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Abstract The aim of this paper is twofold. Firstly, we elaborate and investi-
gate a new trigonometric class of distribution, called the type II Tan-G class.
Secondly, we perform a practical comparative evaluation of certain trigonomet-
ric classes; the Sin-G, Cos-G, Tan-G classes and the new one, with each other
and with their common baseline distribution. More specifically, the usefulness
and flexibility of these trigonometric classes are demonstrated through twelve
practical data sets, by using the Weibull distribution as baseline. Among the
data sets, two of them concern the Covid-19 pandemic in France from March
to June 2020. As main results, it is shown that the related trigonometric
models can outperform the former Weibull model in various cases and that
the proposed type II Tan Weibull model can be, in certain situations, the best
of them. The main lines of the code written in the R software language are
provided.
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fitting, Covid-19 pandemic.
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1. Introduction

In recent years, there has been great interest in the general classes of trigonometric
distributions. This interest lies in the fact that such classes are fairly simple to
handle, with well documented and accessible mathematical properties, and they
generally offer excellent fits of different types of practical data sets. In this paper,
we bring an assessment to these trigonometric classes of distributions. Before going
further, let us briefly present them. We begin with the most popular one: the
Sin-G class of distributions introduced by [11] and [19] and completed by [20].
The starting point is an univariate baseline distribution, defined by a cumulative
distribution function (cdf) denoted by G(x), with a probability density function
(pdf) denoted by g(x). This baseline distribution is very general; it can be of any
support and have no, one or more parameters. Then, the Sin-G class is defined by
the cdf given as

F (x) = sin
[π

2
G(x)

]
, x ∈ R,
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and possesses the pdf specified by

f(x) =
π

2
g(x) cos

[π
2
G(x)

]
, x ∈ R.

The qualities of the Sin-G class are the following ones: (i) It is based on simple
functions, (ii) no new parameter is added; the Sin-G distribution only depends on
the parameters involved in the baseline distribution, (iii) it satisfies the following
first-order stochastic dominance: F (x) ≥ G(x), x ∈ R, and (iv) the related models
can be easily enriched for some baseline distributions. The qualities of the Sin-G
class have motivated the constructions of other trigonometric classes. The two most
famous of them are the Cos-G class of distributions provided by [19] and [21], and
the Tan-G class given by [19], [22] and [2], which will be treated in our study.

In this paper, we are also going to introduce a new class of trigonometric distri-
butions along side the more classics ones, called the type II Tan-G (TIIT-G) class.
With the above notations, it is defined by the cdf given as

F (x) = 1− tan
[π

4
(1−G(x))

]
, x ∈ R, (1.1)

the corresponding pdf being defined by

f(x) =
π

4
g(x)

1{
cos
[
π
4 (1−G(x))

]}2 , x ∈ R. (1.2)

The definition of F (x) is based on the second type of the T-X transformation by [1]
applied to the unit tangent cdf as generator; we can write it as

F (x) = 1− Fo(1−G(x)),

where Fo(x) = tan [(π/4)x]. The first type of the T-X transformation applied to
Fo(x) providing the cdf of the former Tan-G class defined by F∗(x) = Fo(G(x)).
With this remark in mind, we see that the structural relationship between the
TIIT-G and Tan-G classes is the same as that between the Sin-G and Cos-G class-
es. The definition of the TIIT-G class is therefore legitimate in this regard. As
special features, (i) the TIIT-G class is a sub-class of the original T-X class by [1]
(as shown later), (ii) the TIIT-G class also corresponds to the class combining the
M class by [12] and the Tan-G class (as shown later), and (iii) from the inequality
tan(y) ≤ (4/π)y for y ∈ [0, π/4], we deduce the following first-order stochastic dom-
inance: F (x) ≥ G(x) ≥ F∗(x), x ∈ R. Thus, the TIIT-G class can be considered
as an alternative to the Tan-G distribution class, while retaining similar flexibility
and simplicity. It offers a new modeling option, extending the scope of the exist-
ing trigonometric classes of distributions. In the paper, we develop this point by
exploring various of its theoretical and applied aspects.

As main part, applications are made to expose the wide coverage of different
practical data sets which can be well fitted by trigonometric classes of distributions,
by adopting the Weibull distribution as the baseline. These applications also exhibit
the usefulness of each of the above classes depending on the data set. Moreover,
in regard to the difficult times we are in living with the Covid-19 threat, some of
these applications are about this pandemic. More precisely, it concerns the Covid-
19 pandemic in France from March to June 2020. The objective is to offer a model
that fits as best possible, aiming to be better prepared in the future in the face of
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another pandemic with correct forecasts of its expansion. The obtained results are
quite satisfying, supported by remarkable values of solid goodness-of-fit criteria and
graphics.

We organize the paper as follows. Section 2 completes the presentation of the
TIIT-G class. The statistical methodology and applications are given in Section 3.
A conclusion is proposed in Section 4. The paper ends with Appendix containing
the essential of the code used in this paper, written in the R software language.

2. Type II Tan-G class of distributions

This section is devoted to the TIIT-G class, including more relations between him
and some existing classes, the description of other related functions and some math-
ematical properties.

2.1. Complements

As already evoked, the TIIT-G class is defined by the cdf given by Equation (1.1),
with pdf specified by Equation (1.2). Formerly, it is based on the ”second type (type
II) of the T-X transformation” by [1] applied to the unit tan cdf as generator. New
remarks are developed below. After some developments, we can express the cdf of

the TIIT-G class under the following integral form: F (x) =
∫ G(x)

0
p(t)dt, where p(t)

is the pdf defined by

p(t) =
π

2

1

1 + sin(π2 t)
, t ∈ (0, 1),

and equal to 0 for t 6∈ (0, 1). As far as we know, this pdf on the unit interval is
not listed in the literature. The expression above shows that the TIIT-G class is a
subclass of the original T-X class proposed by [1].

A more original expression comes from the scholar trigonometric formula: tan(x+
y) = (tan(x) + tan(y))/(1− tan(x) tan(y)), for x, y ∈ R (such that all the involved
functions are well defined); we can express F (x) as

F (x) = 1−
1− tan

[
π
4G(x)

]
1 + tan

[
π
4G(x)

] =
2F∗(x)

1 + F∗(x)
,

where F∗(x) = tan [(π/4)G(x)], recalling that is the cdf of the Tan-G class. This
expression reveals that the TIIT-G class is also a sub-class of the M family proposed
by [12], defined with the Tan-G class as baseline. As is known to us all, the TIIT-G
class is one of the few classes of distributions to be a sub-class of both ”second type
of T-X” and M classes defined with the same baseline class, and here comes the
Tan-G class.

2.2. On other functions of interest

Now, let us present some functions of interest. The survival function (sf) and hazard
rate function (hrf) of the TIIT-G class are defined by

F̄ (x) = 1− F (x) = tan
[π

4
(1−G(x))

]
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and

h(x) =
f(x)

F̄ (x)
=
π

2
g(x)

1

cos
[
π
2G(x)

] , x ∈ R (2.1)

respectively. As for f(x), the possible shapes of h(x) are strong indicators of the
capability of the related statistical model to fit data; more these shapes are pliant,
the more the model is able to capture the details of a wide variety of data sets. This
is particularly true for lifetime data sets.

