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Stationary Distribution and Extinction of
Stochastic HTLV-I Infection Model with CTL
Immune Response under Regime Switching∗

Daipeng Kuang1, Qian Yin2 and Jianli Li1,†

Abstract In this paper, the stochastic HTLV-I infection model with CTL
immune response is investigated. Firstly, we show that the stochastic system
exists unique positive global solution originating from the positive initial value.
Secondly, we obtain that the existence of ergodic stationary distribution of
the model by stochastic Lyapunov functions. Thirdly, we establish sufficient
conditions for extinction of the infected cells. Finally, numerical simulations
are carried out to illustrate the theoretical results.
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1. Introduction

Human T-cell leukemia virus includes type-I (HTLV-I) and type-II (HTLV-II), it
is pathogen that causes T-cell leukemia and lymphoma in adults. HTLV-I can be
transmitted by blood transfusions, injection or sexual contact, or by placenta, birth
canal as well as breast-feeding which harms public health, human society and world
economy seriously [1–3]. To fight against HTLV-I, which is a kind of infectious
disease, we need to pay enough attention to inventing effective drugs and updating
treatment methods. What’s more, it is known that the dynamic nature of virus
spread also has practical significance for disease prevention and control [4, 5].

The Cytotoxic T lymphocyte (CTL) play an important role in antiviral mecha-
nism and they are the main immune factor inhibiting cell replication [6]. In certain
infectious diseases, specific CTL kills infected cells, not viruses, such as hepatitis B.
Therefore, the dynamics of virus infection model with CTL response has attracted
lots of researchers attention [7, 8], which is essential for identifying risk factors of
the HAM/TSP development and taking therapeutic measures [9].
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The CTL immune response to a single pool of infected cells has been consid-
ered in the HTLV-I infection. This interaction can be described by the following
system [10]. 

ẋ(t) = λ− βx(t)y(t)− d1x(t),

ẏ(t) = βx(t)y(t)− ay(t)z(t)− d2y(t),

ż(t) = py(t)− d3z(t),

(1.1)

where x(t), y(t) and z(t) are numbers of uninfected of cells, infected cells, and
CTL immune cells, respectively. Wang etc obtained the global dynamics of dif-
ferential system (1.1) which is determined by one important threshold parameter
R∗

0 = λβ/(d1d2). If R∗
0 > 1, then the system (1.1) has two steady states, the infec-

tion free steady state and the endemic steady state. It is well-known that if a basic
reproductive number R∗

0 < 1, the infection free steady state is locally asymptoti-
cally stable and the endemic steady state does not exist [10].
The meaning of the parameters in the model (1.1) is given in the following list:

λ: the production of healthy CD4+T cells rate;
β: a constant means the infection rate;
a: the rate of CTL elimination;
py(t): the proliferation rate of CTL cells by contacting the infected cells;
d1: the natural mortality rate of x(t);
d2: the mortality rate of infected cells caused by virus;
d3: the natural mortality rate of z(t);
Those magnificent works provide a great perspective of the epidemic model. But

in the real world, the virus dynamics model will inevitably be affected by random
fluctuations. Aimed to make the virus dynamic model (1.1) better reflect the ac-
tual situation, it is essential to take into account the real random interference in
the disease dynamics model.

The pathogenesis of different stages of HTLV-I infection is different, chemother-
apy treatment, drug, and cell transplantation have the diverse effects. The external
environment will influence people’s body and mind. As a result, the system possibly
changed from one environmental regime to another.

Note that the epidemic models may be perturbed by telegraph noise which can
cause the system to switch from one environmental regime to another [11]. Almost
the switching between environmental regimes is usually memoryless and the waiting
time for the next switching follows the exponential distribution [12]. Therefore the
regime switching can be described by a continuous time Markov chain r(t)t>0 with
values in a finite state space.

In [13], Jiang and Qi thought that the deterministic model (1.1) disturbed by
the telegraph noises and white noises. Furthermore, they consider the standard in-
cidence βxy/(x+ y) instead of the bilinear incidence βxy. Then model (1.1) under
regime switching reduces to

dx = [λ(r(t))− β(r(t))x(t)y(t)
x(t)+y(t) − d1(r(t))x(t)]dt+ σ1(r(t))x(t)dB1,

dy = [β(r(t))x(t)y(t)x(t)+y(t) − a(r(t))y(t)z(t)− d2(r(t))y(t)]dt+ σ2(r(t))y(t)dB2,

dz = [p(r(t))y(t)− d3(r(t))z(t)]dt+ σ3(r(t))z(t)dB3,

(1.2)

