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The Hopf Bifurcations in the Permanent Magnet
Synchronous Motors*
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Abstract Based on the focus quantities and other techniques, the stability
properties of equilibria and the limit cycles arising from Hopf bifurcations are
investigated for two models of permanent magnet synchronous motors. The
first model is of surface-magnet type and can have at most two unstable small
limit cycles, which are symmetric with respect to z-axis. The other model is
of interior-magnet type and can have at most four small limit cycles in two
symmetric nests.
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1. The mathematical model of PMSM

A motor is an electrical machine that converts electrical energy into mechanical
energy. The permanent magnet synchronous motors (PMSM) are widely used in
industry and electric vehicle applications. It has many advantages, such as high
efficiency, high-power density and low-cost maintenance, see [2,7] and references
therein. There are two major types of PMSM: one with permanent magnets mount-
ed on the rotor surface, called the surface-magnet type; and one with permanent
magnets buried inside the rotor, called the interior-magnet type.
In [2], using the d-¢q frame, the PMSM model is written as

Ldsﬁ = —Ugs — Ryigs + npwyrLgsigs,
digs : , 1.1
s qy = —Ugs — Rs’tqs - nperddes + ’I’prawm ( ) )
dw, 3 ; 3 PR
dt’ = Tm - §npwa1qs + inP(Lds - qu) + tdstqs — BmwT'

The variables and parameters are listed in Table 1.

For brevity, a symmetric load of resistance R is used, so that u4s and u4s can
be expressed in terms of i4s R and i4s R, respectively. Additionally, the net driving
torque is considered to be proportional to i4s, i.e., Ty, — Tpm = igsit, Where Ty, =

3
inpwaiqs is the PM torque and p is a positive constant.
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Table 1. Variables and parameters of PMSM

Names Descriptions Units
Tds, lgs Stator currents A
Uds, Ugs Stator voltages A%
Las, Lgs Stator inductances H
R, Stator resistance Q
Yq PM flux Wb
Np Number of pole pairs \
Wy Mechanical rotor speed rad/s
T Mechanical driving torque N-m
J Rotor inertia kg-m?
B,, Viscosity friction coefficient | N-m-s

System (1.1) can be further simplified by transforming ¢’ to 7¢, and i4s to bkz,

1¢s to ky, and w, to i, where b = qu, T= 7 fR’ and k is a positive constant.
TNy ds s
Therefore, system (1.1) can be rewritten as
d
d—j = —bzr + yz,
d
d—? = -y —xz+cz, (1.2)
dz
= = alvky — 2) + nk*zy,
BT w 3n2(Lds - qu)bTQ NpT W
h =7 =_"° =_2 dry=21"1,
where a T C qus,n 57 , and ~ B

Magnetic saliency describes the relationship between the rotor’s flux (d-axis)
inductance and the torque-producing (g-axis) inductance. Since surface-magnet
PMSM exhibits no saliency (i.e. Lgs = Lgs), we have n = 0. In order to avoid the

1
trivial case when v = 0, v is assumed nonzero and k is defined as k = —. Thus,

system (1.2) can be written as

d—x*f:nJr z

ar Yz,

d

d—g;:—y—xZnch, (1.3)
d

dfi:a(y*Z)-

For more details, see [2].
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The foregoing system is a special case of

d—x——bx—&— z

dt_ Yz,

d

d—i:—y—xz—i—cz, (1.4)
d

= =aly—2).

where a,b,c > 0 and the parameter b is not specified.
The interior-magnet PMSM exhibits significant saliency (Lgs # Las). Hence, it
offers additional salient power. In order to derive the explicit solution for the sizing

1
of PMs, « is assumed zero and k is defined as k = \/7 Note that v = 0 is the case
Ui

when T,,, = Tprm. So, system (1.2) can be rewritten as

dz

T —bx + yz,

d

d—i’:—y—xz+cz, (1.5)
dz _

gty —az

For more details, see [2].

Both systems (1.4) and (1.5) are symmetric with respect to the z-axis in the
sense of coordinate transformation (x,y,z) — (z,—y, —z). Despite the simplicity,
these systems have rich dynamical behaviors, ranging from equilibria to periodic
and even chaotic oscillations, depending on the parameter values [2,3].

