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The Hopf Bifurcations in the Permanent Magnet
Synchronous Motors∗
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Abstract Based on the focus quantities and other techniques, the stability
properties of equilibria and the limit cycles arising from Hopf bifurcations are
investigated for two models of permanent magnet synchronous motors. The
first model is of surface-magnet type and can have at most two unstable small
limit cycles, which are symmetric with respect to x-axis. The other model is
of interior-magnet type and can have at most four small limit cycles in two
symmetric nests.
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1. The mathematical model of PMSM

A motor is an electrical machine that converts electrical energy into mechanical
energy. The permanent magnet synchronous motors (PMSM) are widely used in
industry and electric vehicle applications. It has many advantages, such as high
efficiency, high-power density and low-cost maintenance, see [2, 7] and references
therein. There are two major types of PMSM: one with permanent magnets mount-
ed on the rotor surface, called the surface-magnet type; and one with permanent
magnets buried inside the rotor, called the interior-magnet type.

In [2], using the d-q frame, the PMSM model is written as
Lds

ids
dt′

= −uds −Rsids + npωrLqsiqs,

Lqs
diqs
dt′

= −uqs −Rsiqs − npωrLdsids + npψaωr,

J
dωr
dt′

= Tm −
3

2
npψaiqs +

3

2
np(Lds − Lqs) + idsiqs −Bmωr.

(1.1)

The variables and parameters are listed in Table 1.
For brevity, a symmetric load of resistance R is used, so that uds and uqs can

be expressed in terms of idsR and iqsR, respectively. Additionally, the net driving
torque is considered to be proportional to iqs, i.e., Tm − Tpm = iqsµ, where Tpm =
3

2
npψaiqs is the PM torque and µ is a positive constant.
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Table 1. Variables and parameters of PMSM

Names Descriptions Units

ids, iqs Stator currents A

uds, uqs Stator voltages V

Lds, Lqs Stator inductances H

Rs Stator resistance Ω

ψa PM flux Wb

np Number of pole pairs \

ωr Mechanical rotor speed rad/s

Tm Mechanical driving torque N·m

J Rotor inertia kg·m2

Bm Viscosity friction coefficient N·m·s

System (1.1) can be further simplified by transforming t′ to τt, and ids to bkx,

iqs to ky, and ωr to
z

τnp
, where b =

Lqs
Lds

, τ =
Lqs

Rs +R
, and k is a positive constant.

Therefore, system (1.1) can be rewritten as

dx

dt
= −bx+ yz,

dy

dt
= −y − xz + cz,

dz

dt
= a(γky − z) + ηk2xy,

(1.2)

where a =
Bmτ

J
, c =

ψa
kLqs

, η =
3n2p(Lds − Lqs)bτ2

2J
, and γ =

npτµ

Bm
.

Magnetic saliency describes the relationship between the rotor’s flux (d-axis)
inductance and the torque-producing (q-axis) inductance. Since surface-magnet
PMSM exhibits no saliency (i.e. Lds = Lqs), we have η = 0. In order to avoid the

trivial case when γ = 0, γ is assumed nonzero and k is defined as k =
1

γ
. Thus,

system (1.2) can be written as

dx

dt
=− x+ yz,

dy

dt
=− y − xz + cz,

dz

dt
=a(y − z).

(1.3)

For more details, see [2].
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The foregoing system is a special case of

dx

dt
=− bx+ yz,

dy

dt
=− y − xz + cz,

dz

dt
=a(y − z),

(1.4)

where a, b, c > 0 and the parameter b is not specified.
The interior-magnet PMSM exhibits significant saliency (Lqs 6= Lds). Hence, it

offers additional salient power. In order to derive the explicit solution for the sizing

of PMs, γ is assumed zero and k is defined as k =

√
1

η
. Note that γ = 0 is the case

when Tm = Tpm. So, system (1.2) can be rewritten as

dx

dt
=− bx+ yz,

dy

dt
=− y − xz + cz,

dz

dt
=xy − az.