where Bi(i = 1, 2, 3) is independent standard Brownian motions and σi(r(t))(i =
1, 2, 3) is the intensity of Bi(i = 1, 2, 3).
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For system (1.2), Jiang and Qi provided sufficient conditions for the virus to
go extinct exponentially and got the existence of ergodic stationary distribution of
system (1.2). In fact, May and Anderson pointed out that the standard incidence
βxy/(x + y) is usually suitable for humans, social animals that a group with self-
protection awareness during the spread of disease [4]. However, on the one hand,
HTLV-I infection is achieved in body through intercellular contact between healthy
cells and infected cells [7]. On the other hand, the conditions of the result obtained
in [13] are so strict that the application range of the result of the actual data [2] is
too narrow.

Motivated by the works of Jiang etc [13] and Bangham [7]. In this paper, we
think the bilinear incidence βxy instead of the standard incidence βxy/(x+y). The
stochastic model based on the deterministic system (1.1) takes the following form

dx = [λ(r(t))− β(r(t))x(t)y(t)− d1(r(t))x(t)]dt+ σ1(r(t))x(t)dB1,

dy = [β(r(t))x(t)y(t)− a(r(t))y(t)z(t)− d2(r(t))y(t)]dt+ σ2(r(t))y(t)dB2,

dz = [p(r(t))y(t)− d3(r(t))z(t)]dt+ σ3(r(t))z(t)dB3.

(1.3)
We found that there is no research literature on the model (1.3) so far. In

this paper, the existence of the stationary distribution of the model (1.3) and the
extinction of the virus is explored. As a result, better performances than [13] that
in actual data [2] are obtained.

The thesis is organized as follows. In Section 2, some preliminaries and results
which are applied in later content are presented. In Section 3, we devoted to verify
that the global existence and positivity of solution of system (1.3). In Section 4, we
verifying the system (1.3) have a unique ergodic stationary distributions under some
simple conditions. In section 5, we establish sufficient conditions for extinction of
the infected cells. In section 6, we provide explanation of the theoretical analysis
with some numerical simulations.

2. Preliminaries
In this section, we recall some basic knowledge of stochastic differential equations,
necessary lemmas and hypotheses in the process of theorem argumentation that we
shall use in the rest of the paper.

Throughout this essay, suppose r(t)t≥0 be a right-continuous Markov chain de-
fine on the complete probability space (Ω,F , {Ft}t≥0,P) with values in a finite
space M = {1, 2, · · ·, N}. For convenience, we use the notation Ψ̂ = mink∈M Ψ(k),
Ψ̌ = maxk∈M Ψ(k), where {Ψ(k)}k∈M is a constant vector. We also denote

D(X, k) = [dij(X, k)], for each k ∈ M.

Rn
+ = {(x1, · · ·, xn) ∈ Rn | xi > 0, i = 1, · · ·, n}.

σ(k) = max{σ1(k), σ2(k), σ3(k)}, d0(k) = min{d1(k), d2(k)/2, d3(k)}.
Assume the generator Γ = [γij ]N×N of the Markov chain is given by

P{r(t+∆) = j | r(t) = i} =

 γij∆+ o(∆), if i ̸= j,

1 + γii∆+ o(∆), if i = j,
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where ∆ > 0, γij ≥ 0 is the transition rate from i to j if i ̸= j while
∑N

j=1 γij = 0.
We suppose that Markov chain and Brownian motion are independent. Suppose

further that Markov chain r(t) is irreducible, which means that the stochastic system
can switch from one regime to the other regime. This implies that Markov chain r(t)
has a unique stationary distribution π = {π1, π2, · · ·, πN} which can be determined
by linear equation πΓ = 0 subject to

∑N
h=1 πh = 1, and πh > 0,∀h ∈ M. In this

paper, we assume γij > 0 for i ̸= j and all parameters are positive constants for
any k ∈ M.

We now present some basic theories on the stationary distribution for stochastic
differential equations under regime switching. More general, we consider the d-
dimensional diffusion process described by the following equation

dX(t) = b(X(t), r(t))dt+ g(X(t), r(t))dB(t), X(0) = x0, r(0) = r, (2.1)

where B(t) denote an d-dimensional standard Brownian motion defined on the
complete probability space(Ω,F , {Ft}t≥0,P), b(·, ·) : Rn × M → Rn, and σ(·, ·) :
Rn ×M → Rn×d.

Denote by C2,1(Rd× [t0,∞]; R+) the family of all nonnegative functions V (·, k)
defined on Rd × [t0,∞], such that they are continuously differentiable twice on X
and once on t.