The quantile function (qf) of the TIIT-G class is derived by inverting F (x).
After some developments, we get

H(y) = Q

[
1− 4

π
arctan(1− y)

]
, y ∈ (0, 1), (2.2)

where Q(y) denotes the qf of the baseline distribution. The qf allows us to ex-
press the quartiles: Q1 = H(1/4), Q2 = H(1/2) and Q3 = H(3/4), octiles and
various measures of skewness and kurtosis, such as the MacGillivray skewness and
Moors kurtosis, among others. It is also the main tool to generate values for any
distribution of the TIIT-G class, through the technique called inverse transform
sampling.

For example, let us consider the Weibull distribution with parameters a (scale)
and b (shape) as baseline, i.e. with cdf and pdf given as

G(x) = 1− e−ax
b

, g(x) = abxb−1e−ax
b

, x > 0, (2.3)

and both equal to 0 for x ≤ 0. The corresponding TIIT-G distribution is called the
type II Tan Weibull (TIITW) distribution. Based on Equations (1.1) and (2.3), it
is defined with the cdf given as

F (x) = 1− tan
(π

4
e−ax

b
)
, x > 0, (2.4)

and equal to 0 for x ≤ 0. Also, based on Equations (1.2), (2.1) and (2.3), we can
express the corresponding pdf and hrf as

f(x) =
π

4
abxb−1e−ax

b 1[
cos
(
π
4 e
−axb

)]2
and

h(x) =
π

2
abxb−1e−ax

b 1

sin
(
π
2 e
−axb

) , x > 0,

and both equal to 0 for x ≤ 0 respectively. Graphical analysis reveals a plethora
of different shapes for these functions, attesting the flexibility of the TIITW dis-
tribution. Finally, based on Equation (2.2) and the qf of the Weibull distribution

given as Q(y) = [− log(1− y)/a]
1/b

, y ∈ (0, 1), the qf of the TIITW distribution is
specified by

H(y) =

{
−1

a
log

[
4

π
arctan(1− y)

]}1/b

, y ∈ (0, 1).

Hence, the median can be approximated as Q2 ≈ (0.527/a)1/b among others.
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2.3. Some properties

Some basic properties of the TIIT-G class are now discussed. Firstly, let us inves-
tigate the equivalences of the main functions when G(x) tends to its limit values.
When G(x) tends to 0, we have

F (x) ∼ π

2
G(x), f(x) ∼ π

2
g(x), h(x) ∼ π

2
g(x)

and, when G(x) tends to 1, we get

F (x) ∼ 1− π

4
(1−G(x)), f(x) ∼ π

4
g(x), h(x) ∼ g(x)

1−G(x)
.

These results reveal that the asymptotic behaviors of F (x), f(x) and h(x) are closed
to the corresponding function of the baseline distribution.

The rest of this part is devoted to the expressions of the moments of a random
variable X having the cdf of the TIIT-G class, as well as those of some related
measures and functions. Following the spirit of the modern classes of distributions,
one can investigate a series expansion for f(x). The motivations and details of
this approach can be found in [7]. Then, for any x ∈ (−π/2, π/2), the Taylor

series expansion of the tangent function gives tan(x) =
+∞∑
k=1

akx
2k−1, where ak =

(−1)k−122k(22k − 1)B2k/[(2k)!] and B2k denotes the Bernoulli number with index
2k. Therefore, one can expand F (x) as

F (x) = 1−
+∞∑
k=1

a∗kḠ(x)2k−1, x ∈ R,

where a∗k = (π/4)2k−1ak and Ḡ(x) = 1 − G(x), being the sf of the baseline distri-
bution. By differentiation with respect to x (almost surely), we obtain

f(x) =

+∞∑
k=1

a∗k

[
(2k − 1)g(x)Ḡ(x)2(k−1)

]
, x ∈ R. (2.5)

From this representation, one can express or approximate several key measures or
functions of the TIIT-G class in a tractable manner. Indeed, from X and the related
expectation denoted by E, most of them can be written as (or depend on quantities
that can be written as) E[Π(X)] where Π(x) refers to a certain function. Some of
them are listed in Table 1.
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Table 1. Examples of standard mathematical objects of the TIIT-G class that can be expressed as
E[Π(X)]

Π(x) Name of E[Π(X)] Notation

I{x ≤ t} cdf (t) F (t)

x mean m

x2 −m2 variance σ2

xr rth (ordinary) moment mr(
x−m
σ

)r
rth general coefficient Cr

xrI{x ≤ t} rth incomplete moment (t) mr(t)

etx moment generating function (t) M(t)

Thus, thanks to Equation (2.5), we have

E[Π(X)] =

∫ +∞

−∞
Π(x)f(x)dx =

+∞∑
k=1

a∗kI
[Π]
k ≈

K∑
k=1

a∗kI
[Π]
k ,

where I [Π]
k =

∫ +∞
−∞ Π(x)

[
(2k − 1)g(x)Ḡ(x)2(k−1)

]
dx and K denotes a great integer.

The advantage of this expression is that I [Π]
k is often manageable for a myriad of

baseline distributions, making the computational treatment of E[Π(X)] straightfor-
ward.

For instance, if X follows the TIITW distribution as defined in Equation (2.4),
the rth ordinary moment of X is given as

mr = E(Xr) =

+∞∑
k=1

a∗kI
[r]
k ≈

K∑
k=1

a∗kI
[r]
k ,

where, after some developments,

I [r]
k =

∫ +∞

0

xr
[
(2k − 1)abxb−1e−a(2k−1)xb

]
dx =

1

ar/b(2k − 1)r/b
Γ
(r
b

+ 1
)
,

Γ(x) =
∫ +∞

0
tx−1e−tdt being the standard gamma function. Other measures and

functions can be expressed in a similar manner, exactly as those developed in [7].

3. Applications

In this section, we describe our statistical methodology and applied it to twelve
different data sets, for models comparison purpose.
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3.1. Statistical methodology

The following statistical methodology is adopted. Firstly, twelve data sets with
diverse characteristics are considered. Then, for each data set, we proceed as follows.

• The data are presented with adequate reference(s).

• A descriptive summary of the data is provided, indicating the mean, median,
standard deviation (standard dev.), variance, skewness, kurtosis, minimum
and maximum.

• We fit the data with the following five two-parameter models.

1. Weibull (W) model with parameters a and b as defined in Equation (2.3),
i.e. whose cdf and pdf are given by

G(x; a, b) = 1− e−ax
b

, g(x; a, b) = abxb−1e−ax
b

, x > 0,

and both equal to 0 for x ≤ 0 respectively. The Weibull model serves as
the baseline of the next trigonometric models.

2. Sin Weibull (SW) model with parameters a and b whose cdf and pdf are
given by

FSW (x; a, b) = sin
[π

2
G(x; a, b)

]
and

fSW (x; a, b) =
π

2
g(x; a, b) cos

[π
2
G(x; a, b)

]
respectively.

3. Cos Weibull (CW) model with parameters a and b whose cdf and pdf are
given by

FCW (x; a, b) = 1− cos
[π

2
G(x; a, b)

]
and

fCW (x; a, b) =
π

2
g(x; a, b) sin

[π
2
G(x; a, b)

]
respectively. This model has been the object of a special R package in [23].

