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Global Regularity of the Logarithmically
Supercritical MHD System in Two-dimensional

Space

Min Cheng1,†

Abstract In this paper, we study the global regularity of logarithmically
supercritical MHD equations in 2 dimensional, in which the dissipation terms
are −µΛ2αu and −νL2βb. We show that global regular solutions in the cases
0 < α < 1

2
, β > 1, 3α+ 2β > 3.
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1. Introduction

We consider the two-dimensional logarithmically supercritical magnetohydrody-
namics (MHD) system:

ut + u · ∇u+∇π + µΛ2αu− b · ∇b = 0, (1.1)

bt + u · ∇b+ νL2βb− b · ∇u = 0, (1.2)

(u, b)(x, 0) = (u0, b0) in R2, (1.3)

divu = divb = 0. (1.4)

where u = u(x, t) ∈ R2 is the unknown velocity field, b = b(x, t) ∈ R2 is the magnetic
field, and π = π(x, t) ∈ R represents the pressure. α, β ≥ 0 are real parameters.

Λ = (−∆)1/2 is defined in terms of the Fourier transform Λ̂f(ξ) = |ξ|f̂(ξ), and L2β

defined through a Fourier transform,

L̂2βf(ξ) = m(ξ)f̂(ξ),m(ξ) =
|ξ|2β

g2(|ξ|)
, β ∈ R+.

with g : R+ −→ R+ a radially symmetric, non-decreasing function such that g ≥ 1.
When

L2β = Λ2β .

For the system (1.1)-(1.4), We identify the case µ = ν = 0 as the GMHD system
with zero velocity and zero magnetic diffusion respectively (so called ideal MHD
equations). The author in [1] studied the global existence of a weak solution when
α ≥ 1

2 + n
4 , α + β ≥ 1 + n

2 , n ∈ R3. In [2], the author showed that the GMHD

†the corresponding author.
Email address: mcheng@zjnu.edu.cn(M. Cheng)

1Department of Mathematics, Zhejiang Normal University, Jinhua, Zhejiang
321004, China

http://dx.doi.org/10.12150/jnma.2020.573


574 M. Cheng

equations exists a unique global smooth solution when α, β ≥ 1
2 + n

4 , There are
some results [3–8] about the existence of the strong solution.

We want to improve the lower bound on the power of the fractional Laplacian
in the dissipative term of the generalized Navier-Stokes equations seems extremely
difficult, the author introduced the notion of ”logarithmic supercriticality” in [9,10],
and also proved the global regularity of the solution. the author improved that
the results [2] by using the notion of ”logarithmic supercriticality” in [11], it were
improved that the solution is globally regular in [12,13].

Tran, Yu and Zhai [14] proved that the solutions are globally regular in the
following conditions:

(1)α ≥ 1

2
, β ≥ 1; (2)0 ≤ α ≤ 1

2
, 2α+ β > 2; (3)α ≥ 2, β = 0.

it were improved that the solution is globally regular of the GMHD equations in
[15–19], and there are some results [20–22] about logarithmic type.

Now we focus on our study. The authors in [16] got a global regular solution
under the assumption that 0 ≤ α < 1

2 , β ≥ 1, 3α + 2β > 3. In this paper, the
dissipation term −νΛ2βb has been replaced by general negative-definite operator
−νL2βb by using the definition in [23], and in the proof, we will use the condition
in [24] on g such that there exists an absolute constant c ≥ 0 satisfying

g2(τ) ≤ c ln(e+ τ).

Theorem 1.1. Let 0 < α < 1
2 , β > 1, 3α+ 2β > 3, Suppose u0, b0 ∈ Hs with s ≥ 2

and divu0 = divb0 = 0 in R2. Then the problem (1.1)-(1.4) exists the solution (u, b)
satisfying

u, b ∈ L∞(0, T ;Hs), u ∈ L2(0, T ;Hs+α), b ∈ L2(0, T ;Hs+β′
). (1.5)

for any T > 0 and β > β′ > 1.

Remark 1.1. When α+β > 2, s > 2, the author in [14] prove the global regularity.

2. Preliminaries

In this section, we will review some known facts and elementary inequalities that
will be used frequently later.

Lemma 2.1. (ϵ-Young inequality) If a and b are nonnegative real numbers and
p and q are real numbers greater than 1 such that 1

p + 1
q = 1, then

ab ≤ ϵap

p
+ ϵ−

q
p
bq

q
,

the equality holds if and only if ap = bq.

