak solution when $\alpha \geq \frac{1}{2}+\frac{n}{4}, \alpha+\beta \geq 1+\frac{n}{2}, n \in \mathbb{R}^{3}$. In [2], the author showed that the GMHD

[^0]equations exists a unique global smooth solution when $\alpha, \beta \geq \frac{1}{2}+\frac{n}{4}$, There are some results $[3-8]$ about the existence of the strong solution.

We want to improve the lower bound on the power of the fractional Laplacian in the dissipative term of the generalized Navier-Stokes equations seems extremely difficult, the author introduced the notion of "logarithmic supercriticality" in [9,10], and also proved the global regularity of the solution. the author improved that the results [2] by using the notion of "logarithmic supercriticality" in [11], it were improved that the solution is globally regular in $[12,13]$.

Tran, Yu and Zhai [14] proved that the solutions are globally regular in the following conditions:

$$
(1) \alpha \geq \frac{1}{2}, \beta \geq 1 ; \quad(2) 0 \leq \alpha \leq \frac{1}{2}, 2 \alpha+\beta>2 ; \quad(3) \alpha \geq 2, \beta=0
$$

it were improved that the solution is globally regular of the GMHD equations in [15-19], and there are some results [20-22] about logarithmic type.

Now we focus on our study. The authors in [16] got a global regular solution under the assumption that $0 \leq \alpha<\frac{1}{2}, \beta \geq 1,3 \alpha+2 \beta>3$. In this paper, the dissipation term $-\nu \Lambda^{2 \beta} b$ has been replaced by general negative-definite operator $-\nu \mathcal{L}^{2 \beta} b$ by using the definition in [23], and in the proof, we will use the condition in [24] on g such that there exists an absolute constant $c \geq 0$ satisfying

$$
g^{2}(\tau) \leq c \ln (e+\tau)
$$

Theorem 1.1. Let $0<\alpha<\frac{1}{2}, \beta>1,3 \alpha+2 \beta>3$, Suppose $u_{0}, b_{0} \in H^{s}$ with $s \geq 2$ and divu $u_{0}=$ divb $_{0}=0$ in \mathbb{R}^{2}. Then the problem (1.1)-(1.4) exists the solution (u, b) satisfying

$$
\begin{equation*}
u, b \in L^{\infty}\left(0, T ; H^{s}\right), u \in L^{2}\left(0, T ; H^{s+\alpha}\right), b \in L^{2}\left(0, T ; H^{s+\beta^{\prime}}\right) \tag{1.5}
\end{equation*}
$$

for any $T>0$ and $\beta>\beta^{\prime}>1$.
Remark 1.1. When $\alpha+\beta>2, s>2$, the author in [14] prove the global regularity.

2. Preliminaries

In this section, we will review some known facts and elementary inequalities that will be used frequently later.
Lemma 2.1. (ϵ-Young inequality) If a and b are nonnegative real numbers and p and q are real numbers greater than 1 such that $\frac{1}{p}+\frac{1}{q}=1$, then

$$
a b \leq \frac{\epsilon a^{p}}{p}+\epsilon^{-\frac{q}{p}} \frac{b^{q}}{q}
$$

the equality holds if and only if $a^{p}=b^{q}$.
Lemma 2.2. (Gagliardo-Nirenberg inequality [25, 26]) Let u belong to L^{q} and its derivatives of order $m, \Lambda^{m} u$, belong to $L^{r}, 1 \leq q, r \leq \infty$. For the derivatives $\Lambda^{j} u, 0 \leq j<m$, the following inequalities hold

$$
\begin{equation*}
\left\|\Lambda^{j} u\right\|_{L^{p}} \leq C\left\|\Lambda^{m} u\right\|_{L^{r}}^{\alpha}\|u\|_{L^{q}}^{1-\alpha} \tag{2.1}
\end{equation*}
$$

where

$$
\frac{1}{p}=\frac{j}{n}+\alpha\left(\frac{1}{r}-\frac{m}{n}\right)+(1-\alpha) \frac{1}{q}
$$

for all α in the interval

$$
\frac{j}{m} \leq \alpha \leq 1
$$

(the constant depending only on n, m, j, q, r, α), with the following exceptional cases

1 If $j=0, r m<n, q=\infty$ then we make the additional assumption that either u tends to zero at infinity or $u \in L^{s}$ for some finite $s>0$;
2 If $1<r<\infty$, and $m-j-\frac{n}{r}$ is a non negative integer then (2.1) holds only for a satisfying $\frac{j}{m} \leq \alpha \leq 1$.

Lemma 2.3. (Gronwall's Inequality [27])
(i) Let $\eta(\cdot)$ be a nonnegative, absolutely continuous function on $[0, T]$, which satisfies for a.e. t the differential inequality

$$
\eta^{\prime}(t) \leq \phi(t) \eta(t)+\psi(t)
$$

where $\phi(t)$ and $\psi(t)$ are nonnegative, summable function on $[0, T]$, Then

$$
\eta(t) \leq e^{\int_{0}^{t} \phi(s) d s}\left[\eta(0)+\int_{0}^{t} \psi(s) d s\right]
$$

for all $0 \leq t \leq T$;
(ii) In particular, if

$$
\eta \prime \leq \phi \eta \text { on }[0, T] \text { and } \eta(0)=0
$$

then

$$
\eta \equiv 0 \text { on }[0, T]
$$

3. A priori estimates

In the next section, without loss of generality, we assume $\mu=\nu=1$.
Lemma 3.1. (Basic energy estimates)It holds that for any $T>0$,

$$
\begin{equation*}
\sup _{0 \leq \tau \leq T}\left(\|u\|_{L^{2}}^{2}+\|b\|_{L^{2}}^{2}\right)+2 \int_{0}^{T}\left(\left\|\Lambda^{\alpha} u\right\|_{L^{2}}^{2}+\left\|\mathcal{L}^{\beta} b\right\|_{L^{2}}^{2}\right) d \tau \leq\left\|u_{0}\right\|_{L^{2}}^{2}+\left\|b_{0}\right\|_{L^{2}}^{2} . \tag{3.1}
\end{equation*}
$$

Proof.