For systems (1.4) and (1.5), although in [2, 3] the generic Hopf bifurcations
are analyzed numerically, the focus quantities that characterize the nature of the
bifurcations were not obtained. Moreover, for these systems, there are no analytical
results about the Hopf bifurcations and degenerate Hopf bifurcations in the current
literature.

The rest of this paper is organized as follows. In Section 2, we review the defi-
nition of focus quantities and related computation methods. By using the method
of focus quantities, we study the Hopf bifurcations of systems (1.4) and (1.5). In
Section 3 it is proved that only subcritical Hopf bifurcation occurs at each of the
two symmetric equilibria in system (1.4), i.e. the system can have at most two
unstable small limit cycles. In the last section, it proves that system (1.5) can have
at most four small limit cycles in two symmetric nests.

2. The focus quantities of three dimensional sys-
tems

Consider a family of three dimensional analytic differential systems

% :P($7yvzau)7
dy
@ _ 2.1
7 Q(x,y, 2, 1), (2.1)
dz

:R(x7y7z7lj‘)7

dt
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parameterized by a parameter p. Assume that for each p € J, the system has a
unique equilibrium p(p) = (x(u), y(u), 2()), where J is an interval in R.

Let
_ (a(P.Q.R)
A= < 3(z,9.2) ) (b(1))

be the Jacobian matrix of system (2.1) evaluated at the equilibrium. Assume that
the characteristic polynomial of A, is

gp(A) = A% + by ()X + ba () A + bs(p),

dA
where A :=b1by — b3 = 0,b3 > 0,b3 > 0, m # 0 for some p = pg. Then according
i

to the criterion of Hopf bifurcation [10], the matrix A, has three eigenvalues A; » =
+4/b2(0)i and A3 = —by1(po) < 0. The Jordan canonical form of this matrix can
be obtained by some similarity transformation S™'4,,S = J,, where

ba(po)i 0 0
Jp: 0 *\/bz(/ul,o)i 0
0 0 —b1 (o)

and S = (Si,j)3><3~
Introducing the transformation

x 1 (o)
y [ =5[]y |
z 21 z(po)

into system (2.1) with u = po, we obtain

d = :
% =Vba(po)izi+ Y Bjrawr/y*z} = Blay,yr, 21),

Jt+k+s=2
dy s
1 . j s
o =V ba(mo)ivi+ Y. Cirst?yn® 2] = Clar, v, 21), (2.2)
Jt+k+s=2
dz > .
dftl =—bi(po) 21+ Y, Diszilyn*z] = D(a1, 41, 21).

Jjt+k+s=2

For system (2.2), according to [23], we can successively derive the following
formal series

oo s s—k

Fryy,2) =zyi+ 3> > Moy ay " yfz], 23)
s=3 k=0 j=0
such that
dF oF OF OF [
il —— B+ —C+—D= W n+1 94
dt l2.2) O T oy + oz Z n(iy)"™, (2.4)

n=1

where M, 1, ; can be determined uniquely if we set Moy, 1.0 = 0.
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Definition 2.1. In (2.4), we call W,, the nth focus quantities of the original system
(2.1)|p=po at p(po)-

Since A3 < 0, the stability of p(pg) is determined by the first non-vanishing
focus quantity W,,. For W,, < 0, p(uo) is asymptotically stable, and for W,, > 0,
the point is unstable.

Consider a family of quadratic systems in the form of (2.2), i.e.

day 2 2 2

ar =a1T1 + aer1” + azr1yr + agy1” + asr121 + agy1z1 + arz”,

dy

o = an + Bow1® + Bsziyr + Bayn® + Bswiz1 + Beyrz1 + Braa®,  (25)
dz

ditl =0121 + 021 + S321y1 + Sayi® + S5x121 + Sey121 + 67217,

where a; = wi with w € R*, §; € R~ and the other coefficients ay, 8%, d are
complex coefficients. Based on the algorithm developed in [18], we get the formula
for the first focus quantity. The formula can facilitate the study of Hopf bifurcation
in many practical problems (up to a affine transformation).

