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The Center Conditions and Hopf Cyclicity for a
3D Lotka-Volterra System∗

Qinlong Wang1, Jingping Lu1, Wentao Huang2,† and Bo Sang3

Abstract The main objective of this paper is not only to find necessary and
sufficient conditions for the existence of a center on a local center manifold for a
three dimensional Lotka-Volterra system, but also to determine the maximum
number of limit cycles that can bifurcate from the positive equilibrium as a
fine focus. Firstly, the singular point quantities are computed and simplified
to obtain necessary conditions for local integrability, and Darboux method
is applied to show the sufficiency. Then, the Hopf bifurcation on the center
manifold is investigated, from this, the conclusion of at most five small limit
cycles generated in the vicinity of the equilibrium is obtained. To the best
of our knowledge, this is the first case with five possible limit cycles for the
cyclicity of 3D Lotka-Volterra systems.
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1. Introduction

We consider the three-dimensional (3D) Lotka-Volterra system:

dxi
dt

= xi(ri −
3∑
j=1

aijxi), i = 1, 2, 3 (LV)

when ri > 0, aij > 0 (i, j = 1, 2, 3), (LV) is called the competitive 3D LV system,
which is very classical one to describe the relations of three species that share
and compete for the same resources, habitat or territory (interference competition).
Since 1994, Hofbauer and So [9] conjectured the number of limit cycles is at most two
for the competitive (LV), the intensive investigations on the limit cycle bifurcation
have been triggered, which are generally based on the remarkable result of Hirsch,
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Zeeman [28]: the competitive 3D LV systems have only 33 classes of all possible
stable phase portraits and only classes 26-31 of those can have limit cycles.

Though Xiao and Li [25] proved that the number is finite for of the 3D com-
petitive LV system without a heteroclinic polycycle, the maximum number of limit
cycles from the interior fixed point in Zeeman’s six classes 26-31 remains open up till
now (see e.g. [8,15,16,22,27]). At present, four limit cycles is the maximum number
given respectively by Yu et al. [27] for class 26 and class 27 by Wang et al. [22] for
class 29. As for the non-competitive 3D LV system, the limit cycles bifurcation has
been paid little attention to, an example of four possible limit cycles is given by
Wang et al. in [21], here we will continue to consider a 3D non-competitive system
as follows

ẋ = diag(x)A(x− E)′, (1.1)

where x = (x1, x2, x3), E = (1, 1, 1) and ()′ denotes the transpose of a vector, and
the interaction matrix

A =


0 −n −ν

−h λ −s

−1 0 0


where n, h, s, ν and λ are real numbers. Obviously, E is the unique positive equi-
librium of system (1.1).

In fact, the works on limit cycle bifurcation of systems in R3 are not unusually
seen, especially for the Hopf bifurcation, except on the above 3D LV systems, ex-
tensive investigations on chaotic systems have been carried out (see [1, 23] and the
references therein). Moreover, for the more general higher-dimensional systems, the
maximal number of limit cycles which may exist in the vicinity of a Hopf singular
point under proper perturbations, i.e. the cyclicity of Hopf bifurcation, is attracting
more and more attentions as a very challenging problem. Some good outcomes have
also appeared, see for example [26] and references therein.

Furthermore, the problem about the number of limit cycles bifurcated at Hopf
point, i.e., the cyclicity, is closely related to center-focus determination. For the
center problem on the center manifold, there have been some valid research ap-
proaches, such as the averaging theory considered in [2,11], the technique of inverse
Jacobi multiplier studied in [3, 4], the simplest normal form method given in [20]
and the formal first integral method given in [7]. Here, in order to investigate the
center problem, we apply the formal series method introduced in [24] to find all the
necessary conditions of local integrability, as an upgraded version of the method giv-
en in [10] for planar systems, which is also very valid to study the Hopf bifurcation
(see e.g. [22, 23]).