Multiplying both sides of the equations of u and b in (1.1)-(1.2) by u and b, respectively, after integration by parts and taking the divergence free property into account, we have the following energy estimate

$$
\begin{equation*}
\frac{1}{2} \frac{d}{d t}\left(\|u\|_{L^{2}}^{2}+\|b\|_{L^{2}}^{2}\right)+\left\|\Lambda^{\alpha} u\right\|_{L^{2}}^{2}+\left\|\mathcal{L}^{\beta} b\right\|_{L^{2}}^{2}=0 \tag{3.2}
\end{equation*}
$$

It implies that the inequality (3.1) holds and consequently completes the proof.

Let $\omega=\nabla^{\perp} \cdot u=-\partial_{2} u_{1}+\partial_{1} u_{2}, j=\nabla^{\perp} \cdot b=-\partial_{2} b_{1}+\partial_{1} b_{2}$, then we can get the well-known equations for the vorticity ω and the current j :

$$
\begin{align*}
& \omega_{t}+u \cdot \nabla \omega+\Lambda^{2 \alpha} \omega=b \cdot \nabla j \tag{3.3}\\
& j_{t}+u \cdot \nabla j+\mathcal{L}^{2 \beta} j=b \cdot \nabla \omega+T(\nabla u, \nabla b) \tag{3.4}
\end{align*}
$$

with

$$
T(\nabla u, \nabla b)=2 \partial_{1} b_{1}\left(\partial_{1} u_{2}+\partial_{2} u_{1}\right)+2 \partial_{2} u_{2}\left(\partial_{1} b_{2}+\partial_{2} b_{1}\right)
$$

Now, we will give the H^{1} estimation for (u, b).
Lemma 3.2. Suppose that $\alpha>0, \beta>1$. Let $u_{0}, b_{0} \in H^{1}$. For any $T>0$, we have

$$
\begin{equation*}
\|\omega\|_{L^{2}}^{2}(t)+\|j\|_{L^{2}}^{2}(t)+\int_{0}^{t}\left(2\left\|\Lambda^{\alpha} \omega\right\|_{L^{2}}^{2}+\left\|\mathcal{L}^{\beta} j\right\|_{L^{2}}^{2}\right) d \tau \leq C(T) \tag{3.5}
\end{equation*}
$$

Proof.

Multiplying (3.3)-(3.4) by ω and j, respectively, integrating over \mathbb{R}^{2}, and adding the resulting equations together, we can estimated like [15, p129], For the completeness of the article, it will provided in the appendix of this paper.

$$
\begin{align*}
\frac{1}{2} \frac{d}{d t}\left(\|\omega\|_{L^{2}}^{2}+\|j\|_{L^{2}}^{2}\right) & =\int_{\mathbb{R}^{2}} T(\nabla u, \nabla b) j d x-\left\|\Lambda^{\alpha} \omega\right\|_{L^{2}}^{2}-\left\|\mathcal{L}^{\beta} j\right\|_{L^{2}}^{2} \tag{3.6}\\
& \leq C\|\omega\|_{L^{2}}^{2}\|j\|_{L^{2}}^{2}+\frac{1}{2 \varepsilon}\|\nabla j\|_{L^{2}}^{2}-\left\|\Lambda^{\alpha} \omega\right\|_{L^{2}}^{2}-\left\|\mathcal{L}^{\beta} j\right\|_{L^{2}}^{2}
\end{align*}
$$

About this term $\|\nabla j\|_{L^{2}}^{2}$, we obtain

$$
\begin{aligned}
\|\nabla j\|_{L^{2}}^{2} & =\int|\xi|^{2} \widehat{j} \widehat{j} d \xi \\
& =\int_{|\xi| \leq 1}|\xi|^{2} \widehat{j} \bar{j} d \xi+\int_{|\xi|>1}|\xi|^{2} \widehat{j} \widehat{j} d \xi \\
& \leq \int_{|\xi| \leq 1} \widehat{j} \widehat{j} d \xi+\int_{|\xi|>1}|\xi|^{2} \widehat{j} \widehat{j} d \xi
\end{aligned}
$$

where

$$
\begin{aligned}
\int_{|\xi|>1}|\xi|^{2} \widehat{\jmath} \bar{j} d \xi & =\int_{|\xi|>1} \frac{|\xi|^{2 \beta}}{g^{2}(|\xi|)} \widehat{j} \bar{j} \cdot|\xi|^{2} \frac{g^{2}(|\xi|)}{|\xi|^{2 \beta}} d \xi \\
& \leq \sup _{|\xi|>1} \frac{|\xi|^{2}}{|\xi|^{2 \beta}} g^{2}(|\xi|) \int_{|\xi|>1} \frac{|\xi|^{2 \beta}}{g^{2}(|\xi|)} \widehat{j} \bar{j} d \xi \\
& \leq \sup _{|\xi|>1} \frac{\ln (e+|\xi|)}{|\xi|^{2(\beta-1)}} \int_{|\xi|>1} \frac{|\xi|^{2 \beta}}{g^{2}(|\xi|)} \widehat{j} d \xi \\
& \leq M\left\|\mathcal{L}^{\beta} j\right\|_{L^{2}}^{2}
\end{aligned}
$$

when $\beta>1$, the function is bounded. $g(|\xi|)$ such that there exists an absolute constant $c \geq 0$ satisfying

$$
g^{2}(|\xi|) \leq c \ln (e+|\xi|)
$$

so we can get

$$
\begin{equation*}
\|\nabla j\|_{L^{2}}^{2} \leq\|j\|_{L^{2}}^{2}+M\left\|\mathcal{L}^{\beta} j\right\|_{L^{2}}^{2} \tag{3.7}
\end{equation*}
$$