Proposition 2.1. For system (2.5), the first focus quantity of the origin is

_ Wia
—4 0(1351 + 041513 ’

Wi (2.6)

where

Wi1 = —463 (o5 + B6) a1’ — 261 (2azas — daag — 2 B34 + 04B5) o>
+01° (@503 + G200 + 045 + Bod3) ar + 61° (azaz — BsfBa) .

In fact, we can easily get the second and third focus quantities, but we omit
these lengthy expressions for brevity.

It proves in [17] that the focus quantities of three dimensional system have a
structure analogous to that in two dimensional case. An algorithm based on this
idea is formulated in that paper for three dimensional case. Some other methods
for computing focus quantities can be found in [6,8, 19, 20,23, 27, 28].

For the three-dimensional system (2.1), it is shown in [19] that the focus quanti-
ties at p(po) are the same with those of the restriction system on the center manifold
of p(po). This implies that, by using the information of focus quantities, we can
obtain the local dynamics of system (2.1) for p near pp.

In general, the focus quantities of a three dimensional system are very difficult
to be obtained. However, these quantities are not only important in theoretical
study, but also useful in applications, see [1,9,11-16, 22,24-26,29] and references
therein.

3. Hopf bifurcation of system (1.4)

In this section, we mainly consider system (1.4) with a,b, ¢ > 0, since system (1.3) is
only a special case. It has an equilibrium at the origin O = (0,0, 0), which exists for
any parameter values. According to Routh-Hurwitz criterion, O is asymptotically
stable for 0 < ¢ < 1 and is unstable for ¢ > 1. For ¢ = 1, the origin is non-hyperbolic
and its stability is stated in the following result.
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Proposition 3.1. For system (1.4) with ¢ = 1, the origin is asymptotically stable.

Proof. In this case the eigenvalues of system (1.4) at the origin are Ay = —b <
0,A\2 = —(a+1) < 0,\3 =0. Hence the origin is a non-hyperbolic equilibrium.
. . . az1 — Y1
By introducing the transformation z = z1,y = ——,2 = y; + 21, system
a

(1.4) is transformed into

d 2 -1

don _ o9 @ Dag o

dt

dy; ay1T1 ez

—~ =(—a—1 3.1
7 (—a )y1+ale PR (3.1)
dzy _ay1ix1 azxy

dt  a+1 a+1"

We seek the center manifold of system (3.1) emanating from the origin in the form
of
T =k122 4+ 0(22) and gy = ko2t + O(2), (3.2)

Substituting (3.2) into the last equation of (3.1) leads to the following equation,
describing the dynamics on the center manifold:

le o ak1

dt - a+1

213+ 0(21), (3.3)

Furthermore, substituting (3.2) and (3.3) into the first two equations of (3.1) yields

(bky — 1)z7 + O(z})
(a4 1)k2zi + O(27) =

0, (3.4)
. (3.5)

1
Equating the coefficients of 2% to zero in (3.4) and (3.5), we obtain k; = 7 ko =

0. Then, substituting these values into (3.3) yields the equation describing the
dynamics on the center manifold
dz1 a

&~ haspt TOGD 0

so the origin of system (1.4) is an asymptotically stable node. This completes the
proof. O
For ¢ > 1, besides the origin the system has the symmetric equilibria E; 2(c) =
(c—1,£4/b(c—1),£y/b(c—1)). According to the criterion stated in the previ-
ous section (see also [10]), there exist two Hopf bifurcation points (E;(cg), o) and
(a+b+3)a d
a—b—1 an

(E2(co), co), where ¢ =

_(la+1)(a+1+b) [b(a+1)(a+1+b) [b(a+1)(a+1+Db)
El(co)_< a—b—1 ’\/ a—b—1 ’\/ a—b—1 )7

~((a+1)(a+1+D) ba+1)(a+1+0) ba+1)(a+1+0)
EQ(CO)_< a—b—1 7_\/ a—b—1 ’_\/ a—b—1 >

In order to study the stability of Eq 2(co), it only needs to study E1(cg) due to sym-
metry. The Jacobian matrix of system (1.4)|.—., at E1(co) has a pair of imaginary
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eigenvalues A\ o = + i and a negative eigenvalue A3 = —(a + b+ 1),

a—b—1
where a,b >0 and a > b+ 1.