This paper is organized as follows. In Section 2, after system (1.1) being trans-
formed, the corresponding singular point quantities are computed via the recursion
formula derived. In Section 3, the singular point quantities are simplified and the
Darboux theory is applied to show the sufficiency of integrability, then the center
conditions on the center manifold are determined. In Section 4, the multiple Hopf
bifurcations at the equilibrium is investigated for the corresponding system, and
it is proved at most five small limit cycles from the positive equilibrium of system
(1.1) via Hopf bifurcation. This is an interesting example and also the first case
with five possible limit cycles for the cyclicity problem of the 3D LV systems.
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2. Calculation of singular point quantities

Firstly, we transform the equilibrium E to the origin, set x̃ = x − E, then system
(1.1) takes the form

ẋ = diag(E + x)Ax′ (2.1)

we still use xi instead of x̃i for i = 1, 2, 3. Thus, for the center problem and Hopf
bifurcation of the positive equilibrium E for system (1.1), we only need to investigate
the cases of the origin in system (2.1). Furthermore, we choose the interaction
matrix A such that the origin of system (2.1) can generate a Hopf bifurcation, that
is, suppose A has a pair of purely imaginary eigenvalues ±iω(ω>0) and one negative
real eigenvalue. To satisfy the necessary eigenvalue conditions, we need

Det(A) = (A11 +A22 +A33)tr(A),

where tr(A) =
∑3
i=1 aii, A11 = a22a33 − a23a32, A22 = a11a33 − a13a31, A33 =

a22a11 − a12a21. It yields that

ν = −ω2 − hn, λ = s
h

(2.2)

where hs < 0. Thus, one can construct a matrix P which transforms A to be a
diagonal one, namely

P−1AP =


iω 0 0

0 −iω 0

0 0 sh−1

 where P =


−iω iω −nsh−1

h h hn+ s2h−2 + ω2

1 1 n


Moreover, using the transformation: (x1, x2, x3)′ = P (z, w, u)′, and after a time
scaling: T = iωt, system (2.1) can become the following complex system:

dz
dT = z + a101uz + a011uw + a200z

2 + a020w
2 + a002u

2 = Z,

dw
dT = −(w + b011uz + b101uw + b020z

2 + b200w
2 + b002u

2) = −W,
du
dT = id001u+ d101uz + d011uw + d200z

2 + d020w
2 + d002u

2 = U

(2.3)

where u ∈ R, z, w, T ∈ C, and

a020 = (h3n−h2n−hω2−sω2)−iω(s−hω2)
2ω(is+hω) ,

a002 = h2s2n2(h+s)ω−ins(h5 n2−h6 n2−2h3 n s2−hn s3−s4+(h4 n−2h5 n−2h2 s2)ω2−h4 ω4)
2h4ω2n(is+hω) ,

a011 = hn(s2−hω2−h2n+h2ω2+h3n−sω2)−i(h+s)nsω
2h2ω2 ,

a101 = n(is−hω)(h4 n−h3 n+h s2−h2 ω2+h3 ω2+h sω2−i(h−s)sω)
2h2ω2(is+hω) ,

a200 = −a020, bkjl = ākjl, (kjl = 200, 020, 002, 011, 101),

d200 = (h−1)h3

s2+h2ω2 , d020 = −d200, d011 = h3 n−h2 n+s2+h2 ω2

ω(is−hω) , d101 = h3 n−h2 n+s2+h2 ω2

ω(is+hω) ,

d002 = is(h5 n2−h6 n2−2h3 n s2−s4−2h5 nω2−2h2 s2 ω2−h4 ω4)
h3ω(s2+h2ω2) , d001 = − is

hω .
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In fact, by means of transformation: z = y1 + iy2, w = y1 − iy2, T = i t, we can
get its real conjugate system from system (2.3):

dy1
dt = −y2 +X2(y1, y2, u) = X,

dy2
dt = y1 + Y2(y1, y2, u) = Y,

du
dt = s

hω u+ U2(y1, y2, u) = U

(2.4)

where X2, Y2 and U2 are all quadratic homogeneous polynomials in (y1, y2, u) de-
termined by the coefficients of system (2.3).

According to the center manifold theorem [5], the three-dimensional system (2.4)
has an approximation to the center manifold taking the form

u = u(y1, y2) =
4(h− 1)h4ω

(s2 + h2ω2)(s2 + 4h2ω2)
(hωy21 + sy1y2 − hωy22) + · · · . (2.5)

Substituting (2.5) into the equations of system (2.4), we get the following real planar
polynomial differential system

dy1
dt = −y2 +X2(y1, y2, u(y1, y2)) = X(y1, y2),

dy2
dt = y1 + Y2(y1, y2, u(y1, y2)) = Y (y1, y2)

(2.6)

System (2.6) is also called the equations on the center manifold or reduction sys-
tem of (2.4). It is well-known, the origin of system (2.6) is center-focus type,
we transform system (2.6) into the following form under the polar coordinates:
y1 = r cos θ, y2 = r sin θ,

dr
dθ =

r
∞∑

k=1

ϕk(θ)r
k

1+
∞∑

k=1

ψk(θ)rk
(2.7)

where ϕk(θ) and ψk(θ) are homogeneous polynomials in cos θ and sin θ.