Lemma 2.2. ( Gagliardo-Nirenberg inequality [25, 26]) Let u belong to Lq

and its derivatives of order m, Λmu, belong to Lr, 1 ≤ q, r ≤ ∞. For the derivatives
Λju, 0 ≤ j < m, the following inequalities hold

∥Λju∥Lp ≤ C∥Λmu∥αLr∥u∥1−α
Lq , (2.1)
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where
1

p
=
j

n
+ α

(
1

r
− m

n

)
+ (1− α)

1

q
,

for all α in the interval
j

m
≤ α ≤ 1.

(the constant depending only on n,m, j, q, r, α), with the following exceptional cases

1 If j = 0, rm < n, q = ∞ then we make the additional assumption that either u
tends to zero at infinity or u ∈ Ls for some finite s > 0;

2 If 1 < r < ∞, and m− j − n
r is a non negative integer then (2.1) holds only for

a satisfying j
m ≤ α ≤ 1.

Lemma 2.3. (Gronwall’s Inequality [27])

(i) Let η(·) be a nonnegative, absolutely continuous function on [0, T ], which sat-
isfies for a.e. t the differential inequality

η′(t) ≤ ϕ(t)η(t) + ψ(t),

where ϕ(t) and ψ(t) are nonnegative, summable function on [0, T ], Then

η(t) ≤ e
∫ t
0
ϕ(s)ds[η(0) +

∫ t

0

ψ(s)ds].

for all 0 ≤ t ≤ T ;

(ii) In particular, if
η′ ≤ ϕη on [0, T ] and η(0) = 0,

then
η ≡ 0 on [0, T ].

3. A priori estimates

In the next section, without loss of generality, we assume µ = ν = 1.

Lemma 3.1. (Basic energy estimates)It holds that for any T > 0,

sup
0≤τ≤T

(∥u∥2L2 + ∥b∥2L2) + 2

∫ T

0

(∥Λαu∥2L2 + ∥Lβb∥2L2)dτ ≤ ∥u0∥2L2 + ∥b0∥2L2 .(3.1)

Proof.
Multiplying both sides of the equations of u and b in (1.1)-(1.2) by u and b,

respectively, after integration by parts and taking the divergence free property into
account, we have the following energy estimate

1

2

d

dt
(∥u∥2L2 + ∥b∥2L2) + ∥Λαu∥2L2 + ∥Lβb∥2L2 = 0. (3.2)

It implies that the inequality (3.1) holds and consequently completes the proof.
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Let ω = ∇⊥ ·u = −∂2u1 + ∂1u2, j = ∇⊥ · b = −∂2b1 + ∂1b2, then we can get the
well-known equations for the vorticity ω and the current j:

ωt + u · ∇ω + Λ2αω = b · ∇j, (3.3)

jt + u · ∇j + L2βj = b · ∇ω + T (∇u,∇b). (3.4)

with
T (∇u,∇b) = 2∂1b1(∂1u2 + ∂2u1) + 2∂2u2(∂1b2 + ∂2b1).

Now, we will give the H1 estimation for (u, b).

Lemma 3.2. Suppose that α > 0, β > 1. Let u0, b0 ∈ H1. For any T > 0, we have

∥ω∥2L2(t) + ∥j∥2L2(t) +

∫ t

0

(2∥Λαω∥2L2 + ∥Lβj∥2L2)dτ ≤ C(T ). (3.5)

Proof.
Multiplying (3.3)-(3.4) by ω and j, respectively, integrating over R2, and adding

the resulting equations together, we can estimated like [15, p129], For the complete-
ness of the article, it will provided in the appendix of this paper.

1

2

d

dt
(∥ω∥2L2 + ∥j∥2L2) =

∫
R2

T (∇u,∇b)jdx− ∥Λαω∥2L2 − ∥Lβj∥2L2

≤ C∥ω∥2L2∥j∥2L2 +
1

2ε
∥∇j∥2L2 − ∥Λαω∥2L2 − ∥Lβj∥2L2 ,

(3.6)

About this term ∥∇j∥2L2 , we obtain

∥∇j∥2L2 =

∫
|ξ|2ĵĵdξ

=

∫
|ξ|≤1

|ξ|2ĵĵdξ +
∫
|ξ|>1

|ξ|2ĵĵdξ

≤
∫
|ξ|≤1

ĵĵdξ +

∫
|ξ|>1

|ξ|2ĵĵdξ,

where ∫
|ξ|>1

|ξ|2ĵĵdξ =
∫
|ξ|>1

|ξ|2β

g2(|ξ|)
ĵĵ · |ξ|2 g

2(|ξ|)
|ξ|2β

dξ

≤ sup
|ξ|>1

|ξ|2

|ξ|2β
g2(|ξ|)