Theorem 3.1. As c is varied to pass through cy, a subcritical Hopf bifurcation
occurs at (E1(co),co), leading to an unstable limit cycle which exists for ¢ < co,
with each ¢ near cg. The non-hyperbolic equilibrium Eq(co) is unstable.

Proof.
For ¢ near cg, the characteristic equation of system (1.4) at E1(c) is

gN ) =X+ (a+1+b) XN +bla+c)A+2ab(c—1)=0. (3.7)

Using the implicit function theorem, we can compute the derivative of the complex
eigenvalue A(c) with respect to ¢ for the equilibrium: i.e.

d\ _ 0dg [/0g b(2a+ A)

i - A— . 3.8
de dc/ OX 3N+ (2a+2b+2)A+b(a+¢) (3:8)
2ab 1
Substituting ¢ = ¢y and A\ 2 =+ %i into (3.8), we obtain
dR(X) _ ba(a—b—1) (3.9)
de le=cor=r1. a3+3a2b—ab>—b3+a2—-3b2—a—3b—1’ '

which is positive because a,b > 0,a > b+ 1 and the denominator of (3.9) has the
following Taylor expansion at a = b + 1:

20+ 607 +4b+ (807 +14b+4) (a—b— 1)+ (4+6b) (a—b—1)°+(a—b—1).
(3.10)
This implies that the transversality condition holds.
Computing with the aid of Maple, we get the first focus quantity of E;(cq) for
system (1.4)]c=c,,
2b(a —-b-— 1)W171

Wy = : 3.11
! (a+b+ 1)W1 W13 (3:11)

where

Wi =8b" +48b% +104b> + 96 b + 32 + (206° + 116 b> 4 208b + 112) (a — b — 1)
+ (200 + 1165+ 124) (a — b —1)* + (186 +56) (a —b—1)* +9 (a —b—1)*,
W173 = WLQ +6ab(a+ 1),

and W1 o is the same as (3.10). This implies that the Hopf bifurcation is subcritical
and the non-hyperbolic equilibrium Fj (cg) is unstable.
Since the two non-degeneracy conditions of Hopf bifurcation [8] are satisfied, the
proof is completed. O
Due to the symmetry, we have:

Corollary 3.1. System (1.4) can have at most two small limit cycles, which are
unstable and symmetric with respect to the x-axis.

Corollary 3.2. System (1.3) can have at most two small limit cycles, which are
unstable and symmetric with respect to the x-axis.
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4. Degenerate Hopf bifurcation of system (1.5)

In this section, we consider system (1.5) with a,b,¢ > 0. The system always has a
hyperbolic equilibrium point at the origin O = (0,0, 0). Since the Jacobian matrix of
the system at the origin has three negative eigenvalues \; = —a, Ay = —b, A3 = —1,

it follows that the equilibrium O is an asymptotically stable node.
2 2

Ifa > CZ’ the origin is the only equilibrium of system (1.5). If a = CZ’ the system
has two non-trivial equilibria: M; = (g, gﬁ, Vvb) and M, = (g, —g\/l;, —Vb). If

2
c
a < T then the system has four non-trivial equilibria:

2_4 eqYe - 2_4 eqYe
Nuale) = (CEVEZ2E gy, Teatien CoVE I b, Lot

), N3,a(c) = ( >

The equilibria N3 4(c) are locally unstable [3]. Hence, Hopf bifurcations cannot
occur from N3 4(c). However, Hopf bifurcations can occur from N 2(c) for ¢ = ¢g,

where Cop = 41 /Wa)(a_b_l)a, see [3]

2 2 +4b+4)?
Proposition 4.1. Ifa = CZ’ 0<b= %

M; and Ms of system (1.5) are saddle-nodes.

and ¢ > 0, then the equilibria

Proof. Due to the symmetry, we only consider the equilibrium M;. With the
invertible affine transformation

o Vbe=2)(ct2m  Vhle=2)(c+Dy  cn ¢
2¢(p1 +b) 2c(p2 +b) 2vb 2
1 .
c c 2

Z=$1+y1+21+\[b,

2
c
system (1.5) for a = T is transformed into

dx
CTl =1 + O(|z1,y1, 21]?),
t
d
% =potn + O(|21,y1,21]%), (4.2)
dz1 c?z,2

Y = +O$, 7227
o i (lz1,y1, 21[%)

where the remainder O(|z1, 1, 21]?) of the third equation has no z? term and

1
e =—g A4+ 4b+4F /(2 +4b+4)2 —128b| <0 (4.3)

(c? +4b+4)?