The differential operator L can be defined by

LV (X, k) =

n∑
i=1

bi(X, k)
∂V (X, k)

∂xi
+

1

2

n∑
i,j=1

dij(X, k)
∂2V (X, k)

∂xi∂xj
+

N∑
l=1

γklV (X, l),

By Itô’s formula, if X ∈ Rd, we have

dV (X, t) = LV (X, t)dt+ VX(X, t)g(X, t)dB(t).

Lemma 2.1 (Lemma 2.1, [14] ). If the following conditions are satisfied:

(i) γij > 0 for any i ̸= j;
(ii) for any k ∈ M, D(X, k) is symmetric and satisfies

ρ|ζ|2 ≤ ζTD(X, k)ζ ≤ ρ−1|ζ|2 for all ζ ∈ Rn,

with some constant ρ ∈ (0, 1] for all X ∈ Rn.
(iii) there exists a nonempty bounded open subset U ∈ Rn with a regular boundary

satisfying that for each k ∈ M, there is a non-negative twice continuously differential
function V (X, k) : Uc → R such that for some α > 0,

LV (X, k) ≤ −α, (X, k) ∈ Uc ×M,

then the diffusion process (X(t), r(t)) for system (2.1) is positive recurrent and
ergodic. That is to say, there exists a unique stationary distribution µ(·, ·) such that
for any Borel measurable function f(·, ·) : Rn ×M → R satisfying∑

k∈M

∫
Rn

|f(X, k)|µ(dX, k) <∞,

we have

P
{

lim
T→∞

1

T

∫ T

0

f(X(t), r(t))dt =
∑
k∈M

∫
Rn

f(X, k)µ(dX, k)
}
= 1.

.
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3. Existence of the positive solution
The global existence of positive solutions is the most important for studying the
dynamic behavior of stochastic epidemic models. Next, we will prove by the fol-
lowing theorem that for any given positive initial value, the positive solution of the
stochastic system (1.3) exists globally and is unique.

Theorem 3.1. For any initial value condition (x(0), y(0), z(0), r(0)) ∈ R3
+ × M.

The system (1.3) has a unique positive solution (x(t), y(t), z(t), r(t)) ∈ R3
+ ×M on

t ≥ 0 with probability one.

The proof is analogous to that of Theorem 2 in [13]. Hence, we omit it here.

4. Existence of the stationary distribution

A significant aspect of the qualitative analysis of the disease, it has been prevalent
in the crowd for a long time and will disappear eventually. In this part, we show
that stochastic system (1.3) exists a stationary distribution.

We denote

R∗
1 =

β̂
∑

h∈M πhλ(h)

ď1
∑

h∈M πh(d2(h) +
1
2σ

2
2(h))

.

Theorem 4.1. Suppose the stochastic system (1.3) takes initial value in R3
+ ×M,

d̂0 > σ̌2/2 and R∗
1 > 1, then there exists a stationary distribution µ(·, ·) for system

(1.3).

Proof. To prove Theorem 4.1, it is only necessary to verify conditions (i), (ii)
and (iii) in Lemma 2.1. Presumption γij > 0 if i ̸= j in Section 2 means that
Lemma 2.1 condition (i) holds. Besides this, the diffusion matrix D(x, y, z, k) =
diag {σ2

1(k)x
2,σ2

2(k)y
2,σ2

3(k)z
2} is positive definitely for stochastic systems (1.3),

which means Lemma 2.1 condition (ii) is satisfied. Next, we prove the condition
(iii) in Lemma 2.1 is satisfied.

Define a C2 function

g(x, y, z, k) = M(−x− y − ď1

β̂
ln y +

ď1ǎ

β̂d̂3
z + ωk) +

1

m+ 2
(x+ y +

d̂2
2p̌
z)m+2

− lnx− ln z,

where m > 0 is a small enough constant and M is a reasonable large number.
Note that

lim
(x,y,z)→0+

g(x, y, z, k) = +∞, lim
(x,y,z)→+∞

g(x, y, z, k) = +∞, k ∈ M.

According to the continuity of g(x, y, z, k), it must exists a minimum point
(x0, y0, z0, k). g(x0, y0, z0, k) is the minimum value of g(x, y, z, k). We define the
non-negative C2 function

V (x, y, z, k) = M(−x− y − ď1

β̂
ln y +

ď1ǎ

β̂d̂3
z + ωk) +

1

m+ 2
(x+ y +

d̂2
2p̌
z)m+2

− lnx− ln z − g(x0, y0, z0, k).
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As a matter of convenience, denote

V1 = −x− y − ď1

β̂
ln y +

ď1ǎ

β̂d̂3
z + ωk, V2 = − lnx,

V3 = − ln z, V4 =
1

m+ 2
(x+ y +

d̂2
2p̌
z)m+2.