4. Tan Weibull (TW) model with parameters a and b whose cdf and pdf
are given by

FTW (x; a, b) = tan
[π

4
G(x; a, b)

]
and

fTW (x; a, b) =
π

4
g(x; a, b)

1{
cos
[
π
4G(x; a, b)

]}2

respectively.
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5. Type II Tan Weibull (TIITW) model with parameters a and b as de-
scribed in Equation (2.4), i.e., whose cdf and pdf are given by

FTIITW (x; a, b) = 1− tan
[π

4
(1−G(x; a, b))

]
and

fTIITW (x; a, b) =
π

4
g(x; a, b)

1{
cos
[
π
4 (1−G(x; a, b))

]}2

respectively.

Here, it is supposed that a and b are unknown, both of which needed to be
estimated from the data.

• We employ the maximum likelihood method outlined by [6], providing the
so-called maximum likelihood estimates (MLEs) of a and b, denoted by â and

b̂ respectively. Let us mention that the estimated pdfs and cdfs of the models
are obtained by substituting a and b by â and b̂, which are respectively in
their own definitions.

• We compare the models by using the following standard goodness-of-fit s-
tatistics: −Log (corresponding to the minus estimated log-likelihood func-
tion), Anderson Darling (A∗), Cramer-von Mises (W∗), Akaike information
criterion (AIC), corrected Akaike information criterion (CAIC), Bayesian in-
formation criterion (BIC) and Hannan-Quinn information criterion (HQIC),
along with the Kolmogorov-Smirnov (K-S) statistic of the K-S test coupled
with its p-value (PV). All these criteria are useful to show the relevance of
these models to fit the considered data set; the best model being the one with
the lowest value of each of these statistics, excluding the p-value which must
be the greatest.

• Plots of the estimated pdfs over the histogram of the data as well as plots of
the estimated cdfs over the empirical cdf of the data are shown to support the
conclusions.

In practice, we operate with the statistical software R (developed by [17]) and use
the goodness.fit function from the package AdequacyModel elaborated by [14]. The
outputs provide all the numerical values of the mentioned MLEs and statistics. The
main lines of our R code are given in Appendix.

Note: In this study, in accordance with the original spirit of model comparison,
we considered only unknown and estimated pdfs and cdfs. For the sake of brevity
and to avoid some redundancy in the conclusions, statistical objects related to
hazard rates, such as the Total of Time (TTT) plots and estimated hrfs, have been
omitted. However, they are of some interest and remain available from the author
upon request.

3.2. Application

The application of our statistical methodology on twelve data sets is described as
follows.
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Data set 1: This data set displays the waiting times (in minutes) before service
of 100 bank customers. It was investigated and interpreted by [10] in order to fit
the Lindley distribution. It is given by: 0.8, 0.8, 1.3, 1.5, 1.8, 1.9, 1.9, 2.1, 2.6, 2.7,
2.9, 3.1, 3.2, 3.3, 3.5, 3.6, 4.0, 4.1, 4.2, 4.2, 4.3, 4.3, 4.4, 4.4, 4.6, 4.7, 4.7, 4.8, 4.9,
4.9, 5.0, 5.3, 5.5, 5.7, 5.7, 6.1, 6.2, 6.2, 6.2, 6.3, 6.7, 6.9, 7.1, 7.1, 7.1, 7.1, 7.4, 7.6,
7.7, 8.0, 8.2, 8.6, 8.6, 8.6, 8.8, 8.8, 8.9, 8.9, 9.5, 9.6, 9.7, 9.8, 10.7, 10.9, 11.0, 11.0,
11.1, 11.2, 11.2, 11.5, 11.9, 12.4, 12.5, 12.9, 13.0, 13.1, 13.3, 13.6, 13.7, 13.9, 14.1,
15.4, 15.4, 17.3, 17.3, 18.1, 18.2, 18.4, 18.9, 19.0, 19.9, 20.6, 21.3, 21.4, 21.9, 23.0,
27.0, 31.6, 33.1, 38.5.

Table 2 provides a summary of descriptive statistics of this data set.

Table 2. Descriptive statistics of Data set 1

Mean Median Standard dev. Variance Skewness Kurtosis Minimum Maximum

9.877 8.100 7.236996 52.37411 1.472765 5.540292 0.800 38.500

In Table 2, we see that the data are right-skewed and leptokurtic with a high
variance. Table 3 contains the MLEs of the parameters of the W, SW, CW, TW
and TIITW models, that is, â and b̂ for each model as well as the −Log, A∗, W∗,
K-S, PV, AIC, AICC, BIC and HQIC statistics of these models.

Table 3. MLEs and goodness-of-fit statistics for Data set 1

Model â b̂ −Log A∗ W∗ K-S PV AIC AICC BIC HQIC

W 0.0304 1.4586 318.73 0.40 0.06 0.06 0.89 641.46 641.59 646.67 643.57

SW 0.0210 1.3796 319.06 0.45 0.07 0.06 0.87 642.11 642.24 647.32 644.22

CW 0.1187 1.0620 317.06 0.13 0.02 0.04 1.00 638.11 638.24 643.32 640.22

TW 0.0456 1.3767 319.78 0.57 0.09 0.07 0.76 643.56 643.68 648.77 645.67

TIITW 0.0165 1.6190 318.32 0.33 0.05 0.06 0.91 640.65 640.77 645.86 642.76

From Table 3, since they present the lowest −Log, A∗, W∗, K-S, AIC, AICC,
BIC and HQIC values along with the greatest PV values, the CW and TIITW
models are more suitable fitted models than the competitors, the CW model being
the better of the two. Figure 1 displays the estimated pdfs over the histogram of
the data.
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Figure 1. Estimated pdfs for Data set 1

Figure 2 displays the estimated cdfs over the empirical cdf of the data.
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Figure 2. Estimated cdfs for Data set 1

Note: In the next applications, for the sake of conciseness, we will provide less
details on the used tools and the reasons why the considered models are the best,
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implicitly invoking the same arguments as those developed for the analysis of Data
set 1.

Data set 2: This data set includes the waiting times between 65 consecutive
Kiama Blowhole eruptions. The values had been observed on 12 July, 1998 by Jim
Irish and had been lately mentioned by [3]. It is given by: 83, 51, 87, 60, 28, 95, 8,
27, 15, 10, 18, 16, 29, 54, 91, 8, 17, 55, 10, 35,47, 77, 36, 17, 21, 36, 18, 40, 10, 7,
34, 27, 28, 56, 8, 25, 68, 146, 89, 18, 73, 69, 9, 37, 10, 82, 29, 8, 60, 61, 61, 18, 169,
25, 8, 26, 11, 83, 11, 42, 17, 14, 9, 12.

A summary of descriptive statistics of this data set is provided in Table 4.

Table 4. Descriptive statistics of Data set 2

Mean Median Standard deviation Variance Skewness Kurtosis Minimum Maximum

39.83 28.00 33.75051 1139.097 1.546409 5.771077 7.00 169.00

We see in Table 4 that the data are right-skewed and leptokurtic with a very high
variance. Table 5 contains the MLEs and goodness-of-fit statistics of the considered
models.