∫
|ξ|>1

|ξ|2β

g2(|ξ|)
ĵĵdξ

≤ sup
|ξ|>1

ln(e+ |ξ|)
|ξ|2(β−1)

∫
|ξ|>1

|ξ|2β

g2(|ξ|)
ĵĵdξ

≤M∥Lβj∥2L2 .

when β > 1, the function is bounded. g(|ξ|) such that there exists an absolute
constant c ≥ 0 satisfying

g2(|ξ|) ≤ c ln(e+ |ξ|).

so we can get

∥∇j∥2L2 ≤ ∥j∥2L2 +M∥Lβj∥2L2 . (3.7)
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As well as

∥Lβb∥2L2 =

∫
|ξ|2β

g2(|ξ|)
b̂b̂dξ

=

∫
|ξ|2b̂b̂ |ξ|2β

|ξ|2g2(|ξ|)
dξ

≤ sup
|ξ|2β−2

g2(|ξ|)

∫
|ξ|2b̂b̂dξ

≤ sup
|ξ|2(β−1)

ln(e+ |ξ|)

∫
|ξ|2b̂b̂dξ

≤ C∥j∥2L2 .

when β > 1, if
∫ t

0
∥Lβb∥2L2dτ is bounded,

∫ t

0
∥j∥2L2dτ is also bounded.∫ t

0

∥Lβb∥2L2dτ ≤ C =⇒
∫ t

0

∥j∥2L2dτ ≤ C. (3.8)

putting (3.7) into (3.6), we obtain

d

dt
(∥ω∥2L2 + ∥j∥2L2) ≤ C∥ω∥2L2∥j∥2L2 +

1

ε
∥j∥2L2

+
M

ε
∥Lβj∥2L2 − 2∥Λαω∥2L2 − 2∥Lβj∥2L2 .

taking ε small enough so that ε = M , and using Gronwall’inequality and (3.8), we
obtain

∥ω∥2L2(t) + ∥j∥2L2(t) +

∫ t

0

(2∥Λαω∥2L2 + ∥Lβj∥2L2)dτ ≤ C(T ).

The proof of the lemma is completed.

Lemma 3.3. (Lemma2.2, [16]) Suppose that 0 < α < 1
2 , β > β1 > 1, r = α+β1 −

1 > 0 and k ≥ α+ β. Let u0, b0 ∈ Hk. Then for any T > 0, we have

∥Λrj∥2L2 +

∫ t

0

∥LβΛrj∥2L2dτ ≤ C(u0, b0, T ). (3.9)

Proof. Applying Λr on both sides of (3.4), and multiplying by Λrj, integrating
over R2, we obtain

1

2

d

dt
∥Λrj∥2L2 + ∥LβΛrj∥2L2

= −
∫
R2

Λr(u · ∇j)Λrjdx+

∫
R2

Λr(b · ∇ω)Λrjdx

+

∫
R2

Λr(T (∇u,∇b))Λrjdx

= A1 +A2 +A3.

(3.10)

Now, we are ready to estimate the three terms.
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For A1, we can estimate like [16, p480],

A1 ≤ ϵ∥Λβ1+rj∥2L2 + C∥u∥1−2α
L2 ∥ω∥1+2α

L2 ∥j∥
2− 1

β1

L2 ∥Λβ1j∥
1
β1

L2

+ C∥u∥L2∥ω∥L2∥j∥
2β1−2α−1

β1

L2 ∥Λβ1j∥
1+2α
β1

L2 .

(3.11)

About this term ∥Λβ1+rj∥2L2 , we have

∥Λβ1+rj∥2L2 =

∫
|ξ|2(β1+r)ĵĵdξ

=

∫
|ξ|≤1

|ξ|2(β1+r)ĵĵdξ +

∫
|ξ|>1

|ξ|2(β1+r)ĵĵdξ

≤
∫
|ξ|≤1

ĵĵdξ +

∫
|ξ|>1

|ξ|2(β1+r)ĵĵdξ,

where ∫
|ξ|>1

|ξ|2(β1+r)ĵĵdξ =

∫
|ξ|>1

|ξ|2r |ξ|2β

g2(|ξ|)
ĵĵ · |ξ|2β1

g2(|ξ|)
|ξ|2β

dξ

≤ sup
|ξ|>1

g2(|ξ|)
|ξ|2(β−β1)