For sufficiently small ~, let

∆(~) = r(2π, ~)− ~, r = r(θ, ~) =
∞∑
m=1

vm(θ)~m (2.8)

be the Poincaré succession function and the solution of Eq.(2.7) satisfying the initial-
value condition r|θ=0 = ~. Moreover, for (2.8) we have

v1(θ) = 1, vm(0) = 0, m = 2, 3, · · · . (2.9)

Definition 2.1 ( [24]). For the succession function in (2.8), if v2(2π) = v3(2π) =
· · · = v2k(2π) = 0 and v2k+1(2π) 6= 0, then the origin is called the fine focus or
weak focus of order k, and the quantity of v2k+1(2π) is called the k-th focal value
at the origin on local center manifold of system (2.4) or (2.3), k = 1, 2, · · · .

In order to investigate Hopf cyclicity of the origin for system (2.4) or system
(2.3) restricted to the center manifold, by applying the formal series method, and
from Theorem 3.1 in [24], we have the following theorem.
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Theorem 2.1. For the system (2.3), setting c110 = 1, c101 = c011 = c200 = c020 =
0, ckk0 = 0, k = 2, 3, · · · , we can derive successively and uniquely the terms of the
following formal series:

F (z, w, u) = zw +
∞∑

α+β+γ=3

cαβγz
αwβuγ (2.10)

such that

dF

dT
=
∂F

∂z
Z − ∂F

∂y
W +

∂F

∂u
U =

∞∑
m=1

µm(zw)m+1 (2.11)

and if α 6= β or α = β and γ 6= 0, cαβγ is determined by following recursive formula:

cαβγ = 1
(α−β)+id001γ

[b002(1 + β)cα,β+1,γ−2 + (d002 − a101α+ b101β − d002γ)cα,β,γ−1 − (b200 −

b200β + d011γ)cα,β−1,γ − d020(1 + γ)cα,β−2,γ+1 + (a200 − a200α− d101γ)cα−1,β,γ+

b011(1 + β)cα−1,β+1,γ−1 + b020(1 + β)cα−2,β+1,γ − d200(1 + γ)cα−2,β,γ+1−

(1 + α)(a020cα+1,β−2,γ + a011cα+1,β−1,γ−1 + a002cα+1,β,γ−2)]

and for any positive integer m, µm is determined by following recursive formula:

µm =d200cm−2,m,1 − b020(m+ 1)cm−2,m+1,0 + a200(m− 1)cm−1,m,0 + d020cm,m−2,1−

b200(m− 1)cm,m−1,0 + a020(m+ 1)cm+1,m−2,0

and when α < 0 or β < 0 or γ < 0 or γ = 0 and α = β, we have let cα,β,γ = 0.

Definition 2.2. The µm in (2.11) is called the m-th singular point quantity at
the origin of system (2.3), and more if all the singular point quantities vanish, i.e.
µm = 0, m = 1, 2, · · · , then the origin of system (2.4) or (2.3) is a center on the
local center manifold at the origin.

Lemma 2.2 ( [24]). For system (2.3), the singular point quantity µm is algebraic
equivalent to the m-th focal value v2m+1 at the origin of system (2.4), i.e., for any
positive integer m = 2, 3, · · · , if v3 = v5 = · · · = v2m−1 = 0 and µ1 = µ2 = · · · =
µm−1 = 0 hold, then v2m+1 = iπµm.

Thus, from the Lemma 2.2, by the calculation of singular point quantities of the
origin for system (2.3), one can figure out the stability and Hopf bifurcation at the
origin of system (2.4) on the center manifold. Now, applying the recursive formulas
in Theorem 2.1 in the Mathematica symbolic computation system, we can obtain
the first five singular point quantities easily:

µ1 = i(1− h)h3nsM1[ω d1 d2]−1,

µ2 = i(1− h)h3nsM2 [3ω3 d31 d
2
2 d3]−1,

µ3 = i(1− h)h3nsM3 [144ω5 d51 d
4
2 d

2
3 d4]−1,

µ4 = i(1− h)h3nsM4 [4320ω7 d61 d
6
2 d

3
3 d

2
4 d5]−1,

µ5 = i(1− h)h3nsM5 [1555200ω9 d91 d
8
2 d

4
3 d

3
4 d

2
5 d6]−1
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where

d1 = s2 + h2ω2, d2 = s2 + 4h2ω2, d3 = s2 + 9h2ω2,

d4 = (s2 + 16h2ω2)(4s2 + h2ω2),

d5 = (9s2 + 4h2ω2)(9s2 + h2ω2)(4s2 + 9h2ω2)(s2 + 25h2ω2),

d6 = (16s2 + h2ω2)(4s2 + 25h2ω2)(s2 + 36h2ω2),

M1 = (h+ h2 + s)ω2 + s2 + n(h3 − h2)

and we have

M2 =

3∑
i=0

M2in
i, M3 =

5∑
i=0

M3in
i, M4 =

7∑
i=0

M4in
i, M5 =

9∑
i=0

M5in
i

where the M3i,M3i,M4i,M5i are all polynomials only in h, s and ω2 (which are
available in Email address of the corresponding author).

3. Center conditions of the system

The maximum number of limit cycles generated from the weak focus via Hopf
bifurcation is related closely to its highest order, from this, we must analyze the
above singular point quantities obtained in the last section. Obviously, being di 6=
0, i = 1, 2, · · · , 6, in order to obtain more higher order of the weak focus, we set
(1− h)hn s 6= 0, and from µ1 = 0, we let M1 = 0, then get

n =
s2 + hω2 + h2 ω2 + s ω2

(1− h)h2
, (h 6= 0, 1). (3.1)

And substituting n of (3.1) into Mi, i = 2, 3, 4, 5 yields four expressions:

M2 = 4h(h+ s)ω4d21d2G2,

M3 = 8h(h+ s)ω4d31d
2
2d7G3,

M4 = 8h(h+ s)ω4d21d
3
2d7d8G4,

M5 = 40h(h+ s)ω4d31d
4
2d7d8d9G5

where

d7 = 4s2 + h2ω2,

d8 = (9 s2 + h2 ω2) (9 s2 + 4h2 ω2) (4 s2 + 9h2 ω2),

d9 = (16 s2 + h2 ω2)(4 s2 + 25h2 ω2),

G2 = h s2 − 3h2 ω2 + s ω2 + 4h sω2 + 3hω4

and G3, G4, G5 are all polynomials only in h, s and ω2, we would not present them
here due to their lengthy expressions, but one can easily calculate them.

One can note easily that d7, d8, d9 also never become zero, and h(h + s) 6= 0
from the limited coefficients conditions (2.2) in advance for system (2.1). Similarly,
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in order to detect more higher order of the weak focus, we compute respectively the
polynomial remainders of G3, G4, G5 for G2 as follows

PolynomialRemainder[G3, G2, s] = 12ω12(h2+ω2)
h10 G̃3,

PolynomialRemainder[G4, G2, s] = 12ω28(h2+ω2)
h26 G̃4,

PolynomialRemainder[G5, G2, s] = 12ω52(h2+ω2)
h50 G̃5,

(3.2)

where G̃3, G̃4, G̃5 are also all polynomials only in h, s and ω2, and the highest degree
is 1 for s in each G̃i, i = 3, 4, 5, which is not difficult to understand due to the highest
degree 2 of s in G2.

Furthermore, we consider µ3 = 0, and only let G̃3 = 0, then we get

s = 3h sn
sd

(3.3)

and substituting it into G2, G̃4, G̃5, we obtain

G2 = 9h19(1 + 6h+ 9h2 + ω2)fnf2s
−2
d ,

G̃4 = 9h19(1 + 6h+ 9h2 + ω2)fnf4s
−1
d ,

G̃5 = 9h19(1 + 6h+ 9h2 + ω2)fnf5s
−1
d

(3.4)

where
fn = 9ω4 + (1− 10h+ 10h2)ω2 + h2(h+ 3)2

and

sn =

19∑
i=0

snih
i, sd =

19∑
i=0

sdih
i, f2 =

16∑
i=0

f2ih
i, f4 =

46∑
i=0

f4ih
i, f5 =

94∑
i=0

f5ih
i

where the sni, sdi, f2i, f4i, f5i are all polynomials only in ω2.
From the above simplifying process, we can obtain the reduced singular point

quantities:

µ1 = i
ω d1d2

ns(1− h)h3M1,

µ2 = 4i
3d1d2d3

ns(1− h)(h+ s)h2G2,

µ3 = 2i d7
3d21d

2
2d

2
3d4h

6 ns(1− h)(h+ s)(h2 + ω2)ω11G̃3,

µ4 = i d7d8
5d31d2d

2
3d4sdh

3 ns(1− h)(h+ s)(h2 + ω2)(1 + 6h+ 9h2 + ω2)ω25fn f4,

µ5 = i d7d8d9
360d61d

4
2d

4
3d

3
4d

2
5d6sdh

27 ns(1− h)(h+ s)(h2 + ω2)(1 + 6h+ 9h2 + ω2)ω47fn f5.