Table 5. MLEs and goodness-of-fit statistics for Data set 2

Model â b̂ −Log A∗ W∗ K-S PV AIC AICC BIC HQIC

W 0.0082 1.2744 296.90 1.01 0.15 0.11 0.41 597.80 598.00 602.12 599.50

SW 0.0061 1.2035 297.28 1.05 0.16 0.11 0.40 598.57 598.76 602.88 600.27

CW 0.0459 0.9291 295.17 0.85 0.12 0.11 0.43 594.35 594.55 598.67 596.05

TW 0.0127 1.2115 297.57 1.09 0.16 0.11 0.38 599.13 599.33 603.45 600.83

TIITW 0.0038 1.4206 296.13 0.91 0.13 0.11 0.43 596.26 596.46 600.58 597.96

According to Table 5, the CW and TIITW models are the best to fit this data set,
the CW model being the better of the two. In Figures 3 and 4, the estimated pdfs
and cdfs are displayed over the histogram and empirical cdf of the data respectively.
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Figure 3. Estimated pdfs for Data set 2
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Figure 4. Estimated cdfs for Data set 2

Figures 3 and 4 illustrate the superior adequacy of the CW and TIITW models,
and particularly highlights the adjustment of the CW one.
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Data set 3: This data set consists of 202 athletes’ lean body mass (in kilo-
grams) extracted from physical measurements and blood measurements from high
performance athletes at the Australian Institute of Sports and examined by [25].
It is given by: 63.32, 58.55, 55.36, 57.18, 53.20, 53.77, 60.17, 48.33, 54.57, 53.42,
68.53, 61.85, 48.32, 66.24, 57.92, 56.52, 54.78, 56.31, 62.96, 56.68, 62.39, 63.05,
56.05, 53.65, 65.45, 64.62, 60.05, 56.48, 41.54, 52.78, 52.72, 61.29, 59.59, 61.70,
62.46, 53.14, 47.09, 53.44, 48.78, 56.05, 56.45, 53.11, 54.41, 55.97, 51.62, 58.27,
57.28, 57.30, 54.18, 42.96, 54.46, 57.20, 54.38, 57.58, 61.46, 53.46, 54.11, 55.35,
55.39, 52.23, 59.33, 61.63, 63.39, 60.22, 55.73, 48.57, 51.99, 51.17, 57.54, 68.86,
63.04, 63.03, 66.85, 59.89, 72.98, 45.23, 55.06, 46.96, 53.54, 47.57, 54.63, 46.31,
49.13, 53.71, 53.11, 46.12, 53.41, 51.48, 53.20, 56.58, 56.01, 46.52, 51.75, 42.15,
48.76, 41.93, 42.95, 38.30, 34.36, 39.03, 61.00, 69.00, 74.00, 80.00, 78.00, 71.00,
71.00, 78.00, 77.00, 81.00, 66.00, 77.00, 91.00, 78.00, 75.00, 78.00, 87.00, 78.00,
79.00, 79.00, 48.00, 82.00, 82.00, 82.00, 83.00, 88.00, 83.00, 78.00, 85.00, 73.00,
82.00, 79.00, 97.00, 90.00, 90.00, 74.00, 82.00, 72.00, 76.00, 70.00, 57.00, 67.00,
67.00, 70.00, 88.00, 83.00, 74.00, 62.00, 67.00, 70.00, 64.00, 58.00, 57.00, 73.00,
54.00, 67.00, 66.00, 75.00, 78.00, 102.00, 74.00, 78.00, 106.00, 68.00, 77.00, 69.00,
66.00, 62.00, 65.00, 62.00, 66.00, 67.00, 65.00, 63.00, 59.00, 86.00, 87.00, 89.00,
80.00, 68.00, 69.00, 77.00, 68.00, 77.00, 71.00, 72.00, 74.00, 68.00, 85.00, 75.00,
78.00, 86.00, 69.00, 79.00, 80.00, 82.00, 68.00, 82.00, 72.00, 68.00, 63.00, 72.00.

Table 6 proposes a summary of descriptive statistics of this data set.

Table 6. Descriptive statistics of Data set 3

Mean Median Standard deviation Variance Skewness Kurtosis Minimum Maximum

64.87 63.03 13.0702 170.8301 0.3585088 2.75988 34.36 106.00

In Table 6, we notice that the data are approximately symmetric and rather
mesokurtic with a high variance. Table 7 indicates the MLEs and goodness-of-fit
statistics of the considered models.

Table 7. MLEs and goodness-of-fit statistics for Data set 3

Model â b̂ −Log A∗ W∗ K-S PV AIC AICC BIC HQIC

W 1.9184×10−10 5.2618 811.61 2.09 0.37 0.08 0.17 1627.21 1627.27 1633.83 1629.89

SW 3.7898×10−10 4.9702 812.60 2.25 0.40 0.08 0.16 1629.19 1629.25 1635.81 1631.87

CW 9.6118×10−8 3.8973 804.95 1.26 0.23 0.08 0.19 1613.90 1613.96 1620.52 1616.58

TW 7.9479×10−10 4.9753 814.33 2.50 0.44 0.09 0.10 1632.66 1632.72 1639.28 1635.34

TIITW 1.2190×10−11 5.8560 810.00 1.79 0.32 0.08 0.18 1623.99 1624.05 1630.61 1626.67
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The analysis of Table 7 ensures that the CW and TIITW models are the best,
the CW model being the better of the two. In Figures 5 and 6, the estimated pdfs
and cdfs are displayed over the histogram and empirical cdf of the data respectively.
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Figure 5. Estimated pdfs for Data set 3
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Figure 6. Estimated cdfs for Data set 3
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Figures 5 and 6 visually confirm the better adjustment of the CW model.

Data set 4: This data set contains the number of successive failures for the
air-conditioning system of each member in a fleet of 13 Boeing 720 jet airplanes,
given by [16]. It is given by: 1, 1, 3, 3, 3, 4, 5, 5, 5, 5, 5, 7, 7, 7, 9, 9, 10, 11, 11, 11,
11, 12, 12, 12, 12, 13, 14, 14, 14, 14, 14, 14, 14, 14, 15, 15, 16, 16, 16, 18, 18, 18, 18,
18, 18, 20, 20, 21, 22, 22, 22, 23, 23, 23, 24, 25, 26, 26, 27, 27, 29, 29, 29, 30, 31,
31, 32, 33, 33, 34, 34, 34, 35, 35, 36, 36, 37, 39, 39, 41, 42, 43, 44, 44, 44, 46, 46,
48, 49, 50, 50, 51, 52, 54, 54, 55, 56, 57, 57, 57, 58, 59, 59, 60, 61, 61, 62, 62, 63,
65, 66, 67, 70, 71, 71, 72, 74, 76, 79, 79, 80, 82, 84, 87, 88, 90, 90, 95, 97, 97, 98,
100, 100, 101, 102, 102, 104, 104, 106, 111, 118, 118, 120, 120, 130, 130, 130, 134,
139, 141, 152, 153, 156, 163, 181, 182, 184, 186, 188, 191, 194, 201, 206, 208, 208,
209, 210, 216, 220, 230, 230, 239, 246, 254, 261, 270, 283, 310, 320, 326, 359, 386,
413, 438, 487, 493, 502, 603.

Descriptive statistics of this data set can be seen in Table 8.