(1.5)

For more details, see [2].
Both systems (1.4) and (1.5) are symmetric with respect to the x-axis in the

sense of coordinate transformation (x, y, z) → (x,−y,−z). Despite the simplicity,
these systems have rich dynamical behaviors, ranging from equilibria to periodic
and even chaotic oscillations, depending on the parameter values [2, 3].

For systems (1.4) and (1.5), although in [2, 3] the generic Hopf bifurcations
are analyzed numerically, the focus quantities that characterize the nature of the
bifurcations were not obtained. Moreover, for these systems, there are no analytical
results about the Hopf bifurcations and degenerate Hopf bifurcations in the current
literature.

The rest of this paper is organized as follows. In Section 2, we review the defi-
nition of focus quantities and related computation methods. By using the method
of focus quantities, we study the Hopf bifurcations of systems (1.4) and (1.5). In
Section 3 it is proved that only subcritical Hopf bifurcation occurs at each of the
two symmetric equilibria in system (1.4), i.e. the system can have at most two
unstable small limit cycles. In the last section, it proves that system (1.5) can have
at most four small limit cycles in two symmetric nests.

2. The focus quantities of three dimensional sys-
tems

Consider a family of three dimensional analytic differential systems

dx

dt
=P (x, y, z, µ),

dy

dt
=Q(x, y, z, µ),

dz

dt
=R(x, y, z, µ),

(2.1)
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parameterized by a parameter µ. Assume that for each µ ∈ J , the system has a
unique equilibrium p(µ) := (x(µ), y(µ), z(µ)), where J is an interval in R.

Let

Aµ :=

(
∂(P,Q,R)

∂(x, y, z)

)(
p(µ)

)
be the Jacobian matrix of system (2.1) evaluated at the equilibrium. Assume that
the characteristic polynomial of Aµ is

gp(λ) = λ3 + b1(µ)λ2 + b2(µ)λ+ b3(µ),

where ∆ := b1b2 − b3 = 0, b2 > 0, b3 > 0,
d∆

dµ
6= 0 for some µ = µ0. Then according

to the criterion of Hopf bifurcation [10], the matrix Aµ0 has three eigenvalues λ1,2 =

±
√
b2(µ0)i and λ3 = −b1(µ0) < 0. The Jordan canonical form of this matrix can

be obtained by some similarity transformation S−1Aµ0S = Jp, where

Jp =


√
b2(µ0)i 0 0

0 −
√
b2(µ0)i 0

0 0 −b1(µ0)

 .

and S = (si,j)3×3.
Introducing the transformation

x

y

z

 = S


x1

y1

z1

+


x(µ0)

y(µ0)

z(µ0)

 ,

into system (2.1) with µ = µ0, we obtain

dx1
dt

=
√
b2(µ0)ix1 +

∞∑
j+k+s=2

Bjksx1
jy1

kzs1 = B(x1, y1, z1),

dy1
dt

=−
√
b2(µ0)i y1 +

∞∑
j+k+s=2

Cjksx1
jy1

kzs1 = C(x1, y1, z1),

dz1
dt

=− b1(µ0) z1 +
∞∑

j+k+s=2

Djksx1
jy1

kzs1 = D(x1, y1, z1).

(2.2)

For system (2.2), according to [23], we can successively derive the following
formal series

F (x1, y1, z1) = x1y1 +

∞∑
s=3

s∑
k=0

s−k∑
j=0

Ms,k,jx
s−k−j
1 yk1z

j
1, (2.3)

such that

dF

dt

∣∣∣
(2.2)

=
∂F

∂x1
B +

∂F

∂y1
C +

∂F

∂z1
D =

∞∑
n=1

Wn(x1y1)n+1, (2.4)

where Ms,k,j can be determined uniquely if we set M2k,k,0 = 0.
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Definition 2.1. In (2.4), we call Wn the nth focus quantities of the original system
(2.1)|µ=µ0

at p(µ0).