As well as

$$
\begin{aligned}
\left\|\mathcal{L}^{\beta} b\right\|_{L^{2}}^{2} & =\int \frac{|\xi|^{2 \beta}}{g^{2}(|\xi|)} \widehat{\bar{b}} d \xi \\
& =\int|\xi|^{2} \widehat{\widehat{b}} \frac{|\xi|^{2 \beta}}{|\xi|^{2} g^{2}(|\xi|)} d \xi \\
& \leq \sup \frac{|\xi|^{2 \beta-2}}{g^{2}(|\xi|)} \int|\xi|^{2} \widehat{\widehat{b}} \bar{b} d \xi \\
& \leq \sup \frac{|\xi|^{2(\beta-1)}}{\ln (e+|\xi|)} \int|\xi|^{2} \widehat{b} \bar{b} d \xi \\
& \leq C\|j\|_{L^{2}}^{2} .
\end{aligned}
$$

when $\beta>1$, if $\int_{0}^{t}\left\|\mathcal{L}^{\beta} b\right\|_{L^{2}}^{2} d \tau$ is bounded, $\int_{0}^{t}\|j\|_{L^{2}}^{2} d \tau$ is also bounded.

$$
\begin{equation*}
\int_{0}^{t}\left\|\mathcal{L}^{\beta} b\right\|_{L^{2}}^{2} d \tau \leq C \Longrightarrow \int_{0}^{t}\|j\|_{L^{2}}^{2} d \tau \leq C \tag{3.8}
\end{equation*}
$$

putting (3.7) into (3.6), we obtain

$$
\begin{aligned}
\frac{d}{d t}\left(\|\omega\|_{L^{2}}^{2}+\|j\|_{L^{2}}^{2}\right) & \leq C\|\omega\|_{L^{2}}^{2}\|j\|_{L^{2}}^{2}+\frac{1}{\varepsilon}\|j\|_{L^{2}}^{2} \\
& +\frac{M}{\varepsilon}\left\|\mathcal{L}^{\beta} j\right\|_{L^{2}}^{2}-2\left\|\Lambda^{\alpha} \omega\right\|_{L^{2}}^{2}-2\left\|\mathcal{L}^{\beta} j\right\|_{L^{2}}^{2}
\end{aligned}
$$

taking ε small enough so that $\varepsilon=M$, and using Gronwall'inequality and (3.8), we obtain

$$
\|\omega\|_{L^{2}}^{2}(t)+\|j\|_{L^{2}}^{2}(t)+\int_{0}^{t}\left(2\left\|\Lambda^{\alpha} \omega\right\|_{L^{2}}^{2}+\left\|\mathcal{L}^{\beta} j\right\|_{L^{2}}^{2}\right) d \tau \leq C(T)
$$

The proof of the lemma is completed.
Lemma 3.3. (Lemma2.2, [16]) Suppose that $0<\alpha<\frac{1}{2}, \beta>\beta_{1}>1, r=\alpha+\beta_{1}-$ $1>0$ and $k \geq \alpha+\beta$. Let $u_{0}, b_{0} \in H^{k}$. Then for any $T>0$, we have

$$
\begin{equation*}
\left\|\Lambda^{r} j\right\|_{L^{2}}^{2}+\int_{0}^{t}\left\|\mathcal{L}^{\beta} \Lambda^{r} j\right\|_{L^{2}}^{2} d \tau \leq C\left(u_{0}, b_{0}, T\right) \tag{3.9}
\end{equation*}
$$

Proof. Applying Λ^{r} on both sides of (3.4), and multiplying by $\Lambda^{r} j$, integrating over \mathbb{R}^{2}, we obtain

$$
\begin{align*}
& \frac{1}{2} \frac{d}{d t}\left\|\Lambda^{r} j\right\|_{L^{2}}^{2}+\left\|\mathcal{L}^{\beta} \Lambda^{r} j\right\|_{L^{2}}^{2} \\
& =-\int_{\mathbb{R}^{2}} \Lambda^{r}(u \cdot \nabla j) \Lambda^{r} j d x+\int_{\mathbb{R}^{2}} \Lambda^{r}(b \cdot \nabla \omega) \Lambda^{r} j d x \tag{3.10}\\
& +\int_{\mathbb{R}^{2}} \Lambda^{r}(T(\nabla u, \nabla b)) \Lambda^{r} j d x \\
& =A_{1}+A_{2}+A_{3}
\end{align*}
$$

Now, we are ready to estimate the three terms.

For A_{1}, we can estimate like [16, p480],

$$
\begin{align*}
A_{1} & \leq \epsilon\left\|\Lambda^{\beta_{1}+r} j\right\|_{L^{2}}^{2}+C\|u\|_{L^{2}}^{1-2 \alpha}\|\omega\|_{L^{2}}^{1+2 \alpha}\|j\|_{L^{2}}^{2-\frac{1}{\beta_{1}}}\left\|\Lambda^{\beta_{1}} j\right\|_{L^{2}}^{\frac{1}{\beta_{1}}} \tag{3.11}\\
& +C\|u\|_{L^{2}}\|\omega\|_{L^{2}}\|j\|_{L^{2}}^{\frac{2 \beta_{1}-2 \alpha-1}{\beta_{1}}}\left\|\Lambda^{\beta_{1}} j\right\|_{L^{2}}^{\frac{1+2 \alpha}{\beta_{1}}}
\end{align*}
$$

About this term $\left\|\Lambda^{\beta_{1}+r} j\right\|_{L^{2}}^{2}$, we have

$$
\begin{aligned}
\left\|\Lambda^{\beta_{1}+r} j\right\|_{L^{2}}^{2} & =\int|\xi|^{2\left(\beta_{1}+r\right)} \widehat{\jmath} \widehat{j} d \xi \\
& =\int_{|\xi| \leq 1}|\xi|^{2\left(\beta_{1}+r\right)} \widehat{j} \overline{\widehat{j}} d \xi+\int_{|\xi|>1}|\xi|^{2\left(\beta_{1}+r\right)} \widehat{j} \bar{j} d \xi \\
& \leq \int_{|\xi| \leq 1} \widehat{j} \widehat{j} d \xi+\int_{|\xi|>1}|\xi|^{2\left(\beta_{1}+r\right)} \widehat{j} \widehat{j} d \xi
\end{aligned}
$$