Using Itô′s formula, we can get that

LV1 = −λ(k) + d1(k)x+ d2(k)y + a(k)yz − ď1

β̂
β(k)x+

ď1

β̂
a(k)z +

ď1

β̂
d2(k)

+
1

2

ď1

β̂
σ2
2(k) +

ď1

β̂

ǎ

d̂3
p(k)y − ď1

β̂

ǎ

d̂3
d3(k)z +

∑
l∈M

γklωl

≤ −λ(k) + a(k)yz + d2(k)y +
ď1

β̂

ǎ

d̂3
p(k)y +

ď1

β̂
d2(k) +

1

2

ď1

β̂
σ2
2(k)

+
∑
l∈M

γklωl. (4.1)

Let
R0(k) = −λ(k) + ď1

β̂
d2(k) +

ď1

2β̂
σ2
2(k).

Because of the generator matrix Γ is irreducible, hence, forR0 = (R0(1), ..., R0(N))T ,
let ω = (ω(1), ..., ω(N)) be the solution of the following Poisson system

Γω +R0 =
∑
h∈M

πhR0(h)
−→
1 ,

where −→
1 is the N -dimensional column vector composed of 1, which means that

R0(k) +
∑
l∈M

γklωl =
∑
h∈M

πhR0(h).

Substituting this equality into (4.1), we obtain

LV1 ≤
∑
h∈M

πhR0(h) + d2(k)y +
ď1

β̂

ǎ

d̂3
p(k)y + a(k)yz

= −(R∗
1 − 1)

∑
h∈M

πh[
ď1

β̂
d2(h) +

ď1

2β̂
σ2
2(h)] + d2(k)y +

ď1

β̂

ǎ

d̂3
p(k)y + a(k)yz

= −A+ d2(k)y +
ď1

β̂

ǎ

d̂3
p(k)y + a(k)yz, (4.2)

where
A = (R∗

1 − 1)
∑
h∈M

πh[
ď1

β̂
d2(h) +

ď1

2β̂
σ2
2(h)].

We can also get

LV2 ≤ − λ̂
x
+ β̌y + ď1 +

1

2
σ̌2
1 , (4.3)
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and
LV3 ≤ −p̂ y

z
+ ď3 +

1

2
σ̌2
3 . (4.4)

LV4 = (x+ y +
d̂2
2p̌
z)m+1[λ(k)− d1(k)x− a(k)yz +

d̂2
2p̌
p(k)y − d2(k)y −

d̂2
2p̌
d3(k)z]

+
1

2
(m+ 1)(x+ y +

d̂2
2p̌
z)m[σ2

1(k)x
2 + σ2

2(k)y
2 +

d̂22
4p̌2

σ2
3(k)z

2]

≤ λ̌(x+ y +
d̂2
2p̌
z)m+1 +

1

2
(m+ 1)σ̌2(x+ y +

d̂2
2p̌
z)m+2 − d̂0(x+ y +

d̂2
2p̌
z)m+2

≤ B − 1

2
[d̂0 −

1

2
(m+ 1)σ̌2][xm+2 + ym+2 + (

d̂2
2p̌
z)m+2], (4.5)

where

B = sup
(x,y,z)∈R3

+

{
λ̌(x+ y +

d̂2
2p̌
z)m+1 − 1

2
[d̂0 −

1

2
(m+ 1)σ̌2](x+ y +

d̂2
2p̌
z)m+2

}
.

In view of (4.2)-(4.5), we can obtain that

LV ≤ −MA+Mď2y +M
ď1

β̂

ǎ

d̂3
p̌y +Mǎyz − λ̂

x
+ β̌y + ď1 +

1

2
σ̌2
1

− p̂
y

z
+ ď3 +

1

2
σ̌2
3 +B − 1

2
[d̂0 −

1

2
(m+ 1)σ̌2][xm+2 + ym+2 + (

d̂2
2p̌
z)m+2].