Since λ3 < 0, the stability of p(µ0) is determined by the first non-vanishing
focus quantity Wn. For Wn < 0, p(µ0) is asymptotically stable, and for Wn > 0,
the point is unstable.

Consider a family of quadratic systems in the form of (2.2), i.e.

dx1
dt

=α1x1 + α2x1
2 + α3x1y1 + α4y1

2 + α5x1z1 + α6y1z1 + α7z1
2,

dy1
dt

=− α1y1 + β2x1
2 + β3x1y1 + β4y1

2 + β5x1z1 + β6y1z1 + β7z1
2,

dz1
dt

=δ1z1 + δ2x1
2 + δ3x1y1 + δ4y1

2 + δ5x1z1 + δ6y1z1 + δ7z1
2,

(2.5)

where α1 = ωi with ω ∈ R+, δ1 ∈ R− and the other coefficients αk, βk, δk are
complex coefficients. Based on the algorithm developed in [18], we get the formula
for the first focus quantity. The formula can facilitate the study of Hopf bifurcation
in many practical problems (up to a affine transformation).

Proposition 2.1. For system (2.5), the first focus quantity of the origin is

W1 =
W1,1

−4α1
3δ1 + α1δ1

3 , (2.6)

where

W1,1 = −4 δ3 (α5 + β6)α1
3 − 2 δ1 (2α2α3 − δ2α6 − 2β3β4 + δ4β5)α1

2

+δ1
2 (α5δ3 + δ2α6 + δ4β5 + β6δ3)α1 + δ1

3 (α2α3 − β3β4) .

In fact, we can easily get the second and third focus quantities, but we omit
these lengthy expressions for brevity.

It proves in [17] that the focus quantities of three dimensional system have a
structure analogous to that in two dimensional case. An algorithm based on this
idea is formulated in that paper for three dimensional case. Some other methods
for computing focus quantities can be found in [6, 8, 19,20,23,27,28].

For the three-dimensional system (2.1), it is shown in [19] that the focus quanti-
ties at p(µ0) are the same with those of the restriction system on the center manifold
of p(µ0). This implies that, by using the information of focus quantities, we can
obtain the local dynamics of system (2.1) for µ near µ0.

In general, the focus quantities of a three dimensional system are very difficult
to be obtained. However, these quantities are not only important in theoretical
study, but also useful in applications, see [1, 9, 11–16, 22, 24–26, 29] and references
therein.

3. Hopf bifurcation of system (1.4)

In this section, we mainly consider system (1.4) with a, b, c > 0, since system (1.3) is
only a special case. It has an equilibrium at the origin O = (0, 0, 0), which exists for
any parameter values. According to Routh-Hurwitz criterion, O is asymptotically
stable for 0 < c < 1 and is unstable for c > 1. For c = 1, the origin is non-hyperbolic
and its stability is stated in the following result.
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Proposition 3.1. For system (1.4) with c = 1, the origin is asymptotically stable.

Proof. In this case the eigenvalues of system (1.4) at the origin are λ1 = −b <
0, λ2 = −(a+ 1) < 0, λ3 = 0. Hence the origin is a non-hyperbolic equilibrium.

By introducing the transformation x = x1, y =
az1 − y1

a
, z = y1 + z1, system

(1.4) is transformed into

dx1
dt

=− bx1 −
y1

2

a
+

(a− 1) z1y1
a

+ z1
2,

dy1
dt

= (−a− 1) y1 +
ay1x1
a+ 1

+
az1x1
a+ 1

,

dz1
dt

=− ay1x1
a+ 1

− az1x1
a+ 1

.