where

$$
\begin{aligned}
\int_{|\xi|>1}|\xi|^{2\left(\beta_{1}+r\right)} \widehat{\widehat{j}} d \xi & =\int_{|\xi|>1}|\xi|^{2 r} \frac{|\xi|^{2 \beta}}{g^{2}(|\xi|)} \widehat{j} \widehat{j} \cdot|\xi|^{2 \beta_{1}} \frac{g^{2}(|\xi|)}{|\xi|^{2 \beta}} d \xi \\
& \leq \sup _{|\xi|>1} \frac{g^{2}(|\xi|)}{|\xi|^{2\left(\beta-\beta_{1}\right)}} \int_{|\xi|>1}|\xi|^{2 r} \frac{|\xi|^{2 \beta}}{g^{2}(|\xi|)^{2}} \widehat{j} d \xi \\
& \leq \sup _{|\xi|>1} \frac{\ln (e+|\xi|)}{|\xi|^{2\left(\beta-\beta_{1}\right)}} \int_{|\xi|>1}|\xi|^{2 r} \frac{|\xi|^{2 \beta}}{g^{2}(|\xi|)} \widehat{j} \widehat{j} d \xi \\
& \leq M\left\|\mathcal{L}^{\beta} \Lambda^{r} j\right\|_{L^{2}}^{2} .
\end{aligned}
$$

when $\beta>\beta_{1}>1$, the function is bounded. $g(|\xi|)$ such that there exists an absolute constant $c \geq 0$ satisfying

$$
g^{2}(|\xi|) \leq c \ln (e+|\xi|)
$$

so we can get

$$
\begin{equation*}
\left\|\Lambda^{\beta_{1}+r} j\right\|_{L^{2}}^{2} \leq\|j\|_{L^{2}}^{2}+M\left\|\mathcal{L}^{\beta} \Lambda^{r} j\right\|_{L^{2}}^{2} . \tag{3.12}
\end{equation*}
$$

putting (3.12) into (3.11), we have

$$
\begin{aligned}
A_{1} & \leq M \epsilon\left\|\mathcal{L}^{\beta} \Lambda^{r} j\right\|_{L^{2}}^{2}+\epsilon\|j\|_{L^{2}}^{2}+C\|u\|_{L^{2}}^{1-2 \alpha}\|\omega\|_{L^{2}}^{1+2 \alpha}\|j\|_{L^{2}}^{2-\frac{1}{\beta_{1}}}\left\|\Lambda^{\beta_{1}} j\right\|_{L^{2}}^{\frac{1}{\beta_{1}}} \\
& +C\|u\|_{L^{2}}\|\omega\|_{L^{2}}\|j\|_{L^{2}}^{\frac{2 \beta_{1}-2 \alpha-1}{\beta_{1}}}\left\|\Lambda^{\beta_{1}} j\right\|_{L^{2}}^{\frac{1+2 \alpha}{\beta_{1}}}
\end{aligned}
$$

for $A_{2}-A_{3}$, we can estimate like [16, p480], and using (3.12), we get

$$
\begin{aligned}
A_{2} & \leq \epsilon\left\|\Lambda^{\beta_{1}+r} j\right\|_{L^{2}}^{2}+C\|b\|_{L^{2}}^{\frac{2\left(\beta_{1}-\alpha\right)}{1+\beta_{1}}}\left\|\Lambda^{\beta_{1}} j\right\|_{L^{2}}^{\frac{2(1+\alpha)}{1+\beta_{1}}}\|\omega\|_{L^{2}}^{2} \\
& +C\|b\|_{L^{2}}^{\frac{2 r}{1+r}}\left\|\Lambda^{r} j\right\|_{L^{2}}^{\frac{2}{1+r}}\left\|\Lambda^{\alpha} \omega\right\|_{L^{2}}^{2} \\
& \leq M \epsilon\left\|\mathcal{L}^{\beta} \Lambda^{r} j\right\|_{L^{2}}^{2}+\epsilon\|j\|_{L^{2}}^{2}+C\|b\|_{L^{2}}^{\frac{2\left(\beta_{1}-\alpha\right)}{1+\beta_{1}}}\left\|\Lambda^{\beta_{1}} j\right\|_{L^{2}}^{\frac{2(1+\alpha)}{1+\beta_{1}}}\|\omega\|_{L^{2}}^{2} \\
& +C\|b\|_{L^{2}}^{\frac{2 r}{1+r}}\left\|\Lambda^{r} j\right\|_{L^{2}}^{\frac{2}{1+r}}\left\|\Lambda^{\alpha} \omega\right\|_{L^{2}}^{2} \\
A_{3} & \leq \epsilon\left\|\Lambda^{\beta_{1}+r} j\right\|_{L^{2}}^{2}+C\|j\|_{L^{2}}^{2}\|\omega\|_{L^{2}}^{\frac{2\left(\beta_{1}+r\right)}{2 \beta_{1}-1}} \\
& \leq M \epsilon\left\|\mathcal{L}^{\beta} \Lambda^{r} j\right\|_{L^{2}}^{2}+\epsilon\|j\|_{L^{2}}^{2}+C\|j\|_{L^{2}}^{2}\|\omega\|_{L^{2}}^{\frac{2\left(\beta_{1}+r\right)}{2 \beta_{1}-1}}
\end{aligned}
$$