Table 8. Descriptive statistics of Data set 4

Mean Median Standard deviation Variance Skewness Kurtosis Minimum Maximum

92.07 54.00 107.9163 11645.93 2.139207 8.023109 1.00 603.00

Table 8 indicates that the data are right-skewed and leptokurtic with a really
high variance. Table 9 contains the MLEs and goodness-of-fit statistics of the
considered models.

Table 9. MLEs and goodness-of-fit statistics for Data set 4

Model â b̂ −Log A∗ W∗ K-S PV AIC AICC BIC HQIC

W 0.0170 0.9107 1036.75 1.00 0.16 0.06 0.57 2077.50 2077.57 2083.98 2080.12

SW 0.0121 0.8608 1037.58 1.12 0.18 0.06 0.53 2079.16 2079.23 2085.64 2081.79

CW 0.0783 0.6614 1033.34 0.36 0.05 0.04 0.85 2070.69 2070.75 2077.16 2073.31

TW 0.0260 0.8605 1038.81 1.36 0.22 0.07 0.34 2081.63 2081.69 2088.10 2084.25

TIITW 0.0085 1.0139 1035.37 0.78 0.12 0.06 0.61 2074.74 2074.80 2081.21 2077.36

Table 9 indicates that the CW and TIITW models are the most relevant fitted
models with a preference for the CW model. In Figure 7, the estimated pdfs are
displayed over the histogram of the data.
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Figure 7. Estimated pdfs for Data set 4

In Figure 8, the estimated cdfs are plotted over the empirical cdf of the data.

0 100 200 300 400 500 600

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x

cd
f

W
SW
CW
TW
TIITW

Figure 8. Estimated cdfs for Data set 4.

Data set 5: This data set exhibits the vinyl chloride data collected from clean
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upgrading, monitoring wells in mg/L which was employed by [4]. It is given by:
5.1, 1.2, 1.3, 0.6, 0.5, 2.4, 0.5, 1.1, 8.0, 0.8, 0.4, 0.6, 0.9, 0.4, 2.0, 0.5, 5.3,3.2, 2.7,
2.9, 2.5, 2.3, 1.0, 0.2, 0.1, 0.1, 1.8, 0.9, 2.0, 4.0, 6.8, 1.2, 0.4, 0.2.

Table 10 provides a summary of descriptive statistics of this data set.

Table 10. Descriptive statistics of Data set 5

Mean Median Standard deviation Variance Skewness Kurtosis Minimum Maximum

1.879 1.150 1.952586 3.812594 1.603688 5.005408 0.100 8.000

In Table 10, we see that the data are right-skewed and leptokurtic with a low
variance. Table 11 collects the MLEs and goodness-of-fit statistics of the considered
models.

Table 11. MLEs and goodness-of-fit statistics for Data set 5

Model â b̂ −Log A∗ W∗ K-S PV AIC AICC BIC HQIC

W 0.5262 1.0102 55.45 0.30 0.05 0.09 0.94 114.90 115.29 117.95 115.94

SW 0.3105 0.9542 55.61 0.32 0.05 0.09 0.92 115.22 115.61 118.28 116.26

CW 0.9534 0.7281 54.94 0.20 0.03 0.08 0.98 113.88 114.27 116.93 114.92

TW 0.6651 0.9563 55.77 0.36 0.06 0.10 0.86 115.55 115.93 118.60 116.59

TIITW 0.3922 1.1251 55.15 0.26 0.04 0.09 0.95 114.30 114.68 117.35 115.34

According to Table 11, the CW and TIITW models are the best in the fitting
work, the CW model being the better of the two. In Figures 9 and 10, the esti-
mated pdfs and cdfs are plotted over the histogram and empirical cdf of the data
respectively.
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Figure 9. Estimated pdfs for Data set 5
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Figure 10. Estimated cdfs for Data set 5

Figures 9 and 10 visually confirms the best settings for the CW and TIITW
models, notably the CW one.
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Data set 6: This data set is based on the survival times (in years) of a group
of patients given chemotherapy treatment alone. It is a subset of data presented
by [5]. It is given by: 0.047, 0.115, 0.121, 0.132, 0.164, 0.197, 0.203, 0.260, 0.282,
0.296, 0.334, 0.395, 0.458, 0.466, 0.501, 0.507, 0.529, 0.534, 0.540, 0.641, 0.644,
0.696, 0.841, 0.863, 1.099, 1.219, 1.271, 1.326, 1.447, 1.485, 1.553, 1.581, 1.589,
2.178, 2.343, 2.416, 2.444, 2.825, 2.830, 3.578, 3.658, 3.743, 3.978, 4.003, 4.033.

Table 12 shows a summary of descriptive statistics of this data set.

Table 12. Descriptive statistics of Data set 6

Mean Median Standard deviation Variance Skewness Kurtosis Minimum Maximum

1.341 0.841 1.246601 1.554014 0.9721463 2.663833 0.047 4.033

From Table 12, we see that the data are right-skewed and rather mesokurtic
with a high variance. Table 13 presents the MLEs and goodness-of-fit statistics of
the considered models.

Table 13. MLEs and goodness-of-fit statistics for Data set 6

Model â b̂ −Log A∗ W∗ K-S PV AIC AICC BIC HQIC

W 0.7177 1.0532 58.12 0.54 0.08 0.11 0.61 120.25 120.53 123.86 121.59

SW 0.4144 0.9956 58.33 0.58 0.09 0.11 0.59 120.66 120.95 124.28 122.01

CW 1.2010 0.7404 58.09 0.44 0.06 0.09 0.81 120.18 120.47 123.80 121.53

TW 0.8816 1.0054 58.26 0.60 0.09 0.12 0.54 120.52 120.81 124.13 121.87

TIITW 0.5618 1.1746 57.61 0.48 0.07 0.10 0.68 119.21 119.50 122.83 120.56

According to Table 13, the CW and TIITW models are more pertinent fitted
models than the competitors for this data set, the TIITW model being the better
of the two. Figure 11 shows the estimated pdfs over the histogram of the data.
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Figure 11. Estimated pdfs for Data set 6

Figure 12 presents the estimated cdfs over the empirical cdf of the data.
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Figure 12. Estimated cdfs for Data set 6

Figures 11 and 12 illustrate the superior adequacy of the CW and TIITW mod-
els, especially the one of the TIITW model.
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Data set 7: This data set reports the failure times of the air conditioning sys-
tem of an airplane. It has been published by [13]. It is given by: 23, 261, 87, 7,
120, 14, 62, 47, 225, 71, 246, 21, 42, 20, 5, 12, 120, 11, 3, 14, 71, 11, 14, 11, 16, 90,
1, 16, 52, 95.

A summary of descriptive statistics of this data set is given in Table 14.

Table 14. Descriptive statistics of Data set 7

Mean Median Standard deviation Variance Skewness Kurtosis Minimum Maximum

59.6 22.0 71.88477 5167.421 1.693605 4.966655 1.0 261.0

From Table 14, we can say that the data are right-skewed and leptokurtic with
a very high variance. Table 15 presents the MLEs and goodness-of-fit statistics of
the considered models.