Let us construct a bounded closed set as follows

Dε = {(x, y, z) ∈ R3
+ | ε1 ≤ x ≤ 1

ε1
, ε2 ≤ y ≤ 1

ε2
, ε3 ≤ z ≤ 1

ε3
},

where ε2 = ε21, ε3 = ε22 are small enough satisfying the following conditions

E − λ(k)

ε1
≤ −1, −MA+ F ≤ −1, −p̂ ε2

ε3
+G ≤ −1, (4.6)

− 1

8
[d̂0 −

1

2
(m+ 1)σ̌2](

1

ε1
)m+2 +H ≤ −1, (4.7)

− 1

8
[d̂0 −

1

2
(m+ 1)σ̌2](

1

ε2
)m+2 + I ≤ −1, (4.8)

− 1

8
[d̂0 −

1

2
(m+ 1)σ̌2](

1

ε3
)m+2 + J ≤ −1, (4.9)

where E, F , G, H, I and J are constants, which are respectively defined in (4.11),
(4.13), (4.15), (4.17), (4.19) and (4.21).

As a matter of convenience, we can divide the complementary set of Dε into the
following six domains

D1
ε = {(x, y, z) ∈ R3

+ | 0 < x < ε1}, D2
ε = {(x, y, z) ∈ R3

+ | 0 < y < ε2, x ≥ ε1},
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D3
ε = {(x, y, z) ∈ R3

+ | 0 < z < ε3, y ≥ ε2}, D4
ε = {(x, y, z) ∈ R3

+ | x > 1

ε1
},

D5
ε = {(x, y, z) ∈ R3

+ | y > 1

ε2
}, D6

ε = {(x, y, z) ∈ R3
+ | z > 1

ε3
}.

Then, R3
+ \Dε =

∪6
i=1D

i
ε. Next, we will show that

LV (x, y, z, k) ≤ −1, (x, y, z, k) ∈ (R3
+ \Dε)×M,

which is equivalent to verifying on the above six domains.
Case 1. If (x, y, z, k) ∈ D1

ε ×M, we have

LV ≤ Mď2y +M
ď1

β̂

ǎ

d̂3
p̌y +Mǎyz − λ̂

x
+ β̌y + ď1 +

1

2
σ̌2
1 + ď3 +

1

2
σ̌2
3

+ B − 1

2
[d̂0 −

1

2
(m+ 1)σ̌2][xm+2 + ym+2 + (

d̂2
2p̌
z)m+2]

≤ Mď2y +M
ď1

β̂

ǎ

d̂3
p̌y + β̌y − 1

4
[d̂0 −

1

2
(m+ 1)σ̌2]ym+2

+ Mǎyz − 1

4
[d̂0 −

1

2
(m+ 1)σ̌2][ym+2 + (

d̂2
2p̌
z)m+2]

+ ď1 +
1

2
σ̌2
1 + ď3 +

1

2
σ̌2
3 +B − λ̂

x

≤ − λ̂

ε1
+ E, (4.10)

where

E = sup
(x,y,z)∈R3

+

{Mď2y +M
ď1

β̂

ǎ

d̂3
p̌y +Mǎyz + β̌y + ď1 +

1

2
σ̌2
1 + ď3 +

1

2
σ̌2
3

+ B − 1

2
[d̂0 −

1

2
(m+ 1)σ̌2][xm+2 + ym+2 + (

d̂2
2p̌
z)m+2]}. (4.11)

From (4.6), we can easy show that

LV ≤ −1, (x, y, z) ∈ D1
ε .

Case 2. If (x, y, z, k) ∈ D2
ε ×M, we get that

LV ≤ −MA+Mď2ε2 +M
ď1

β̂

ǎ

d̂3
p̌ε2 +Mǎε2z + β̌ε2 + ď1 +

1

2
σ̌2
1 + ď3 +

1

2
σ̌2
3

+ B − 1

2
[d̂0 −

1

2
(m+ 1)σ̌2][xm+2 + ym+2 + (

d̂2
2p̌
z)m+2].

In addition

LV ≤ −MA+Mď2ε2 +M
ď1

β̂

ǎ

d̂3
p̌ε2 +Mǎε2(z

m+2 + 1) + β̌ε2 + ď1 +
1

2
σ̌2
1

+ ď3 +
1

2
σ̌2
3 +B − 1

2
[d̂0 −

1

2
(m+ 1)σ̌2][xm+2 + ym+2 + (

d̂2
2p̌
z)m+2].
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Then

LV ≤ −MA+Mď2ε2 +M
ď1

β̂

ǎ

d̂3
p̌ε2 +Mǎε2 + β̌ε2 + ď1 +

1

2
σ̌2
1 + ď3

+
1

2
σ̌2
3 +B − 1

2
(
d̂2
2p̌

)m+2[d̂0 −
1

2
(m+ 1)σ̌2]zm+2 +Mǎε2z

m+2

≤ −MA+ F, (4.12)

where

F = sup
(x,y,z)∈R3

+

{Mď2ε2 +M
ď1

β̂

ǎ

d̂3
p̌ε2 +Mǎε2 + β̌ε2 + ď1 +

1

2
σ̌2
1 + ď3

+
1

2
σ̌2
3 +B − 1

2
(
d̂2
2p̌

)m+2[d̂0 −
1

2
(m+ 1)σ̌2]zm+2 +Mǎε2z

m+2}. (4.13)