(3.1)

We seek the center manifold of system (3.1) emanating from the origin in the form
of

x1 = k1z
2
1 +O(z31) and y1 = k2z

2
1 +O(z31), (3.2)

Substituting (3.2) into the last equation of (3.1) leads to the following equation,
describing the dynamics on the center manifold:

dz1
dt

= − ak1
a+ 1

z1
3 +O(z41), (3.3)

Furthermore, substituting (3.2) and (3.3) into the first two equations of (3.1) yields

(bk1 − 1)z21 +O(z31) = 0, (3.4)

(a+ 1)k2z
2
1 +O(z31) = 0. (3.5)

Equating the coefficients of z21 to zero in (3.4) and (3.5), we obtain k1 =
1

b
, k2 =

0. Then, substituting these values into (3.3) yields the equation describing the
dynamics on the center manifold

dz1
dt

= − a

b(a+ 1)
z1

3 +O(z41), (3.6)

so the origin of system (1.4) is an asymptotically stable node. This completes the
proof.

For c > 1, besides the origin the system has the symmetric equilibria E1,2(c) =

(c − 1,±
√
b (c− 1),±

√
b (c− 1)). According to the criterion stated in the previ-

ous section (see also [10]), there exist two Hopf bifurcation points (E1(c0), c0) and

(E2(c0), c0), where c0 =
(a+ b+ 3) a

a− b− 1
and

E1(c0) =

(
(a+ 1) (a+ 1 + b)

a− b− 1
,

√
b (a+ 1) (a+ 1 + b)

a− b− 1
,

√
b (a+ 1) (a+ 1 + b)

a− b− 1

)
,

E2(c0) =

(
(a+ 1) (a+ 1 + b)

a− b− 1
,−
√
b (a+ 1) (a+ 1 + b)

a− b− 1
,−
√
b (a+ 1) (a+ 1 + b)

a− b− 1

)
.

In order to study the stability of E1,2(c0), it only needs to study E1(c0) due to sym-
metry. The Jacobian matrix of system (1.4)|c=c0 at E1(c0) has a pair of imaginary
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eigenvalues λ1,2 = ±
√

2ab(a+ 1)

a− b− 1
i and a negative eigenvalue λ3 = −(a + b + 1),

where a, b > 0 and a > b+ 1.

Theorem 3.1. As c is varied to pass through c0, a subcritical Hopf bifurcation
occurs at (E1(c0), c0), leading to an unstable limit cycle which exists for c < c0,
with each c near c0. The non-hyperbolic equilibrium E1(c0) is unstable.

Proof.
For c near c0, the characteristic equation of system (1.4) at E1(c) is

g(λ, c) = λ3 + (a+ 1 + b)λ2 + b (a+ c)λ+ 2 ab (c− 1) = 0. (3.7)

Using the implicit function theorem, we can compute the derivative of the complex
eigenvalue λ(c) with respect to c for the equilibrium: i.e.

dλ

dc
= −∂g

∂c

/
∂g

∂λ
= − b (2 a+ λ)

3λ2 + (2 a+ 2 b+ 2)λ+ b (a+ c)
. (3.8)

Substituting c = c0 and λ1,2 = ±
√

2ab(a+ 1)

a− b− 1
i into (3.8), we obtain

d<(λ)

dc

∣∣∣
c=c0,λ=λ1,2

=
ba (a− b− 1)

a3 + 3 a2b− ab2 − b3 + a2 − 3 b2 − a− 3 b− 1
, (3.9)

which is positive because a, b > 0, a > b + 1 and the denominator of (3.9) has the
following Taylor expansion at a = b+ 1:

2 b3 + 6 b2 + 4 b+
(
8 b2 + 14 b+ 4

)
(a− b− 1) + (4 + 6 b) (a− b− 1)

2
+ (a− b− 1)

3
.

(3.10)
This implies that the transversality condition holds.

Computing with the aid of Maple, we get the first focus quantity of E1(c0) for
system (1.4)|c=c0 ,

W1 =
2b(a− b− 1)W1,1

(a+ b+ 1)W1,2W1,3
, (3.11)

where

W1,1 = 8 b4 + 48 b3 + 104 b2 + 96 b+ 32 +
(
20 b3 + 116 b2 + 208 b+ 112

)
(a− b− 1)

+
(
20 b2 + 116 b+ 124

)
(a− b− 1)

2
+ (18 b+ 56) (a− b− 1)

3
+ 9 (a− b− 1)

4
,

W1,3 = W1,2 + 6ab(a+ 1),

and W1,2 is the same as (3.10). This implies that the Hopf bifurcation is subcritical
and the non-hyperbolic equilibrium E1(c0) is unstable.