∫
|ξ|>1

|ξ|2r |ξ|2β

g2(|ξ|)
ĵĵdξ

≤ sup
|ξ|>1

ln(e+ |ξ|)
|ξ|2(β−β1)

∫
|ξ|>1

|ξ|2r |ξ|2β

g2(|ξ|)
ĵĵdξ

≤M∥LβΛrj∥2L2 .

when β > β1 > 1, the function is bounded. g(|ξ|) such that there exists an absolute
constant c ≥ 0 satisfying

g2(|ξ|) ≤ c ln(e+ |ξ|).
so we can get

∥Λβ1+rj∥2L2 ≤ ∥j∥2L2 +M∥LβΛrj∥2L2 . (3.12)

putting (3.12) into (3.11), we have

A1 ≤Mϵ∥LβΛrj∥2L2 + ϵ∥j∥2L2 + C∥u∥1−2α
L2 ∥ω∥1+2α

L2 ∥j∥
2− 1

β1

L2 ∥Λβ1j∥
1
β1

L2

+ C∥u∥L2∥ω∥L2∥j∥
2β1−2α−1

β1

L2 ∥Λβ1j∥
1+2α
β1

L2 ,

for A2 −A3, we can estimate like [16, p480], and using (3.12), we get

A2 ≤ ϵ∥Λβ1+rj∥2L2 + C∥b∥
2(β1−α)

1+β1

L2 ∥Λβ1j∥
2(1+α)
1+β1

L2 ∥ω∥2L2

+ C∥b∥
2r

1+r

L2 ∥Λrj∥
2

1+r

L2 ∥Λαω∥2L2

≤Mϵ∥LβΛrj∥2L2 + ϵ∥j∥2L2 + C∥b∥
2(β1−α)

1+β1

L2 ∥Λβ1j∥
2(1+α)
1+β1

L2 ∥ω∥2L2

+ C∥b∥
2r

1+r

L2 ∥Λrj∥
2

1+r

L2 ∥Λαω∥2L2 ,

A3 ≤ ϵ∥Λβ1+rj∥2L2 + C∥j∥2L2∥ω∥
2(β1+r)
2β1−1

L2

≤Mϵ∥LβΛrj∥2L2 + ϵ∥j∥2L2 + C∥j∥2L2∥ω∥
2(β1+r)
2β1−1

L2 .



Global Regularity of the Logarithmically Supercritical MHD System 579

Finally, putting the above results of A1 −A3 into (3.10), we have

1

2

d

dt
∥Λrj∥2L2 + ∥LβΛrj∥2L2 ≤ C∥u∥1−2α

L2 ∥ω∥1+2α
L2 ∥j∥

2− 1
β1

L2 ∥Λβ1j∥
1
β1

L2

+ C∥u∥L2∥ω∥L2∥j∥
2β1−2α−1

β1

L2 ∥Λβ1j∥
1+2α
β1

L2

+ C∥b∥
2(β1−α)

1+β1

L2 ∥Λβ1j∥
2(1+α)
1+β1

L2 ∥ω∥2L2

+ C∥b∥
2r

1+r

L2 ∥Λrj∥
2

1+r

L2 ∥Λαω∥2L2

+ ϵ∥j∥2L2 +Mϵ∥LβΛrj∥2L2

+ C∥j∥2L2∥ω∥
2(β1+r)
2β1−1

L2 .

taking ϵ small enough so that ϵ = 1
M , and by Gronwall’s inequality and Lemma 3.2,

we obtain

∥Λrj∥2L2 +

∫ t

0

∥LβΛrj∥2L2dτ ≤ C(u0, b0, T ).

The proof of the lemma is completed.