Finally, putting the above results of $A_{1}-A_{3}$ into (3.10), we have

$$
\begin{aligned}
\frac{1}{2} \frac{d}{d t}\left\|\Lambda^{r} j\right\|_{L^{2}}^{2}+\left\|\mathcal{L}^{\beta} \Lambda^{r} j\right\|_{L^{2}}^{2} \leq & C\|u\|_{L^{2}}^{1-2 \alpha}\|\omega\|_{L^{2}}^{1+2 \alpha}\|j\|_{L^{2}}^{2-\frac{1}{\beta_{1}}}\left\|\Lambda^{\beta_{1}} j\right\|_{L^{2}}^{\frac{1}{\beta_{1}}} \\
& +C\|u\|_{L^{2}}\|\omega\|_{L^{2}}\|j\|_{L^{2}}^{\frac{2 \beta_{1}-2 \alpha-1}{\beta_{1}}}\left\|\Lambda^{\beta_{1}} j\right\|_{L^{2}}^{\frac{1+2 \alpha}{\beta_{1}}} \\
& +C\|b\|_{L^{2}}^{\frac{2\left(\beta_{1}-\alpha\right)}{1+\beta_{1}}}\left\|\Lambda^{\beta_{1}} j\right\|_{L^{2}}^{\frac{2(1+\alpha)}{1+\beta_{1}}}\|\omega\|_{L^{2}}^{2} \\
& +C\|b\|_{L^{2}}^{\frac{2 r}{1+r}}\left\|\Lambda^{r} j\right\|_{L^{2}}^{\frac{2}{1+r}}\left\|\Lambda^{\alpha} \omega\right\|_{L^{2}}^{2} \\
& +\epsilon\|j\|_{L^{2}}^{2}+M \epsilon\left\|\mathcal{L}^{\beta} \Lambda^{r} j\right\|_{L^{2}}^{2} \\
& +C\|j\|_{L^{2}}^{2}\|\omega\|_{L^{2}}^{\frac{2\left(\beta_{1}+r\right)}{2 \beta_{1}-1}}
\end{aligned}
$$

taking ϵ small enough so that $\epsilon=\frac{1}{M}$, and by Gronwall's inequality and Lemma 3.2, we obtain

$$
\left\|\Lambda^{r} j\right\|_{L^{2}}^{2}+\int_{0}^{t}\left\|\mathcal{L}^{\beta} \Lambda^{r} j\right\|_{L^{2}}^{2} d \tau \leq C\left(u_{0}, b_{0}, T\right)
$$

The proof of the lemma is completed.

4. Proof of Theorem 1.1

In this section, we devoted to prove Theorem 1.1:
Proof. Combining Lemma 3.1 and Lemma 3.2, we can move on to H^{2} estimates.
Differentiating (3.3)-(3.4), we get

$$
\begin{align*}
&\left(\partial_{i} \omega\right)_{t}+u \cdot \nabla\left(\partial_{i} \omega\right)=-\left(\partial_{i} u\right) \cdot \nabla \omega+\left(\partial_{i} b\right) \cdot \nabla j+b \cdot \nabla\left(\partial_{i} j\right)-\Lambda^{2 \alpha}\left(\partial_{i} \omega\right) \tag{4.1}\\
&\left(\partial_{i} j\right)_{t}+u \cdot \nabla\left(\partial_{i} j\right)=-\left(\partial_{i} u\right) \cdot \nabla j+\left(\partial_{i} b\right) \cdot \nabla \omega+b \cdot \nabla\left(\partial_{i} \omega\right) \\
&+\partial_{i}(T(\nabla u, \nabla b))-\mathcal{L}^{2 \beta}\left(\partial_{i} j\right) \tag{4.2}
\end{align*}
$$

Multiplying by $\partial_{i} \omega$ and $\partial_{i} j$ both sides of (4.1)-(4.2) respectively, integrating over \mathbb{R}^{2} and taking the divergence free property into account, we have

$$
\begin{align*}
& \frac{1}{2} \frac{d}{d t}\left(\|\nabla \omega\|_{L^{2}}^{2}+\|\nabla j\|_{L^{2}}^{2}\right)+\left\|\Lambda^{\alpha} \nabla \omega\right\|_{L^{2}}^{2}+\left\|\mathcal{L}^{\beta} \nabla j\right\|_{L^{2}}^{2} \\
& =-\int_{\mathbb{R}^{2}} \sum_{i=1}^{2}\left[\left(\partial_{i} u\right) \cdot \nabla \omega\right] \partial_{i} \omega d x+\int_{\mathbb{R}^{2}} \sum_{i=1}^{2}\left[\left(\partial_{i} b\right) \cdot \nabla j\right] \partial_{i} \omega d x \\
& -\int_{\mathbb{R}^{2}} \sum_{i=1}^{2}\left[\left(\partial_{i} u\right) \cdot \nabla j\right] \partial_{i} j d x+\int_{\mathbb{R}^{2}} \sum_{i=1}^{2}\left[\left(\partial_{i} b\right) \cdot \nabla \omega\right] \partial_{i} j d x \tag{4.3}\\
& +\int_{\mathbb{R}^{2}} \sum_{i=1}^{2}\left[\partial_{i}(T(\nabla u, \nabla b))\right] \partial_{i} j d x \\
& \leq C\left(I_{1}+I_{2}+I_{3}+I_{4}+I_{5}\right)
\end{align*}
$$

Now, we are ready to give the estimate for the right hand of (4.3).
I_{1} can be estimated like [16, p483]. For completeness of the article, it will provided in the appendix of this paper,

$$
\begin{equation*}
I_{1} \leq C \varepsilon\|\omega\|_{L^{p}}^{\frac{p \alpha}{p \alpha-1}}\|\nabla \omega\|_{L^{2}}^{2}+C(\varepsilon)\left\|\Lambda^{1+\alpha} \omega\right\|_{L^{2}}^{2} \tag{4.4}
\end{equation*}
$$

where we know the fact $\alpha>0$ and $p>\frac{1}{\alpha}$.
We can estimate $\|\omega\|_{L^{p}}$ like [16, p483], the detailed process about (4.5) in appendix, we have

$$
\begin{equation*}
\frac{d}{d t}\|\omega\|_{L^{p}} \leq\|b\|_{L^{\infty}}\|\nabla j\|_{L^{p}} . \tag{4.5}
\end{equation*}
$$

combining Lemma 3.3 and Sobolev embedding, we get

$$
j \in L^{2}\left(0, T ; H^{\beta_{1}+r}\right) \Rightarrow b \in L^{2}\left(0, T ; L^{\infty}\right), \nabla j \in L^{2}\left(0, T ; L^{p}\right)
$$