Since the two non-degeneracy conditions of Hopf bifurcation [8] are satisfied, the
proof is completed.

Due to the symmetry, we have:

Corollary 3.1. System (1.4) can have at most two small limit cycles, which are
unstable and symmetric with respect to the x-axis.

Corollary 3.2. System (1.3) can have at most two small limit cycles, which are
unstable and symmetric with respect to the x-axis.
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4. Degenerate Hopf bifurcation of system (1.5)

In this section, we consider system (1.5) with a, b, c > 0. The system always has a
hyperbolic equilibrium point at the origin O = (0, 0, 0). Since the Jacobian matrix of
the system at the origin has three negative eigenvalues λ1 = −a, λ2 = −b, λ3 = −1,
it follows that the equilibrium O is an asymptotically stable node.

If a >
c2

4
, the origin is the only equilibrium of system (1.5). If a =

c2

4
, the system

has two non-trivial equilibria: M1 = (
c

2
,
c

2

√
b,
√
b) and M2 = (

c

2
,− c

2

√
b,−
√
b). If

a <
c2

4
, then the system has four non-trivial equilibria:

N1,2(c) = (
c+
√
c2 − 4a

2
,±
√
ab,

xeqyeq
a

), N3,4(c) = (
c−
√
c2 − 4a

2
,±
√
ab,

xeqyeq
a

).

The equilibria N3,4(c) are locally unstable [3]. Hence, Hopf bifurcations cannot
occur from N3,4(c). However, Hopf bifurcations can occur from N1,2(c) for c = c0,

where c0 = 4
√

a
(3 a+b+1)(a−b−1)a, see [3].

Proposition 4.1. If a =
c2

4
, 0 < b ≤ (c2 + 4b+ 4)2

128
and c > 0, then the equilibria

M1 and M2 of system (1.5) are saddle-nodes.

Proof. Due to the symmetry, we only consider the equilibrium M1. With the
invertible affine transformation

x =

√
b (c− 2) (c+ 2)x1

2c(µ1 + b)
+

√
b (c− 2) (c+ 2) y1

2c(µ2 + b)
+

cz1

2
√
b

+
c

2
,

y =− 2
x1
c
− 2

y1
c

+
1

2
c
√
b,

z =x1 + y1 + z1 +
√
b,

(4.1)

system (1.5) for a =
c2

4
is transformed into

dx1
dt

=µ1x1 +O(|x1, y1, z1|2),

dy1
dt

=µ2y1 +O(|x1, y1, z1|2),

dz1
dt

=− c2z1
2

4
√
b

+O(|x1, y1, z1|2),

(4.2)

where the remainder O(|x1, y1, z1|2) of the third equation has no z21 term and

µ1,2 = −1

8

[
c2 + 4b+ 4∓

√
(c2 + 4b+ 4)2 − 128b

]
< 0 (4.3)

since 0 < b ≤ (c2 + 4b+ 4)2

128
and c > 0. Thus the equilibrium M1 is a saddle-node.

From now on, we consider the Hopf bifurcations in system (1.5) for a <
c2

4
.

Due to the symmetry, we only need to consider the Hopf critical point (N1(c0), c0).
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The Jacobian matrix evaluated at this point contains a pair of purely imaginary

eigenvalues λ1,2 = ±2

√
ab

a− b− 1
i and a negative eigenvalue λ3 = −(a + b + 1),

where a, b > 0 and a > b + 1. Let λ(c), λ(c) be the pair of complex conjugate
eigenvalues of the Jacobian matrix at N1(c), when |c− c0| ≥ 0 and is small enough.
It can be verified that

d<(λ)

dc

∣∣∣∣
c=c0,λ=λ1,2

=
(3 a+ b+ 1)

√
a (3 a+ b+ 1) (a− b− 1)b

(a+ 1 + b) ((a− b− 1)3 + 4a(b+ 1)(a− b− 1) + 4ab)
> 0,

(4.4)
since a, b > 0 and a > b+ 1.