Table 15. MLEs and goodness-of-fit statistics for Data set 7

Model â b̂ −Log A∗ W∗ K-S PV AIC AICC BIC HQIC

W 0.0329 0.8535 151.94 0.58 0.10 0.15 0.48 307.87 308.32 310.68 308.77

SW 0.0227 0.8052 152.10 0.61 0.11 0.15 0.47 308.21 308.65 311.01 309.10

CW 0.1289 0.6161 151.42 0.47 0.09 0.13 0.65 306.84 307.28 309.64 307.74

TW 0.0477 0.8092 152.24 0.64 0.11 0.16 0.41 308.49 308.93 311.29 309.38

TIITW 0.0176 0.9540 151.60 0.54 0.09 0.15 0.51 307.19 307.64 310.00 308.09

From Table 15, it is clear that the CW and TIITW models are more relevant
fitted models than the others, the CW model being the better of the two. In
Figures 13 and 14, the estimated pdfs and cdfs are displayed over the histogram
and empirical cdf of the data respectively.
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Figure 13. Estimated pdfs for Data set 7
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Figure 14. Estimated cdfs for Data set 7

Data set 8: This data set, disclosed by [9], involves several measures of the
strength of glass of the aircraft window. It is given by: 18.83, 20.8, 21.657, 23.03,
23.23, 24.05, 24.321, 25.5, 25.52, 25.8, 26.69, 26.77, 26.78, 27.05, 27.67, 29.9, 31.11,
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33.2, 33.73, 33.76, 33.89, 34.76, 35.75, 35.91, 36.98, 37.08, 37.09, 39.58, 44.045,
45.29, 45.381.

Table 16 provides a summary of descriptive statistics of this data set.

Table 16. Descriptive statistics of Data set 8

Mean Median Standard dev. Variance Skewness Kurtosis Minimum Maximum

30.81 29.90 7.253381 52.61154 0.4053965 2.286637 18.830 45.381

We see in Table 16 that the data are approximately symmetric and platykurtic
with a high variance. Table 17 contains the MLEs and goodness-of-fit statistics of
the considered models.

Table 17. MLEs and goodness-of-fit statistics for Data set 8

Model â b̂ −Log A∗ W∗ K-S PV AIC AICC BIC HQIC

W 8.3379×10−8 4.6349 105.49 0.64 0.10 0.15 0.42 214.98 215.41 217.85 215.91

SW 1.2024×10−7 4.3712 105.69 0.67 0.10 0.15 0.42 215.38 215.81 218.25 216.31

CW 1.0279×10−5 3.3890 104.60 0.50 0.09 0.14 0.51 213.19 213.62 216.06 214.13

TW 2.4182×10−7 4.3885 105.89 0.71 0.11 0.16 0.39 215.78 216.21 218.65 216.72

TIITW 9.9612×10−9 5.1753 105.11 0.60 0.09 0.15 0.44 214.21 214.64 217.08 215.15

According to Table 17, the CW and TIITW models are more pertinent than the
other models to fit these data, the CW model being the better of the two. Figure 15
shows the estimated pdfs over the histogram of the data, whereas Figure 16 shows
the estimated cdfs over empirical cdf of the data respectively.
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Figure 15. Estimated pdfs for Data set 8

20 25 30 35 40 45

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x

cd
f

W
SW
CW
TW
TIITW

Figure 16. Estimated cdfs for Data set 8

Figures 15 and 16 illustrate the superior adequacy of the CW model, which has
better captured the ”top” of the data.
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Data set 9: This data set disclosed 50 observations with hole diameter of 12
mm and sheet thickness 3.15 mm, documented by [8]. Hole diameter readings are
taken into account with respect to one hole selected and fixed as per a predeter-
mined orientation. It is given by: 0.04, 0.02, 0.06, 0.12, 0.14, 0.08, 0.22, 0.12, 0.08,
0.26, 0.24, 0.04, 0.14, 0.16, 0.08, 0.26, 0.32, 0.28, 0.14, 0.16, 0.24, 0.22, 0.12, 0.18,
0.24, 0.32, 0.16, 0.14, 0.08, 0.16, 0.24, 0.16, 0.32, 0.18, 0.24, 0.22, 0.16, 0.12, 0.24,
0.06, 0.02, 0.18, 0.22, 0.14, 0.06, 0.04, 0.14, 0.26, 0.18, 0.16.

A summary of descriptive statistics of this data set is given in Table 18.

Table 18. Descriptive statistics of Data set 9

Mean Median Standard deviation Variance Skewness Kurtosis Minimum Maximum

0.1632 0.1600 0.08105025 0.006569143 0.07233688 2.216649 0.02 0.32

Table 18 suggests that the data are approximately symmetric and platykurtic
with a variance close to 0. Table 19 collects the MLEs and goodness-of-fit statistics
of the considered models.

Table 19. MLEs and goodness-of-fit statistics for Data set 9

Model â b̂ −Log A∗ W∗ K-S PV AIC AICC BIC HQIC

W 36.2758 2.1196 -55.89 0.64 0.11 0.11 0.58 -107.78 -107.53 -103.96 -106.33

SW 17.3726 2.0220 -56.08 0.61 0.10 0.11 0.62 -108.16 -107.90 -104.33 -106.70

CW 16.3020 1.4112 -53.48 1.05 0.17 0.14 0.27 -102.96 -102.70 -99.13 -101.50

TW 38.1814 2.0264 -56.44 0.56 0.09 0.10 0.65 -108.88 -108.63 -105.06 -107.43

TIITW 42.1280 2.3210 -55.54 0.72 0.12 0.13 0.41 -107.08 -106.82 -103.25 -105.62

Table 19 indicates that the SW and TW models are the most adequate fitted
models than the competitors concerning this data set, the TW model being the
better of the two. In Figures 17 and 18, the estimated pdfs and cdfs are displayed
over the histogram and empirical cdf of the data respectively.
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Figure 18. Estimated cdfs for Data set 9

Figures 17 and 18 highlight the better adjustment of the SW and TW models.

Data set 10: This data set implicates the time to failure (in 103h) of tur-



On a Comparative Study on Some Trigonometric Classes of Distributions 251

bocharger of one type of engine. It is presented by [26]. It is given by: 1.6, 2.0, 2.6,
3.0, 3.5, 3.9, 4.5, 4.6, 4.8, 5.0, 5.1, 5.3, 5.4, 5.6, 5.8, 6.0, 6.0, 6.1, 6.3, 6.5, 6.5, 6.7,
7.0, 7.1, 7.3, 7.3, 7.3, 7.7, 7.7, 7.8, 7.9, 8.0, 8.1, 8.3, 8.4, 8.4, 8.5, 8.7, 8.8, 9.0.

Table 20 provides a summary of descriptive statistics of this data set.

Table 20. Descriptive statistics of Data set 10

Mean Median Standard deviation Variance Skewness Kurtosis Minimum Maximum

6.253 6.500 1.95553 3.824096 -0.6625574 2.641014 1.60 9.00

We see in Table 20 that the data are left-skewed and approximately mesokurtic
with a low variance. Table 21 contains the MLEs and goodness-of-fit statistics of
the considered models.