In order to get $\|\nabla j\|_{L^{p}}$ bounded by using the Gagliardo-Nirenberg inequality,

$$
\|\nabla j\|_{L^{p}} \leq\|j\|_{L^{2}}^{1-\theta}\left\|\Lambda^{r+\beta_{1}} j\right\|_{L^{2}}^{\theta}
$$

where

$$
\theta=\left(1-\frac{1}{p}\right) \frac{2}{r+\beta_{1}}, 0<\theta<1 \quad \Rightarrow \quad p<\frac{2}{2-\left(r+\beta_{1}\right)} .
$$

because of $r=\alpha+\beta_{1}-1$ and $\beta>\beta_{1}$,

$$
\frac{1}{\alpha}<p<\frac{2}{3-(\alpha+2 \beta)}
$$

so if $\alpha+2 \beta<3$, we get

$$
\frac{1}{\alpha}<\frac{2}{3-(2 \beta+\alpha)} \Rightarrow 3 \alpha+2 \beta>3
$$

on the other hand, $\alpha+2 \beta \geq 3$, thus we can choose any number, such that

$$
\frac{1}{\alpha}<p<\infty
$$

therefore, when $3 \alpha+2 \beta>3$, we have

$$
\begin{equation*}
\|\omega\|_{L^{p}} \leq\left\|\omega_{0}\right\|_{L^{p}}+\|b\|_{L^{2}\left(0, T ; L^{\infty}\right)}\|\nabla j\|_{L^{2}\left(0, T ; L^{p}\right)} \leq C\left(\omega_{0}, T\right) \tag{4.6}
\end{equation*}
$$

For I_{2} and I_{4}, we can estimate in a straight way (see [14, p4201]),

$$
\begin{equation*}
I_{2}=I_{4} \leq C(\varepsilon)\|j\|_{L^{2}}^{2}+\|\nabla j\|_{L^{2}}^{2}\|\nabla \omega\|_{L^{2}}^{2}+\varepsilon\|\Lambda \nabla j\|_{L^{2}}^{2} . \tag{4.7}
\end{equation*}
$$

About this term $\|\Lambda \nabla j\|_{L^{2}}^{2}$, we have

$$
\begin{aligned}
\|\Lambda \nabla j\|_{L^{2}}^{2} & =\int|\xi|^{4} \widehat{\widehat{j}} \bar{j} d \xi \\
& =\int_{|\xi| \leq 1}|\xi|^{4} \widehat{\jmath} \overline{\widehat{j}} d \xi+\int_{|\xi|>1}|\xi|^{4} \widehat{j} \widehat{j} d \xi \\
& \leq \int_{|\xi| \leq 1} \widehat{j} \widehat{j} d \xi+\int_{|\xi|>1}|\xi|^{4} \widehat{j} \widehat{j} d \xi
\end{aligned}
$$

where

$$
\begin{aligned}
\int_{|\xi|>1}|\xi|^{4} \widehat{\widehat{j}} \widehat{j} d \xi & =\int_{|\xi|>1}|\xi|^{2} \frac{|\xi|^{2 \beta}}{g^{2}(|\xi|)} \widehat{j} \bar{j} \cdot|\xi|^{2} \frac{g^{2}(|\xi|)}{|\xi|^{2 \beta}} d \xi \\
& \leq \sup _{|\xi|>1} \frac{g^{2}(|\xi|)}{|\xi|^{2(\beta-1)}} \int_{|\xi|>1}|\xi|^{2} \frac{|\xi|^{2 \beta}}{g^{2}(|\xi|)} \widehat{j} \widehat{j} d \xi \\
& \leq \sup _{|\xi|>1} \frac{\ln (e+|\xi|)}{|\xi|^{2(\beta-1)}} \int_{|\xi|>1}|\xi|^{2} \frac{|\xi|^{2 \beta}}{g^{2}(|\xi|)} \widehat{j} \widehat{j} d \xi \\
& \leq M\left\|\mathcal{L}^{\beta} \nabla j\right\|_{L^{2}}^{2} .
\end{aligned}
$$

when $\beta>1$, the function is bounded. $g(|\xi|)$ such that there exists an absolute constant $c \geq 0$ satisfying

$$
g^{2}(|\xi|) \leq c \ln (e+|\xi|)
$$

then, we can get

$$
\begin{equation*}
\|\Lambda \nabla j\|_{L^{2}}^{2} \leq\|j\|_{L^{2}}^{2}+M\left\|\mathcal{L}^{\beta} \nabla j\right\|_{L^{2}}^{2} \tag{4.8}
\end{equation*}
$$

putting (4.8) into (4.7), we get

$$
I_{2}=I_{4} \leq C(\varepsilon)\|j\|_{L^{2}}^{2}+\|\nabla j\|_{L^{2}}^{2}\|\nabla \omega\|_{L^{2}}^{2}+M \varepsilon\left\|\mathcal{L}^{\beta} \nabla j\right\|_{L^{2}}^{2}
$$

thus, I_{3} and I_{5} also can be estimated like [14, p4202], and using (4.8), we obtain

$$
\begin{aligned}
I_{3} & \leq C(\varepsilon)\|\omega\|_{L^{2}}^{2}\|\nabla j\|_{L^{2}}^{2}+\varepsilon\|\Lambda \nabla j\|_{L^{2}}^{2} \\
& \leq C(\varepsilon)\|\omega\|_{L^{2}}^{2}\|\nabla j\|_{L^{2}}^{2}+C(\varepsilon)\|j\|_{L^{2}}^{2}+M \varepsilon\left\|\mathcal{L}^{\beta} \nabla j\right\|_{L^{2}}^{2} \\
I_{5} & \leq C(\varepsilon)\|j\|_{L^{2}}^{2}+\|\nabla j\|_{L^{2}}^{2}\|\nabla \omega\|_{L^{2}}^{2}+C(\varepsilon)\|\omega\|_{L^{2}}^{2}\|\nabla j\|_{L^{2}}^{2}+\varepsilon\|\Lambda \nabla j\|_{L^{2}}^{2} \\
& \leq C(\varepsilon)\|j\|_{L^{2}}^{2}+\|\nabla j\|_{L^{2}}^{2}\|\nabla \omega\|_{L^{2}}^{2}+C(\varepsilon)\|\omega\|_{L^{2}}^{2}\|\nabla j\|_{L^{2}}^{2}+M \varepsilon\left\|\mathcal{L}^{\beta} \nabla j\right\|_{L^{2}}^{2} .
\end{aligned}
$$