Computing the first two focus quantities with Maple, we get

W1 =
W1,1

W1,2
, W2 =

W2,1

W2,2
,

where

W1,1 = −2b(a− b− 1)W1,1,1,

W1,1,1 = 3 a6 + a5b− 6 a4b2 − 2 a3b3 + 3 a2b4 + ab5 − 26 a5 + 79 a4b− 64 a3b2

−18 a2b3 + 26 ab4 + 3 b5 − 83 a4 − 2 a3b− 128 a2b2 + 6 ab3 + 15 b4 − 60 a3

−94 a2b− 40 ab2 + 30 b3 + 13 a2 + ab+ 30 b2 + 22 a+ 15 b+ 3,

W1,2 = (1 + b) (3 a+ b+ 1) (a+ 1 + b)
(
(a− b− 1)3 + 4a(b+ 1)(a− b− 1) + 4ab

)(
(a− b− 1)3 + 4a(b+ 1)(a− b− 1) + 16ab

)
,

W2,1 = (a− b− 1)2W2,1,1,

W2,1,1 = −3258059904 a20 + 6516120064 b2a18 − 3258060192 a16b4 + 32 b20

−259065479424 a19 − 100999950848 ba18 + 677775960576 b2a17

−3257928384 a16b3 − 314452601088 a15b4 − 832 b19 − 8827912263168 a18

−8859403367424 ba17 + 31857705778176 a16b2

−140936027136 a15b3 − 13873067300352 a14b4 − 154143851609856 a17

−349289871464960 ba16 + 879169105794048 b2a15 − 66062310912 a14b3

−361536724218112 a13b4 + 187392 b17 − 1040509658472320 a16

−7915666241953792 ba15 + 15397825461539840 b2a14 + 116815879533568 a13b3

−5981184425961600 a12b4 − 6079488 b16 + 10098713518490624 a15

−108400413021706240 ba14 + 171175266743790592 b2a13

+3096862736013056 a12b3 − 62293822308234496 a11b4 + 60936192 b15

+260677668234749952 a14 − 840808229478297600 ba13

+1114360079077395456 b2a12 + 32614476187620352 a11b3

−367783918681271296 a10b4 + 782671872 b14 + 1897839617667890176 a13

−2580371207904204800 ba12 + 3050419049627468800 b2a11

+73956444594849280 a10b3 − 737656140429204736 a9b4 − 29340524544 b13

+2942907584602755840 a12 + 7357680362764673024 a11b

−5824866116792907776 b2a10 − 1045943484665699328 a9b3

+3316924444472137536 a8b4 + 28976578560 b12 − 21767415433929340416 a11
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+49375461605891691520 ba10 − 41434039615664431104 a9b2