In view of (4.6), we can obtain that

LV ≤ −1, (x, y, z) ∈ D2
ε .

Case 3. If (x, y, z, k) ∈ D3
ε ×M, we know that

LV ≤ −p̂ y
z
+ ď1 +

1

2
σ̌2
1 + ď3 +

1

2
σ̌2
3 +B +Mď2y +M

ď1

β̂

ǎ

d̂3
p̌y

+ Mǎε3y + β̌y − 1

2
[d̂0 −

1

2
(m+ 1)σ̌2]ym+2 ≤ −p̂ ε2

ε3
+G, (4.14)

where

G = sup
(x,y,z)∈R3

+

{ď1 +
1

2
σ̌2
1 + ď3 +

1

2
σ̌2
3 +B +Mď2y +M

ď1

β̂

ǎ

d̂3
p̌y

+ Mǎε3y + β̌y − 1

2
[d̂0 −

1

2
(m+ 1)σ̌2]ym+2}. (4.15)

It follows from (4.6), we can get that

LV ≤ −1, (x, y, z) ∈ D3
ε .

Case 4. If (x, y, z, k) ∈ D4
ε ×M, we obtain that

LV ≤ Mď2y +M
ď1

β̂

ǎ

d̂3
p̌y +Mǎyz + β̌y + ď1 +

1

2
σ̌2
1 + ď3 +

1

2
σ̌2
3 +B

− 1

2
[d̂0 −

1

2
(m+ 1)σ̌2][xm+2 + ym+2 + (

d̂2
2p̌
z)m+2]

≤ Mď2y +M
ď1

β̂

ǎ

d̂3
p̌y + β̌y − 1

8
[d̂0 −

1

2
(m+ 1)σ̌2]ym+2

+ Mǎyz − 1

4
[d̂0 −

1

2
(m+ 1)σ̌2][ym+2 + (

d̂2
2p̌
z)m+2]

+ ď1 +
1

2
σ̌2
1 + ď3 +

1

2
σ̌2
3 +B − 1

8
[d̂0 −

1

2
(m+ 1)σ̌2](

1

ε1
)m+2. (4.16)
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Hence, we have
LV ≤ −1

8
[d̂0 −

1

2
(m+ 1)σ̌2](

1

ε1
)m+2 +H,

where

H = sup
(x,y,z)∈R3

+

{Mď2y +M
ď1

β̂

ǎ

d̂3
p̌y + β̌y − 1

8
[d̂0 −

1

2
(m+ 1)σ̌2]ym+2 +Mǎyz

− 1

4
[d̂0 −

1

2
(m+ 1)σ̌2][ym+2 + (

d̂2
2p̌
z)m+2] + ď1 +

1

2
σ̌2
1 + ď3 +

1

2
σ̌2
3 +B}.(4.17)

From inequality (4.7), we can obtain that

LV ≤ −1, (x, y, z) ∈ D4
ε .

Case 5. If (x, y, z, k) ∈ D5
ε ×M, we have

LV ≤ Mď2y +M
ď1

β̂

ǎ

d̂3
p̌y +Mǎyz + β̌y + ď1 +

1

2
σ̌2
1 + ď3 +

1

2
σ̌2
3 +B

− 1

2
[d̂0 −

1

2
(m+ 1)σ̌2][xm+2 + ym+2 + (

d̂2
2p̌
z)m+2]

≤ −1

8
[d̂0 −

1

2
(m+ 1)σ̌2](

1

ε2
)m+2 + I, (4.18)

where

I = sup
(x,y,z)∈R3

+

{Mď2y +M
ď1

β̂

ǎ

d̂3
p̌y + β̌y − 1

8
[d̂0 −

1

2
(m+ 1)σ̌2]ym+2 +Mǎyz

− 1

4
[d̂0 −

1

2
(m+ 1)σ̌2][ym+2 + (

d̂2
2p̌
z)m+2] + ď1 +

1

2
σ̌2
1 + ď3 +

1

2
σ̌2
3 +B}.(4.19)

Together with inequality (4.8), we can obtain that

LV ≤ −1, (x, y, z) ∈ D5
ε .