Finally, putting the above results of $I_{1}-I_{5}$ into (4.3), we deduce

$$
\begin{align*}
& \frac{1}{2} \frac{d}{d t}\left(\|\nabla \omega\|_{L^{2}}^{2}+\|\nabla j\|_{L^{2}}^{2}\right)+\left\|\Lambda^{\alpha} \nabla \omega\right\|_{L^{2}}^{2}+\left\|\mathcal{L}^{\beta} \nabla j\right\|_{L^{2}}^{2} \\
& \leq C(\varepsilon)\left(\|\omega\|_{L^{2}}^{2}+\|\nabla j\|_{L^{2}}^{2}+\|\omega\|_{L^{p}}^{\frac{p \alpha}{p \alpha-1}}\right)\left(\|\nabla \omega\|_{L^{2}}^{2}+\|\nabla j\|_{L^{2}}^{2}\right) \tag{4.9}\\
& +C(\varepsilon)\|j\|_{L^{2}}^{2}+C \varepsilon\left\|\Lambda^{1+\alpha} \omega\right\|_{L^{2}}^{2}+M \varepsilon\left\|\mathcal{L}^{\beta} \nabla j\right\|_{L^{2}}^{2} .
\end{align*}
$$

taking ε small enough so that $C \varepsilon=M \varepsilon=\frac{1}{2}$, and using the Gronwall's inequality and (4.6), we get

$$
\left(\|\nabla \omega\|_{L^{2}}^{2}+\|\nabla j\|_{L^{2}}^{2}\right)+\int_{0}^{t}\left(\left\|\Lambda^{\alpha} \nabla \omega\right\|_{L^{2}}^{2}+\left\|\mathcal{L}^{\beta} \nabla j\right\|_{L^{2}}^{2}\right) d \tau \leq C(T)
$$

therefore, we have $\omega, j \in L^{2}\left(0, T ; L^{\infty}\right)$.
When $0<\alpha<\frac{1}{2}, \beta>1,3 \alpha+2 \beta>3$, this completes the proof of Theorem1.1.

5. Appendix

In this appendix, we will provides the detailed proof in the previous sections.

Proof of (3.6) of Lemma 3.2 :

As the previous reason, we have (see [15, p129])

$$
\begin{aligned}
& \frac{1}{2} \frac{d}{d t}\left(\|\omega\|_{L^{2}}^{2}+\|j\|_{L^{2}}^{2}\right)+\left\|\Lambda^{\alpha} \omega\right\|_{L^{2}}^{2}+\left\|\mathcal{L}^{\beta} j\right\|_{L^{2}}^{2} \\
& =\int_{\mathbb{R}^{2}} T(\nabla u, \nabla b) j d x \\
& \leq C\|\omega\|_{L^{2}}\|j\|_{L^{4}}^{2} \\
& \leq C\|\omega\|_{L^{2}}\|j\|_{L^{2}}\|\nabla j\|_{L^{2}} \\
& \leq C\|\omega\|_{L^{2}}^{2}\|j\|_{L^{2}}^{2}+\frac{1}{2 \varepsilon}\|\nabla j\|_{L^{2}}^{2} .
\end{aligned}
$$

where we have used the Gagliardo-Nirenberg inequality:

$$
\|j\|_{L^{4}} \leq\|j\|_{L^{2}}^{\frac{1}{2}}\|\nabla j\|_{L^{2}}^{\frac{1}{2}}
$$

Proof of (4.4) of the proof of Theorem 1.1 :
We are ready to give the estimate I_{1} (see [16, p483]),

$$
\begin{aligned}
I_{1} & =\int_{\mathbb{R}^{2}}|\nabla u \| \nabla \omega|^{2} d x \\
& \leq C\|\nabla u\|_{L^{p}}\|\nabla \omega\|_{L^{\frac{2 p}{p-1}}}^{2} \\
& \leq C\|\omega\|_{L^{p}}\|\nabla \omega\|_{L^{\frac{2 p}{p-1}}}^{2-\frac{2}{p \alpha}}\left\|\Lambda^{1+\alpha} \omega\right\|_{L^{2}}^{\frac{2}{p \alpha}} \\
& \leq C\|\omega\|_{L^{p}}\|\nabla \omega\|_{L^{2}}^{2-\frac{p \alpha}{p}} \\
& \leq C \varepsilon\|\omega\|_{L^{p}}^{\frac{p \alpha}{p \alpha-1}}\|\nabla \omega\|_{L^{2}}^{2}+C(\varepsilon)\left\|\Lambda^{1+\alpha} \omega\right\|_{L^{2}}^{2} .
\end{aligned}
$$

where we used the Gagliardo-Nirenberg inequality

$$
\|\nabla \omega\|_{L^{\frac{2 p}{p-1}}} \leq C\|\nabla \omega\|_{L^{2}}^{1-\frac{1}{p \alpha}}\left\|\Lambda^{1+\alpha} \omega\right\|_{L^{2}}^{\frac{1}{p \alpha}}, p>\frac{1}{\alpha}
$$

Thus we have (4.4).
Proof of (4.5) of the proof of Theorem 1.1 :
We multiply both side of (3.3) by $|\omega|^{p-2} \omega(p>2)$ and integrate with respect to x in \mathbb{R}^{2} to obtain(see [16, p483])

$$
\frac{1}{p} \frac{d}{d t}\|\omega\|_{L^{p}}^{p}+\int_{\mathbb{R}^{2}}\left(\Lambda^{\alpha} \omega\right)|\omega|^{p-2} \omega d x=\int_{\mathbb{R}^{2}}(b \cdot \nabla) j|\omega|^{p-2} \omega d x .
$$

where we have used $\nabla \cdot u=0$ and the following property [28]:

$$
\int_{\mathbb{R}^{2}}\left(\Lambda^{\alpha} \omega\right)|\omega|^{p-2} \omega d x \geq 0
$$

we have

$$
\frac{d}{d t}\|\omega\|_{L^{p}} \leq\|b\|_{L^{\infty}}\|\nabla j\|_{L^{p}}
$$

Thus we have proved (4.5).