−4425427223618612352 a8b3 + 12508135732922594560 a7b4

+13380533125120 b11 − 31902597217969533952 a10

−97054545373928093696 ba9 + 35301523869208982528 a8b2

+17926874674999192576 a7b3 − 31130277921786756608 a6b4

−226191046344704 b10 + 198371445570450798080 a9

−258562668994865806336 a8b+ 106138327729522342912 a7b2

+31344093485365255680 a6b3 − 7762118542521885440 a5b4

−2540022509076480 b9 − 483401896782444273408 a8

+2082631411668186112000 a7b− 1026545499845355156480 a6b2

−287688652923368793088 a5b3 + 459662229084048871808 a4b4

+136898713821904896 b8 − 716104288171369012224 a7

−3942966257962630322176 a6b+ 1415101425730870006784 a5b2

+717111822567819411200 a4b3 − 1244841800604884883200 a3b4

−650186986547576832 b7 + 5507349246426263209984 a6

−6422302861707174932480 a5b+ 4894044855682124088320 a4b2

+299127653132998237184 a3b3 − 381165531245698461696 a2b4

−58361602891604557824 b6 − 4450292220526566220800 a5

+42978499503229835618304 a4b− 21438155204997433054208 b2a3

−8544088373375297381888 a2b3 + 11706863840311811797248 ab4

+1142623384981179727872 b5 − 36087595186601715482240 a4

+5721397848476794183680 ba3 − 58238420149651742769664 a2b2

+2210481623555226504192 ab3 + 6555933350632137719136 b4

−30145110480235966656768 a3 − 45290330914201925628416 a2b

−20454073980409934793216 ab2 + 13660874393584962519360 b3

+4785166393320218221056 a2 − 712137470238301910016 ab

+13931113348894410014720 b2 + 10245554293415047590144 a

+7045717327768708187648 b+ 1419740623489575597696,

W2,2 = 6 a (1 + b)
2 (

(a− b− 1)3 + 4a(b+ 1)(a− b− 1) + 36ab
)

(3 a+ b+ 1)
2(

(a− b− 1)3 + 4a(b+ 1)(a− b− 1) + 16ab
)2

(a+ 1 + b)
3(

(a− b− 1)3 + 4a(b+ 1)(a− b− 1) + 4ab
)3
,

and W2,1,1 is reduced w.r.t. W1,1,1. It is easy to see that W1,2 and W2,2 are positive.

By using the procedure (RootFinding[Isolate]) built in Maple, we find that the
two polynomial equations W1 = W2 = 0 have no solutions satisfying a > b+ 1, a >
0, b > 0. Therefore, there is no need to calculate W3. However, there exist some
positive solutions of the semi-algebraic system W1 = 0,W2 6= 0 for a, b. Thus,
system (1.5) can have at most two small limit cycles in some neighborhood of
N1(c). Due to the symmetry, at most four small limit cycles can be found for the
system.
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Lemma 4.1. If

c = c0 =
16
√

14

7
, a = 8, b = 3, (4.5)

then the equilibrium N1(c0) is a stable weak focus of Order 2 for the flow of system
(1.5) restricted to the center manifold.

Proof. When a = 8, b = 3, the critical value of Hopf bifurcation for system (1.5)

is c =
16
√

14

7
. If (4.5) holds, then it is easy to see that

W1 = 0, W2 = − 2285

1053696
< 0,

and thus the conclusion follows.

For the case 4 < a < 8, b = 3, we have W1 > 0. Thus, as c crosses the critical

value c0 =
16
√

14

7
, a supercritical Hopf bifurcation occurs, resulting in an unstable

limit cycle around the equilibrium N1(c) for c < c0 and near c0. For the case

a > 8, b = 3, we have W1 < 0. Thus as c crosses the critical value c0 =
16
√

14

7
,

a supercritical Hopf bifurcation occurs, resulting in a stable limit cycle around the
equilibrium N1(c) for c > c0 and near c0.

Lemma 4.2. By varying (c, a) in a neighborhood of ( 16
√
14

7 , 8), system (1.5) with
b = 3 can yield two limit cycles around the equilibrium N1(c). The outermost limit
cycle is stable, while the small one is unstable.

Proof. By Lemma 4.1 and the transversal condition (4.4), it is suffice to prove
the result by noting that

∂W1

∂a

∣∣∣∣
a=8,b=3

= − 431

94080
< 0.

Thus, the system has a transversal Hopf point of codimension two. According to
the theory of degenerate Hopf bifurcation (Bautin bifurcation), see [4, 5, 21], for

b = 3 and (c, a) : 0 <
16
√

14

7
− c � 8 − a � 1, there are two limit cycles around

the equilibrium N1(c) with the innermost cycle unstable and the outermost stable.

Based on the above lemmas and due to symmetry, we get the following result.

Theorem 4.1. System (1.5) can present at most four small limit cycles in two
symmetric nests, and this bound is sharp.
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