123 and ¢ > 0. Thus the equilibrium M; is a saddle-node.

O
2

c
From now on, we consider the Hopf bifurcations in system (1.5) for a < —.

since 0 < b <

Due to the symmetry, we only need to consider the Hopf critical point (Ny(cp), co).
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The Jacobian matrix evaluated at this point contains a pair of purely imaginary

/ b
eigenvalues \j o = £2 7(11) . i and a negative eigenvalue A3 = —(a + b + 1),
a—b—

where a,b > 0 and a > b+ 1. Let A(c),A(c) be the pair of complex conjugate
eigenvalues of the Jacobian matrix at Ni(c), when |c —¢o| > 0 and is small enough.
It can be verified that

dR(N)
dc

_ Ba+b+1)\/aBa+b+1)(a—b—1)b
(a+1+b)((a—b—1)3+4a(b+1)(a—b— 1)+ 4ab)

>0,

c=co,A=A1,2
(4.4)
since a,b > 0 and a > b+ 1.
Computing the first two focus quantities with Maple, we get
Wi W1

W= bl W, =
1 W1727 2 W2727

where

Wi =—-2b(a—b—1)W111,

Wii11 = 3a%+a’b —6a*? — 2430 + 3a?b* + ab® — 26 a® + 79 a*b — 64 a>b?
—18a%b 4+ 26 ab* +3b° — 83 a* — 243 — 128 a®b® + 6 ab® + 15b* — 600>
—94a%b—40ab®> 4+ 300> + 13a® + ab+30b% +22a + 15b + 3,

Wis=(14b)(Ba+b+1)(a+1+b)((a—b—1)°+4a(b+1)(a—b— 1)+ 4ab)
((a=b—1)"+4a(b+1)(a —b— 1) + 16ab)
Wai=(a—b—1)*Wa,

Wa11 = —3258059904 a2° 4 6516120064 b*a'® — 3258060192 a'0b* + 32%°
—259065479424 a1 — 100999950848 ba'® + 677775960576 b2al”
—3257928384 a5 — 314452601088 a'°b* — 83250 — 8827912263168 a'®
—8859403367424 ba'” + 31857705778176 a'°b>
—140936027136 a'°b® — 13873067300352 a**b* — 154143851609856 a'”
—349289871464960 ba'® + 879169105794048 b%a'® — 66062310912 a'4b3
—361536724218112 a'3b* + 187392617 — 1040509658472320 o *°
—7915666241953792 ba'® 4+ 15397825461539840 b%a'* + 116815879533568 a12b3
—5981184425961600 a2b* — 6079488 b® + 10098713518490624 a*®
—108400413021706240 ba'* + 171175266743790592 b%a!?
+3096862736013056 a2 — 62293822308234496 a'*b* + 60936192 b*°
+260677668234749952 a'* — 840808229478297600 ba
+1114360079077395456 b%a'? + 32614476187620352 a1 b?
—367783918681271296 a°b* + 782671872 b'* + 1897839617667890176 '3
—2580371207904204800 ba'? + 3050419049627468800 b2att
+73956444594849280 a'°b® — 737656140429204736 a°b* — 29340524544 b*3
+2942907584602755840 a'? + 7357680362764673024 a' b
—5824866116792907776 b%a'® — 1045943484665699328 a”b?
+3316924444472137536 a®b* 4 28976578560 b'? — 21767415433929340416 a'*
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+49375461605891691520 ba'® — 41434039615664431104 a°b?
—4425427223618612352 a®b% + 12508135732922594560 a” b*
+13380533125120 b*! — 31902597217969533952 a'®
—97054545373928093696 ba® + 35301523869208982528 a®b?
+17926874674999192576 a”b> — 31130277921786756608 a®b*
—226191046344704 b*° + 198371445570450798080 a”
—9258562668994865806336 a®b + 106138327729522342912 " b?
+31344093485365255680 a®b® — 7762118542521885440 a°b*
—2540022509076480 b — 483401896782444273408
+2082631411668186112000 a”b — 1026545499845355156480 a®b?
—287688652923368793088 a°b> + 459662229084048871808 a*b*
+136898713821904896 b® — 716104288171369012224 a”
—3942966257962630322176 a%b + 1415101425730870006784 a°b>
+717111822567819411200 a*b® — 1244841800604884883200 a>b*
—650186986547576832 b7 + 5507349246426263209984 a°
—6422302861707174932480 a®b + 4894044855682124088320 a*b?
+299127653132998237184 a*b® — 381165531245698461696 ab*
—58361602891604557824 b5 — 4450292220526566220800 a®
+42978499503229835618304 ab — 21438155204997433054208 b*a®
—8544088373375297381888 a?b® + 11706863840311811797248 ab*
+1142623384981179727872 b° — 36087595186601715482240 a*
+5721397848476794183680 ba® — 58238420149651742769664 ab?
+2210481623555226504192 ab® + 6555933350632137719136 b*
—30145110480235966656768 a> — 45290330914201925628416 a2b
—20454073980409934793216 ab? + 13660874393584962519360 b>
+4785166393320218221056 a? — 712137470238301910016 ab
+13931113348894410014720 b + 10245554293415047590144 a
+7045717327768708187648 b + 1419740623489575597696,