References

[1] J. H. Wu, Generalized MHD equations, Journal of Differential Equations, Journal of Differential Equations, 2003, 195, 284-312.
[2] J. H. Wu, Global regularity for a class of generalized magnetohydrodynamic equations, Journal of Mathematical Fluid Mechanics, 2011, 13(2), 295-305.
[3] J. Chemin, D. S. McCormick, J. C. Robinson and J. L. Rodrigo, Local existence for the non-resistive MHD equations in Besov spaces, Advances in Mathematics, 2016, 286, 1-31.
[4] C. L. Fefferman, D. S. McCormick, J. C. Robinson and J. L. Rodrigo, Higher order commutator estimates and local existence for the non-resistive MHD equations and related models, Journal of Functional Analysis, 2014, 267(4), 1035-1056.
[5] C. L. Fefferman, D. S. McCormick, J. C. Robinson and J. L. Rodrigo, Local existence for the non-resistive MHD equations in nearly optimal Sobolev spaces, Archive for Rational Mechanics and Analysis, 2017, 233(2), 677-691.
[6] F. Lin and P. Zhang, Global small solutions to an MHD-type system: the threedimensional case, Communications on Pure and Applied Mathematics, 2014, 67(4), 531-580.
[7] X. Ye and M. Zhu, Global regularity for the 3D MHD system with partial viscosity and magnetic diffusion terms, Journal of Mathematical Analysis and Applications, 2018, 458, 980-991.
[8] J. Zhu, X. Wang and X. Fu, Existence and Blowup of Solutions for Neutral Partial Integro-differential Equations with State-dependent Delay, Journal of Nonlinear Modeling and Analysis, 2020, 2(2), 287-313.
[9] T. Tao, Global regularity for a logarithmically supercritical defocusing nonlinear wave equation for spherically symmetric data, Journal of Hyperbolic Differential Equations, 2007, 4(2), 259-266.
[10] T. Tao, Global regularity for a logarithmically supercritical hyperdissipative Navier-Stokes equation, Analysis \& PDE, 2009, 2(3), 361-366.
[11] K. Yamazaki, Global regularity of logarithmically supercritical MHD system with zero diffusivity, Applied Mathematics Letters, 2014, 29, 46-51.
[12] D. KC and K. Yamazaki, Logarithmically extended global regularity result of Lans-alpha MHD system in two-dimensional space, Journal of Mathematical Analysis and Applications, 2015, 425, 234-248.
[13] Z. Ye, Global regularity of the two-dimensional regularized MHD equations, 2019.
arXiv: 1807.04174v2
[14] C. V. Tran, X. Yu and Z. Zhai, On global regularity of 2D generalized magnetohydrodynamic equations, Journal of Differential Equations, 2013, 254, 41944216.
[15] J. Fan, H. Malaikah, S. Monaquel, G. Nakamura and Y. Zhou, Global cauchy problem of 2D generalized MHD equations, Monatshefte für Mathematik, 2014, 175, 127-131.
[16] Q. Jiu and J. Zhao, A remark on global regularity of 2D generalized magnetohydrodynamic equations, Journal of Mathematical Analysis and Applications, 2014, 412, 478-484.
[17] C. Cao, J. Wu and B. Yuan, The 2D incompressible magnetohydrodynamics equations with only magnetic diffusion, SIAM Journal on Mathematical Analysis, 2014, 46, 588-602.
[18] Q. Jiu and J. Zhao, Global regularity of 2D generalized MHD equations with magnetic diffusion, Zeitschrift für Angewandte Mathematik und Physik, 2015, 66, 677-687.
[19] Z. Jiang, L. Cao and R. Zou, Global regularity of n dimensional generalized MHD equations without magnetic diffusion, Applied Mathematics Letters, 2020.

DOI: 10.1016/j.aml.2019.106065
[20] L. Agelas, Global regularity for logarithmically critical 2D MHD equations with zero viscosity, Monatshefte für Mathematik, 2016, 181, 245-266.
[21] Z. Ye, Remark on the global regularity of 2D MHD equations with almost Laplacian magnetic diffusion, Journal of Evolution Equations, 2018, 18, 821-844.
[22] B. Yuan and J. Zhao, Global regularity of 2D almost resistive MHD Equations, Nonlinear Analysis: Real World Applications, 2018, 41, 53-65.
[23] K. Yamazaki, Global regularity of logarithmically supercritical $3-D$ LAMHDalpha system with zero diffusion, Journal of Mathematical Analysis and Applications, 2016, 43, 835-846.
[24] C. V. Tran, X. Yu and Z. Zhai, Note on solution regularity of the generalized magnetohydrodynamic equations with partial dissipation, Nonlinear Analysis: Theory, Methods \& Applications, 2013, 85, 43-51.
[25] D. Mccormick, J. Robinson and J. Rodrigo, Generalised Gagliardo-Nirenberg inequalities using weak lebesgue spaces and BMO, Milan Journal of Mathematics, 2013, 81, 265-289.
[26] L. Nirenberg, On elliptic partial differential equations, Annali della Scuola Normale Superiore di Pisa-Classe di Scienze, 1955, 13, 116-162.
[27] L. C. Evans, Partial differential equations, American Mathematical Society, Rhode Island, 1998.
[28] A. Crdoba and D. Crdoba, A maximum principle applied to quasi-geostrophic equations, Communications in Mathematical Physics, 2004, 249, 511-528.

[^0]: ${ }^{\dagger}$ the corresponding author.
 Email address: mcheng@zjnu.edu.cn(M. Cheng)
 ${ }^{1}$ Department of Mathematics, Zhejiang Normal University, Jinhua, Zhejiang 321004, China