(3.5)
In the above expressions, we have already let µ1 = 0 for µ2 and µ3, while for µ4

and µ5 we have already let µ1 = µ2 = µ3 = 0.
One can know that fn = 0 in (3.4) holds if and only if

ω2 =
10h− 10h2 − 1±

√
(1 + 4h)2(1− 28h+ 4h2)

18
. (3.6)

However, on the right-hand side of (3.6), the expression can all be proved negative,
which contradicts with ω2 > 0, thus fn 6= 0 in (3.4), at the same time, 1 + 6h +
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9h2 + ω2 6= 0 holds. Therefore, we only need to consider whether f2, f4 and f5 can
disappear simultaneously.

Next, by computing the polynomial resultants of f4, f5 for f2 with respect to h
via Mathematica, we obtain

Resultant[f4, f2, h] = F4FcF44,

Resultant[f5, f2, h] = F5FcF84

(3.7)

where F4, F5 are two polynomials only in ω2 and F4F5 6= 0, and more Fc, F44, F84

as follows

Fc = 8− 381ω2 − 459ω4 + 486ω6, F44 =
44∑
i=0

ai ω
2i, F84 =

84∑
i=0

bi ω
2i (3.8)

where all ai, bi ∈ R. On the one hand, we have

Resultant[F84, F44, ω
2] 6= 0 (3.9)

which shows that F44 and F84 have no common zero point. On the other hand,
from

Resultant[f2, Fc, ω
2] = 1594323h3H45,

Resultant[f4, Fc, ω
2] = −3188646h3H135,

Resultant[H45, H135, h] 6= 0

(3.10)

where H45 and H135 are all polynomials only in h, with degree 45, 135 respectively,
we know that the roots of Fc = 0 are not in the solution set of the group of f2 = 0
and f4 = 0, similarly for the group of f2 = 0 and f5 = 0.

Therefore, the above symbolic computations show that f2 = 0, f4 = 0, f5 = 0
have no solutions, namely f2, f4, f5 have no common zero, but some values of h
and ω2 should be found such that f2 = f4 = 0, which will be discussed in the next
section.

According to the above analysis, we have the following lemma.

Lemma 3.1. For system (2.3), the first five singular point quantities of the origin:
µi, i = 1, 2, 3, 4, 5 in (3.5) are all zero if and only if n(1−h) = 0, i.e. n = 0 or h = 1
holds.

Furthermore, from Definition 2.2 and Lemma 2.2, we have

Theorem 3.2. For system (2.4), the origin is a center on the local center manifold
if and only if the following condition is satisfied:

n = 0 or h = 1. (3.11)

Proof. From the lemma 3.1, the proof of the necessity is obvious. Now we prove
the sufficient condition, this technique derives from the Darboux theory of integra-
bility (one can see some notions and facts in [6, 12–14,17–19]).
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Case (I): if h = 1 in the conditions (3.11) holds, then system (2.4) has the
corresponding form as follows

dy1
dt = −y2 − 2y1y2 + 1

2ωns(n+ s2 + ω2)u2,

dy2
dt = y1 + 1

2ω2 [4ω3y1y2 + 2ns(s− ω2)uy1 − 2ns(1 + s)ωuy2

+ ns2(2n+ ns+ s2 + ω2)u2],

du
dt = s

ωu−
1
ω [2suy1 − 2nωuy2 + s(2n+ s2 + ω2)u2].

(3.12)

And we can figure out easily one algebraic invariant surface for system (3.15):
F (y1, y2, u) = u, in fact, there exists a polynomial K(y1, y2, u) = 1

ω [s − 2sy1 +

2nωy2 − s(2n+ s2 − ω2)u], as the cofactor of F (x, y, u), such that dF
dt

∣∣
(3.12)

= KF .