Wao =6a(1+b)° ((a—b—1)%+4a(d+1)(a—b— 1)+ 36ab) (3a+b+1)

((a—b—1)%+4a(b+1)(a—b—1) +16ab)° (a + 1 +b)?
((a—b—1)*+4a(b+1)(a —b— 1) +4ab)°,

2

and Wy 11 is reduced w.r.t. Wy 1 1. It is easy to see that W 2 and Ws 5 are positive.

By using the procedure (RootFinding[Isolate]) built in Maple, we find that the
two polynomial equations W7 = Wy = 0 have no solutions satisfying a > b+ 1,a >
0,b > 0. Therefore, there is no need to calculate W3. However, there exist some
positive solutions of the semi-algebraic system Wy = 0,Ws # 0 for a,b. Thus,
system (1.5) can have at most two small limit cycles in some neighborhood of
Ni(c). Due to the symmetry, at most four small limit cycles can be found for the
system.
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Lemma 4.1. If

16+/14
7 )

c=cy = a=8, b=3, (4.5)

then the equilibrium N1(co) is a stable weak focus of Order 2 for the flow of system
(1.5) restricted to the center manifold.

Proof. When a = 8,b = 3, the critical value of Hopf bifurcation for system (1.5)

1 14
is c= 0 ;ﬁ If (4.5) holds, then it is easy to see that
2285
Wi=0. W2 ="1553606 <
and thus the conclusion follows. O

For the case 4 < a < 8,b = 3, we have Wy > 0. Thus, as ¢ crosses the critical

1614

limit cycle around the equilibrium Nj(c) for ¢ < ¢p and near c¢g. For the case

1614

a supercritical Hopf bifurcation occurs, resulting in a stable limit cycle around the
equilibrium Ny (¢) for ¢ > ¢ and near c.

value ¢y = , a supercritical Hopf bifurcation occurs, resulting in an unstable

a > 8,b =3, we have W7 < 0. Thus as c crosses the critical value ¢y =

Lemma 4.2. By varying (c,a) in a neighborhood of (@,8), system (1.5) with
b =3 can yield two limit cycles around the equilibrium Ni(c). The outermost limit
cycle is stable, while the small one is unstable.

Proof. By Lemma 4.1 and the transversal condition (4.4), it is suffice to prove
the result by noting that

oW, G
da 94080

a=8,b=3

Thus, the system has a transversal Hopf point of codimension two. According to

the theory of degenerate Hopf bifurcation (Bautin bifurcation), see [4, 5, 21], for
16 v14

b=3and (c,a) : 0 <

the equilibrium N7 (c) with the innermost cycle unstable and the outermost stable.
O

Based on the above lemmas and due to symmetry, we get the following result.

—c¢ K 8 —a K 1, there are two limit cycles around

Theorem 4.1. System (1.5) can present at most four small limit cycles in two
symmetric nests, and this bound is sharp.
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