4. Proof of Theorem 1.1

In this section, we devoted to prove Theorem 1.1:
Proof. Combining Lemma 3.1 and Lemma 3.2, we can move on to H2 estimates.
Differentiating (3.3)-(3.4), we get

(∂iω)t + u · ∇(∂iω) = −(∂iu) · ∇ω + (∂ib) · ∇j + b · ∇(∂ij)− Λ2α(∂iω), (4.1)

(∂ij)t + u · ∇(∂ij) = −(∂iu) · ∇j + (∂ib) · ∇ω + b · ∇(∂iω)

+ ∂i(T (∇u,∇b))− L2β(∂ij).
(4.2)

Multiplying by ∂iω and ∂ij both sides of (4.1)-(4.2) respectively, integrating over
R2 and taking the divergence free property into account, we have

1

2

d

dt
(∥∇ω∥2L2 + ∥∇j∥2L2) + ∥Λα∇ω∥2L2 + ∥Lβ∇j∥2L2

= −
∫
R2

2∑
i=1

[(∂iu) · ∇ω]∂iωdx+

∫
R2

2∑
i=1

[(∂ib) · ∇j]∂iωdx

−
∫
R2

2∑
i=1

[(∂iu) · ∇j]∂ijdx+

∫
R2

2∑
i=1

[(∂ib) · ∇ω]∂ijdx

+

∫
R2

2∑
i=1

[∂i(T (∇u,∇b))]∂ijdx

≤ C(I1 + I2 + I3 + I4 + I5).

(4.3)

Now, we are ready to give the estimate for the right hand of (4.3).



580 M. Cheng

I1 can be estimated like [16, p483]. For completeness of the article, it will
provided in the appendix of this paper,

I1 ≤ Cε∥ω∥
pα

pα−1

Lp ∥∇ω∥2L2 + C(ε)∥Λ1+αω∥2L2 . (4.4)

where we know the fact α > 0 and p > 1
α .

We can estimate ∥ω∥Lp like [16, p483], the detailed process about (4.5) in ap-
pendix, we have

d

dt
∥ω∥Lp ≤ ∥b∥L∞∥∇j∥Lp . (4.5)

combining Lemma 3.3 and Sobolev embedding, we get

j ∈ L2(0, T ;Hβ1+r) ⇒ b ∈ L2(0, T ;L∞),∇j ∈ L2(0, T ;Lp).

In order to get ∥∇j∥Lp bounded by using the Gagliardo-Nirenberg inequality,

∥∇j∥Lp ≤ ∥j∥1−θ
L2 ∥Λr+β1j∥θL2 .

where

θ = (1− 1

p
)

2

r + β1
, 0 < θ < 1 ⇒ p <

2

2− (r + β1)
.

because of r = α+ β1 − 1 and β > β1,

1

α
< p <

2

3− (α+ 2β)
.

so if α+ 2β < 3, we get

1

α
<

2

3− (2β + α)
⇒ 3α+ 2β > 3;

on the other hand, α+ 2β ≥ 3, thus we can choose any number, such that

1

α
< p <∞.

therefore, when 3α+ 2β > 3, we have

∥ω∥Lp ≤ ∥ω0∥Lp + ∥b∥L2(0,T ;L∞)∥∇j∥L2(0,T ;Lp) ≤ C(ω0, T ). (4.6)

For I2 and I4, we can estimate in a straight way (see [14, p4201]),

I2 = I4 ≤ C(ε)∥j∥2L2 + ∥∇j∥2L2∥∇ω∥2L2 + ε∥Λ∇j∥2L2 . (4.7)

About this term ∥Λ∇j∥2L2 , we have

∥Λ∇j∥2L2 =

∫
|ξ|4ĵĵdξ

=

∫
|ξ|≤1

|ξ|4ĵĵdξ +
∫
|ξ|>1

|ξ|4ĵĵdξ

≤
∫
|ξ|≤1

ĵĵdξ +

∫
|ξ|>1

|ξ|4ĵĵdξ,
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where ∫
|ξ|>1

|ξ|4ĵĵdξ =
∫
|ξ|>1

|ξ|2 |ξ|2β

g2(|ξ|)
ĵĵ · |ξ|2 g

2(|ξ|)
|ξ|2β

dξ

≤ sup
|ξ|>1

g2(|ξ|)
|ξ|2(β−1)

∫
|ξ|>1

|ξ|2 |ξ|2β

g2(|ξ|)
ĵĵdξ

≤ sup
|ξ|>1

ln(e+ |ξ|)
|ξ|2(β−1)

∫
|ξ|>1

|ξ|2 |ξ|2β

g2(|ξ|)
ĵĵdξ

≤M∥Lβ∇j∥2L2 .

when β > 1, the function is bounded. g(|ξ|) such that there exists an absolute
constant c ≥ 0 satisfying

g2(|ξ|) ≤ c ln(e+ |ξ|).