Case 6. If (x, y, z, k) ∈ D6
ε ×M, we get

LV ≤ Mď2y +M
ď1

β̂

ǎ

d̂3
p̌y +Mǎyz + β̌y + ď1 +

1

2
σ̌2
1 + ď3 +

1

2
σ̌2
3 +B

− 1

2
[d̂0 −

1

2
(m+ 1)σ̌2][xm+2 + ym+2 + (

d̂2
2p̌
z)m+2]

≤ −1

8
[d̂0 −

1

2
(m+ 1)σ̌2](

1

ε3
)m+2 + J, (4.20)

where

J = sup
(x,y,z)∈R3

+

{Mď2y +M
ď1

β̂

ǎ

d̂3
p̌y + β̌y − 1

8
[d̂0 −

1

2
(m+ 1)σ̌2]ym+2 +Mǎyz

− 1

4
[d̂0 −

1

2
(m+ 1)σ̌2][ym+2 + (

d̂2
2p̌
z)m+2] + ď1 +

1

2
σ̌2
1 + ď3 +

1

2
σ̌2
3 +B}.(4.21)
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By inequality (4.9), we can obtain that

LV ≤ −1, (x, y, z) ∈ D6
ε .

Clearly, in view of Eqs. (4.10), (4.12), (4.14), (4.14), (4.18) and (4.20), for any
small enough ε1, ε2 and ε3, we can get that

LV ≤ −1, (x, y, z) ∈ R3
+ \Dε.

Hence, the condition (iii) of Lemma 2.1 is satisfied. This completes the proof.

5. Extinction of the virus

For the dynamic behavior of epidemic models, finding the condition for virus ex-
tinction is a major concern. This has very important practical significance for the
prevention of infectious diseases [15]. In this section, we will give clear result of the
virus extinction in the system (1.3).

We define
R∗

2 =
β̌
∑

h∈M πhλ(h)

d̂1
∑

h∈M πh(d2(h) +
1
2σ

2
2(h))

.

Theorem 5.1. Suppose the stochastic system (1.3) with initial value in R3
+ ×M,

and R∗
2 < 1, then y(t) will go to zero exponentially with probability one for system

(1.3).

Proof. Define V (t) = ln y(t), applying the generalized Itô′s formula, we can get
that

dV (t) = [β(r(t))x− a(r(t))z − d2(r(t))−
1

2
σ2
2(r(t))]dt+ σ2(r(t))dB2(t)

≤ [β(r(t))x− d2(r(t))−
1

2
σ2
2(r(t))]dt+ σ2(r(t))dB2(t). (5.1)

Integrating both sides of (5.1) from 0 to t, yields

ln y(t)− ln y(0) ≤ β̌

∫ t

0

x(s)ds−
∫ t

0

[d2(r(s)) +
1

2
σ2
2(r(s))]ds+

∫ t

0

σ2(r(s))dB2(s).

Note that the strong law of large numbers of martingales [16] and r(t) is irreducible,
we can obtain

lim sup
t→∞

1

t
ln y(t) < β̌ lim sup

t→∞

1

t

∫ t

0

x(s)ds−
∑
h∈M

πh(d2(h) +
1

2
σ2
2(h)). (5.2)

Consider the following stochastic systemdψ(t, r(t)) = [λ(r(t))− d1(r(t))ψ(t)]dt+ σ1(r(t))ψ(t)dB1(t),

ψ(0, r(0)) = x(0, r(0)).

By the stochastic comparison principle, we can obtain

x(t) ≤ ψ(t), a.s.
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Clearly, we can get that∫ t

0

d1(r(s))ψ(s)ds =

∫ t

0

λ(r(s))ds− ψ(t) + ψ(0) +

∫ t

0

σ1(r(s))ψ(s)dB1(s).

Hence, we can obtain that

lim sup
t→∞

1

t

∫ t

0

ψ(s)ds ≤ 1

d̂1

∑
k∈M

πkλ(k).

Further, we have

lim sup
t→∞

1

t

∫ t

0

x(s)ds ≤ lim sup
t→∞

1

t

∫ t

0

ψ(s)ds ≤ 1

d̂1

∑
k∈M

πkλ(k). (5.3)

Substituting (5.3) into (5.2), we can obtain that

lim sup
t→∞

1

t
ln y(t) <

β̌

d̂1

∑
h∈M

πhλ(h)−
∑
h∈M

πh(d2(h) +
1

2
σ2
2(h))

= (R∗
2 − 1)

∑
h∈M

πh(d2(h) +
1

2
σ2
2(h))

< 0.