Table 21. MLEs and goodness-of-fit statistics for Data set 10

Model â b̂ −Log A∗ W∗ K-S PV AIC AICC BIC HQIC

W 5.5573×10−4 3.8731 82.48 0.57 0.08 0.11 0.74 168.95 169.28 172.33 170.17

SW 4.3338×10−4 3.7060 82.20 0.53 0.07 0.10 0.78 168.39 168.71 171.77 169.61

CW 1.1176×10−2 2.5005 85.34 1.00 0.14 0.12 0.66 174.69 175.01 178.06 175.91

TW 8.9843×10−4 3.7339 81.73 0.47 0.06 0.10 0.81 167.46 167.78 170.83 168.68

TIITW 2.3331×10−4 4.2294 82.96 0.66 0.09 0.12 0.65 169.92 170.24 173.30 171.14

From Table 21, we see that the SW and TW models are the best fitted models
for this data set, the TW model being the better of the two. In Figure 19, the
estimated pdfs are plotted over the histogram of the data.
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Figure 19. Estimated pdfs for Data set 10

To complete, Figure 20 displays the estimated cdfs over the empirical cdf of the
data.
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Figure 20. Estimated cdfs for Data set 10

Figures 19 and 20 spotlight the greater adequacy of the TW models.
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Covid-19 relative data sets

The COVID-19 disease is a mild to severe respiratory illness that is caused by a
coronavirus (severe acute respiratory syndrome coronavirus 2 of the genus Beta-
coronavirus). Spreading all around the world at a rapid pace in the early of the
year 2020, contaminating millions of people and making thousands of victims, it had
forced governments to adopt exceptional measures like quarantine in order to limit
the pandemic and protect their citizens. An overall comprehension of the COVID-
19 disease is a challenge for all scientists, for the sake of the future generations. The
analysis of COVID-19 data aims to predict and be better prepared in case of future
pandemic.

In this part, we consider COVID-19 data from France from March 2020 to 1
June, 2020. The day of 1 June, 2020 is symbolic for it marks the term of the first
stage of the release of lockdown in France. At this point, the pandemic is considered
on the decline. Schools and restaurants are reopening, but meetings of more than
ten people are still forbidden.

Data set 11: This data set is based on the daily amount of new admission in
hospital concerning the COVID-19 in France from 19 March, 2020 to 1 June, 2020.
The data are collected by [18] and are available on:

https://www.data.gouv.fr/en/datasets/donnees-hospitalieres-relatives-a-lepidemie-de-covid-19/

Explicitly, this data set is given by: 438, 242, 298, 309, 448, 571, 607, 612, 608,
695, 543, 694, 767, 771, 728, 640, 502, 390, 478, 518, 482, 369, 431, 255, 220, 227,
275, 284, 270, 242, 206, 137, 208, 190, 183, 178, 155, 124, 79, 125, 153, 110, 121,
73, 64, 80, 84, 111, 69, 99, 89, 38, 38, 82, 92, 69, 52, 64, 46, 24, 38, 69, 43, 28, 36,
30, 24, 45, 37, 32, 36, 29, 29, 18, 9.

Table 22 provides a summary of descriptive statistics of this data set.

Table 22. Descriptive statistics of Data set 11

Mean Median Standard deviation Variance Skewness Kurtosis Minimum Maximum

234.1 137.0 222.9707 49715.93 0.9860842 2.699223 9.0 771.0

In Table 22, we see that the data are right-skewed and rather mesokurtic with
a really high variance. Table 23 displays the MLEs and goodness-of-fit statistics of
the considered models.
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Table 23. MLEs and goodness-of-fit statistics for Data set 11

Model â b̂ −Log A∗ W∗ K-S PV AIC AICC BIC HQIC

W 3.6581×10−3 1.0263 484.15 1.22 0.18 0.10 0.47 972.30 972.47 976.94 974.15

SW 2.8345×10−3 0.9691 484.59 1.27 0.19 0.10 0.44 973.18 973.35 977.82 975.03

CW 2.877×10−2 0.7256 483.58 1.03 0.15 0.09 0.57 971.16 971.33 975.79 973.01

TW 5.6536×10−3 0.9809 484.47 1.31 0.20 0.11 0.37 972.94 973.10 977.57 974.79

TIITW 1.5358×10−3 1.1472 483.05 1.09 0.16 0.09 0.54 970.10 970.27 974.74 971.95

From Table 23, it is clear that the CW and TIITW models are the most relevant,
the best model being the TIITW model. In Figures 21 and 22, the estimated pdfs
and cdfs are plotted over the histogram and empirical cdf of the data respectively.
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Figure 21. Estimated pdfs for Data set 11
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Figure 22. Estimated cdfs for Data set 11

Figures 21 and 22 visually confirm the good adjustment of the TIITW model.

Data set 12: This data set displays the amount of people hospitalize on account
of the COVID-19 each day in France from 18 March, 2020 to 1 June, 2020. The
data are collected by [18] and available on:

https://www.data.gouv.fr/en/datasets/donnees-hospitalieres-relatives-a-lepidemie-de-covid-19/

In expanded form, the data set is given by: 5905, 7961, 10272, 11599, 13675,
17087, 20181, 23992, 27601, 31237, 34975, 38424, 41682, 45115, 48849, 51999, 54328,
55716, 57175, 58813, 59430, 60121, 60897, 61911, 62009, 63009, 63572, 63942, 62946,
62045, 61826, 60741, 60686, 60625, 59673, 58963, 57953, 56844, 55976, 55962, 55640,
54951, 53392, 52311, 51533, 51419, 51395, 50859, 49317, 47737, 46184, 45220, 45001,
44906, 44343, 42971, 41934, 40723, 39522, 38666, 38527, 37833, 36740, 35693, 34985,
34586, 34175, 34190, 33414, 32347, 31186, 30245, 29223, 28594, 28477, 28409.

Descriptive statistics of this data set are described in Table 24.

Table 24. Descriptive statistics of Data set 12

Mean Median Standard deviation Variance Skewness Kurtosis Minimum Maximum

43978 45168 15136.18 229103947 -0.6479744 2.650809 5905 63942

From Table 24, we observe that the data are left-skewed and approximately
mesokurtic with a really high variance. Table 25 contains the MLEs and goodness-
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of-fit statistics of the considered models.

Table 25. MLEs and goodness-of-fit statistics for Data set 12.

Model â b̂ −Log A∗ W∗ K-S PV AIC AICC BIC HQIC

W 1.4930×10−16 3.3750 839.44 1.43 0.18 0.12 0.24 1682.88 1683.04 1687.54 1684.74

SW 4.0442×10−16 3.2296 838.81 1.35 0.17 0.11 0.28 1681.61 1681.78 1686.27 1683.48

CW 1.0689×10−10 2.1625 845.67 2.22 0.30 0.13 0.17 1695.35 1695.51 1700.01 1697.21

TW 6.0230×10−16 3.2650 837.88 1.25 0.16 0.11 0.33 1679.76 1679.93 1684.42 1681.63

TIITW 4.222×10−18 3.6897 840.52 1.59 0.21 0.13 0.16 1685.04 1685.20 1689.70 1686.90

According to Table 25, the SW and TW models are the best, the TW model
being the better of the two. In Figures 23 and 24, the estimated pdfs and cdfs are
displayed over the histogram and empirical cdf of the data respectively.
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Figure 23. Estimated pdfs for Data set 12.
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Figure 24. Estimated cdfs for Data set 12

Figures 23 and 24 portray the greater adequacy of the TW model.