then, we can get

∥Λ∇j∥2L2 ≤ ∥j∥2L2 +M∥Lβ∇j∥2L2 . (4.8)

putting (4.8) into (4.7), we get

I2 = I4 ≤ C(ε)∥j∥2L2 + ∥∇j∥2L2∥∇ω∥2L2 +Mε∥Lβ∇j∥2L2 ,

thus, I3 and I5 also can be estimated like [14, p4202], and using (4.8), we obtain

I3 ≤ C(ε)∥ω∥2L2∥∇j∥2L2 + ε∥Λ∇j∥2L2

≤ C(ε)∥ω∥2L2∥∇j∥2L2 + C(ε)∥j∥2L2 +Mε∥Lβ∇j∥2L2 ,

I5 ≤ C(ε)∥j∥2L2 + ∥∇j∥2L2∥∇ω∥2L2 + C(ε)∥ω∥2L2∥∇j∥2L2 + ε∥Λ∇j∥2L2

≤ C(ε)∥j∥2L2 + ∥∇j∥2L2∥∇ω∥2L2 + C(ε)∥ω∥2L2∥∇j∥2L2 +Mε∥Lβ∇j∥2L2 .

Finally, putting the above results of I1 − I5 into (4.3), we deduce

1

2

d

dt
(∥∇ω∥2L2 + ∥∇j∥2L2) + ∥Λα∇ω∥2L2 + ∥Lβ∇j∥2L2

≤ C(ε)(∥ω∥2L2 + ∥∇j∥2L2 + ∥ω∥
pα

pα−1

Lp )(∥∇ω∥2L2 + ∥∇j∥2L2)

+ C(ε)∥j∥2L2 + Cε∥Λ1+αω∥2L2 +Mε∥Lβ∇j∥2L2 .

(4.9)

taking ε small enough so that Cε = Mε = 1
2 , and using the Gronwall’s inequality

and (4.6), we get

(∥∇ω∥2L2 + ∥∇j∥2L2) +

∫ t

0

(∥Λα∇ω∥2L2 + ∥Lβ∇j∥2L2)dτ ≤ C(T ).

therefore, we have ω, j ∈ L2(0, T ;L∞).

When 0 < α < 1
2 , β > 1, 3α+ 2β > 3 , this completes the proof of Theorem1.1.
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5. Appendix

In this appendix, we will provides the detailed proof in the previous sections.

Proof of (3.6) of Lemma 3.2 :
As the previous reason, we have (see [15, p129])

1

2

d

dt
(∥ω∥2L2 + ∥j∥2L2) + ∥Λαω∥2L2 + ∥Lβj∥2L2

=

∫
R2

T (∇u,∇b)jdx

≤ C∥ω∥L2∥j∥2L4

≤ C∥ω∥L2∥j∥L2∥∇j∥L2

≤ C∥ω∥2L2∥j∥2L2 +
1

2ε
∥∇j∥2L2 .

where we have used the Gagliardo-Nirenberg inequality:

∥j∥L4 ≤ ∥j∥
1
2

L2∥∇j∥
1
2

L2 .

Proof of (4.4) of the proof of Theorem 1.1 :
We are ready to give the estimate I1(see [16, p483]),

I1 =

∫
R2

|∇u||∇ω|2dx

≤C∥∇u∥Lp∥∇ω∥2
L

2p
p−1

≤C∥ω∥Lp∥∇ω∥2
L

2p
p−1

≤C∥ω∥Lp∥∇ω∥2−
2
pα

L2 ∥Λ1+αω∥
2
pα

L2

≤Cε∥ω∥
pα

pα−1

Lp ∥∇ω∥2L2 + C(ε)∥Λ1+αω∥2L2 .

where we used the Gagliardo-Nirenberg inequality

∥∇ω∥
L

2p
p−1

≤ C∥∇ω∥1−
1
pα

L2 ∥Λ1+αω∥
1
pα

L2 , p >
1

α
.

Thus we have (4.4).
Proof of (4.5) of the proof of Theorem 1.1 :
We multiply both side of (3.3) by |ω|p−2ω(p > 2) and integrate with respect to

x in R2 to obtain(see [16, p483])

1

p

d

dt
∥ω∥pLp +

∫
R2

(Λαω)|ω|p−2ωdx =

∫
R2

(b · ∇)j|ω|p−2ωdx.

where we have used ∇ · u = 0 and the following property [28]:∫
R2

(Λαω)|ω|p−2ωdx ≥ 0.

we have

d

dt
∥ω∥Lp ≤ ∥b∥L∞∥∇j∥Lp .

Thus we have proved (4.5).
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