This completes the proof.

6. Discussions and numerical simulations

In order to better explain the results of our theorem to the readers, we will provide
numerical simulations to the results of the theorem. The numerical method used
here is Milstein′s Higher Order method [17]. Set the finite state space of continuous
time Markov chain r(t)t>0 as M = {1, 2, 3}, and its generator Γ as follows

Γ =


−1/3 1/6 1/6

1/4 −1/2 1/4

1/4 1/4 −1/2

 .
We can get that the unique stationary distribution π = (π1, π2, π3) =

(
3
7 ,

2
7 ,

2
7

)
.

In the work of Wang and Liu et al, the author gives the range of values for each
parameters. According to the work, the parameters value in the stochastic system
(1.3) are selected as follows [2].

λ(1) = 10, λ(2) = 15, λ(3) = 20; d1(1) = 0.1, d1(2) = 0.12, d1(3) = 0.15;

β(1) = 0.03, β(2) = 0.04, β(3) = 0.05; d2(1) = 0.6, d2(2) = 1, d2(3) = 1.8;

a(1) = 0.1, a(2) = 0.3, a(3) = 0.5; d3(1) = 0.2, d3(2) = 0.3, d3(3) = 0.4;

p(1) = 0.4, p(2) = 0.5, p(3) = 0.6;σ1(1) = 0.03, σ1(2) = 0.036, σ1(3) = 0.045;

σ2(1) = 0.12, σ2(2) = 0.2, σ2(3) = 0.36;σ3(1) = 0.06, σ3(2) = 0.09, σ3(3) = 0.12;
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Figure 1. The Markovian chain of the ergodic system, state space M = {1, 2, 3}

Obviously

R∗
1 =

∑
h∈M πhλ(h)

ď1

β̂

∑
h∈M πh(d2(h) +

1
2σ

2
2(h))

= 2.6346 > 1, d̂0 > σ̌2/2.

Therefore, according to Theorem 4.1, the solution (x(t), y(t), z(t)) of stochastic
system (1.3) is positive recurrence and admits a unique ergodic stationary distribu-
tion. These assertion are support by Figs 1-2, respectively.

Figure 2. The solution of stochastic system (1.3) and its histogram with initial value condition (x(0) =
80, y(0) = 15, z(0) = 40, k = 3)

In the Figure 2, the solution trajectories for stochastic system (1.3) is represented
by the green line and the corresponding deterministic system (1.1) is represented
by red line. It is vivid show that the stochastic system (1.3) switches from one state
to other state according to the law of Markov chain r(t). The right three subgraphs
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describe the density function of the stationary distribution of x(t), y(t), z(t) respec-
tively. It is displayed directly that the distribution diagrams have local wave crests
are corresponding to the three states {1, 2, 3} of the Markov chain r(t).

To demonstrate Theorem 5.1, the part parameters value in the stochastic system
(1.3) are selected as follows

d1(1) = 0.18, d1(2) = 0.19, d1(3) = 0.2;β(1) = 0.01, β(2) = 0.012, β(3) = 0.013,

other parameters take the same values as Figure 2.
We can easy show that

R∗
2 =

∑
h∈M πhλ(h)

d̂1

β̌

∑
h∈M πh(d2(h) +

1
2σ

2
2(h))

= 0.9514 < 1.

Figure 3. The solution of stochastic system (1.3) and its histogram with initial value condition (x(0) =
80, y(0) = 15, z(0) = 40, k = 3)

Obviously, the conditions in Theorem 5.1 are satisfied. In Figure 3, it is displayed
directly that the solution y(t), z(t) of the stochastic system (1.3) goes to extinction.

In particular, it can be seen from R∗
1 and R∗

2 that due to the large value of λ, our
results have a smaller limit on the disturbance intensity σi(k)(i = 1, 2, 3, k ∈ M)
and have a broad application space.
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From [10], the threshold R∗
0 of the basic reproductive number in the deterministic

model (1.1) determines persistence or extinction of the virus. It is easy to show the
value of R∗

0 consists of λ, β, d1 and d2. As can be seen from the results of this
paper on the stochastic model (1.3), the persistence and extinction of the virus is
also affected by the environment. In addition, we can obtain the results of [10] for
the deterministic model (1.1) if σi(k) = 0, k ∈ M = {1}, i = 1, 2, 3 holds.
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