One can observe that F (y1, y2, u) = u = 0 is just the center eigenspace, i.e., (y1, y2)-
plane. Thus it forms a local center manifold in a neighborhood of the origin. We
substitute u = 0 into the first and second equations of the system defined by system
(3.15), we have the differential equations

dy1
dt

= −y2(1 + 2y1),
dy2
dt

= y1(1 + 2ωy2) (3.13)

which has a first integral:

H(y1, y2) =
1

2ω
(y2 + ωy1)− 1

4ω2
[ln |1 + 2ωy2|+ ω2 ln |1 + 2y1|], (3.14)

then the origin is a center for systems (3.13). Therefore the origin is a center for
the flow of system (2.4) restricted to a center manifold.

Case (II): if n = 0 in the conditions (3.11) holds, then system (2.4) has the
corresponding form as follows

dy1
dt = −y2(1 + 2y1),

dy2
dt = y1(1 + 2ωy2),

du
dt = s

hωu+ 2s
ω uy1 −

4(h−1)h3

s2+h2ω2 y1y2 − 2h3ω2

s2+h2ω2uy1

− 2hs2

s2+h2ω2uy2 + s(s2+h2ω2)
h3ω u2.

(3.15)

Clearly, the first two equations in system (3.15) are independent on the variable u,
and just the same as the two in system (3.13), thus (3.14) is also a first integral of
system (3.15). Hence, the origin is a center for the flow of system (2.4) restricted
to a center manifold.

4. Hopf cyclicity of the system

In this section, we turn to discussion the maximal number of limit cycles from the
origin for system (2.1). We need to figure out the highest order of the origin as
a weak focus. From the above analyzing in the last section, we have known that
f2, f4 and f5 have no common zero, but f2 and f4 should have ones.

In fact, the equations f2 = 0 and f4 = 0 are coupled and there exist possible
solutions, only 2 groups (can up to 98 digit points in executing the procedure
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”NSolve” of the computer algebraic system Mathematica to solve the two equations)
as follows:

h(1)
.
= −0.03297395745363060470136947, ω2(1) .

= 0.01773444864628213446790575;

h(2)
.
= 0.01941997619263711506246973, ω2(2) .

= 0.05025449995363412651878426.

(4.1)
By numeric calculating, we also know that the above 2 groups of solves never make
f5 disappear. Then, the critical values are denoted by

h∗ = h(k), ω2∗ = ω2(k), k = 1, 2,

n∗ = n(h∗, ω2∗), s∗ = s(h∗, ω2∗)
(4.2)

where the expressions of n and s are given by (3.1) and (3.3) respectively. At the
same time, similar to the process of (3.7) or (3.10), one can apply the symbolic
computation to prove rigidly that the above the critical values (4.2) never make
(h − 1)(h + s)hs = 0 or sn = 0 or sd = 0 hold. Definitely, one can also use the
numeric method to verify them quickly. Thus, we obtain the following result.

Lemma 4.1. For system (2.3), the origin is a weak focus of order 5, namely µ1 =
µ2 = µ3 = µ4 = 0, µ5 6= 0 if and only if the following conditions hold:

s = s∗, h = h∗, n = n∗, ω = ω∗. (4.3)

Furthermore, according to Lemma 2.2 and Theorem 3.2, then we have

Theorem 4.2. For the origin of system (2.4) as a weak focus on center manifold,
the highest is the fifth order, and its first 5 focal values are as follow

v3 = iπµ1, v5 = iπµ2, v7 = iπµ3, v9 = iπµ4, v11 = iπµ5

in the above expression of v5, we have let v3 = 0, similarly we have let v3 = v5 = 0
for v7 = 0, let v3 = v5 = v7 = 0 for v9 = 0 and let v3 = v5 = v7 = v9 = 0 for
v11 = 0.

Thus, according to Lemma 4.1, we can apply the Hopf bifurcation theory to
determine the bifurcation of limit cycles, then via appropriate perturbations of the
critical values given in (4.2), five possible small amplitude limit cycles can generate
in the neighborhood of the origin of system (2.4).

Furthermore, from the above discussion and Theorem 4.2, and according to
the topology equivalence of the affine transformation from system (2.1) to (2.3), it
follows that

Theorem 4.3. At most five small amplitude limit cycles can be generated from
the origin of system (2.1) or the positive equilibrium of system (1.1) as a fine focus
on the center manifold via Hopf bifurcation.

5. Conclusion

In summary, based on precise symbolic computation of singular point quantities at
the Hopf singularity for a three-dimensional Lotka-Volterra system, we have found
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the center conditions and determined that the highest order as a fine focus is the
fifth. Furthermore, we obtained that the system has at most 5 small limit cycles
from the equilibrium via Hopf bifurcation. We expect that some new outcomes on
the cyclicity for 3D LV system will be obtained via our method used in this paper.
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