4. Conclusion

The first contribution of the paper is to offer a new motivated trigonometric class
of distributions, which is called the type II Tan-G (TIIT-G) class. We discuss its
main features, with some mathematical developments. Then, we perform a complete
practical comparative evaluation of the main existing trigonometric classes, defined
with the Weibull distribution as baseline. That is, we deal with the Weibull (W),
Sin Weibull (SW), Cos Weibull (CW), Tan Weibull (TW) and type II Tan Weibull
(TIITW) models. Twelve practical data sets are considered, including two on the
COVID-19 pandemic in France from March to June 2020.

Here are some concluding notes. When the data are strongly asymmetric on the
right, they can be better fitted by the CW model, mainly, or the TIITW model
than the Weibull model. However, when the data are moderately left-skewed, they
can be better fitted by the TW model or the SW model than the Weibull model.
Furthermore, when the distribution of the data is approximately symmetric, it seems
that there is no predominant model. Applications illustrate the usefulness of the
considered class of distributions. For certain data sets, the newly introduced TIIT-
G class can be the best. In all cases, the results obtained are fairly satisfactory,
demonstrating that these trigonometric classes of distributions can be used fairly
effectively to analyze a large panel of data sets.
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Appendix

In this appendix, the code to be used to output all the results for Data set 1 is
presented, using the software R. These codes are inspired by those of [23] and [24].

Technical note: In the code below, we use the definition of the Weibull distribution
behind the following predefined R functions: pweibull(x, shape = a, scale =

b) and dweibull(x, shape = a, scale = b) for the cdf and pdf, respectively.
The definitions of these functions do not correspond exactly to those defined in
Equation (2.3); the parameters “a” and “b” do not coincide, a re-parametrization
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must and will be done. We have voluntarily done that because these R functions
allow the activation of useful options in other predefined R functions in specific
packages, without alert or error. After extracting the essential, we manipulate the
obtained values of the estimated parameters to recover exactly the definition of the
Weibull distribution as defined in Equation (2.3); in the code below, the estimates
of the former a and b are contained into the R vectors named as a and b, respectively.

library(AdequacyModel)
library(moments)
library(fitdistrplus)

## Baseline Weibull ##

cdf w=function(par,x) {
a=par[1]
b=par[2]
G=pweibull(x, shape = a, scale = b)
return(G)

}
pdf w=function(par,x) {

a=par[1]
b=par[2]
g=dweibull(x, shape = a, scale = b)
return(g)

}

## Distribution ##

# Distribution SW
cdf sw=function(par,x) {

G=cdf w(par,x)
F=sin((pi/2)*G)
return(F)

}
pdf sw=function(par,x) {

G=cdf w(par,x)
g=pdf w(par,x)
F= (pi/2)*g*cos((pi/2)*G)
return(F)

}

# Distribution CW
cdf cw=function(par,x) {

G=cdf w(par,x)
F=1-cos((pi/2)*G)
return(F)

}
pdf cw=function(par,x) {

G=cdf w(par,x)
g=pdf w(par,x)
F= (pi/2)*g*sin((pi/2)*G)
return(F)

}

# Distribution TW
cdf tw=function(par,x) {

G=cdf w(par,x)
F=tan((pi/4)*G)
return(F)

}
pdf tw=function(par,x) {

G=cdf w(par,x)
g=pdf w(par,x)
F= (pi/4)*g*(1/cos((pi/4)*G)**2)
return(F)

}

# Distribution TIITW
cdf tiitw=function(par,x) {

G=cdf w(par,x)
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F=1-tan((pi/4)*(1-G))
return(F)

}
pdf tiitw=function(par,x) {

G=cdf w(par,x)
g=pdf w(par,x)
F= (pi/4)*g*(1/cos((pi/4)*(1-G))**2)
return(F)

}

## Data 1 ##

# Data.

g p=c( 0.8, 0.8, 1.3, 1.5, 1.8, 1.9, 1.9, 2.1, 2.6, 2.7, 2.9, 3.1, 3.2, 3.3, 3.5, 3.6, 4.0, 4.1, 4.2, 4.2, 4.3, 4.3,
4.4, 4.4, 4.6, 4.7, 4.7, 4.8, 4.9, 4.9, 5.0, 5.3, 5.5, 5.7, 5.7, 6.1, 6.2, 6.2, 6.2, 6.3, 6.7, 6.9, 7.1, 7.1, 7.1, 7.1,
7.4, 7.6, 7.7, 8.0, 8.2, 8.6, 8.6, 8.6, 8.8, 8.8, 8.9, 8.9, 9.5, 9.6, 9.7, 9.8, 10.7, 10.9, 11.0, 11.0, 11.1, 11.2,
11.2, 11.5, 11.9, 12.4, 12.5, 12.9, 13.0, 13.1, 13.3, 13.6, 13.7, 13.9, 14.1, 15.4, 15.4, 17.3, 17.3, 18.1, 18.2,
18.4, 18.9, 19.0, 19.9, 20.6, 21.3, 21.4, 21.9, 23.0 ,27.0, 31.6, 33.1 ,38.5)

# Initial parameters.

fit.w = fitdist(g p, ”weibull”)
a=fit.w$estimate[1]
b=fit.w$estimate[2]

# goodness.fit.

Res w = goodness.fit(data = g p, pdf = pdf w, cdf = cdf w, starts = c(a,b),
method = ”N”, mle = NULL, domain = c(0,Inf))

Res sw = goodness.fit(data = g p, pdf = pdf sw, cdf = cdf sw, starts = c(a,b),
method = ”N”, mle = NULL, domain = c(0,Inf))

Res cw = goodness.fit(data = g p, pdf = pdf cw, cdf = cdf cw, starts = c(a,b),
method = ”N”, mle = NULL, domain = c(0,Inf))

Res tw = goodness.fit(data = g p, pdf = pdf tw, cdf = cdf tw, starts = c(a,b),
method = ”N”, mle = NULL, domain = c(0,Inf))

Res tiitw = goodness.fit(data = g p, pdf = pdf tiitw, cdf = cdf tiitw, starts = c(a,b),
method = ”N”, mle = NULL, domain = c(0,Inf))

# Descriptive statistics.

ds = data.frame(mean=mean(g p),
median=median(g p),
SD=sd(g p),
Variance=var(g p),
Skewness=skewness(g p),
Kurtosis=kurtosis(g p),
Min=min(g p),
Max=max(g p))

ds

# MLEs and some statistics.

df = data.frame(
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dist = c(”G”, ”SG”, ”CG”, ”TG”, ”TIITG”),
a = c(Res w$mle[2]**(-Res w$mle[1]), Res sw$mle[2]**(-Res sw$mle[1]), Res cw$mle[2]

**(-Res cw$mle[1]), Res tw$mle[2]**(-Res tw$mle[1]), Res tiitw$mle[2]**(-Res tiitw$mle[1])),
b = c(Res w$mle[1], Res sw$mle[1], Res cw$mle[1], Res tw$mle[1], Res tiitw$mle[1]),
lambda = c(Res w$Value, Res sw$Value, Res cw$Value, Res tw$Value, Res tiitw$Value),
A = c(Res w$A, Res sw$A, Res cw$A, Res tw$A, Res tiitw$A),
W = c(Res w$W, Res sw$W, Res cw$W, Res tw$W, Res tiitw$W),
KS = c(Res w$KS$statistic, Res sw$KS$statistic, Res cw$KS$statistic, Res tw$KS$statistic,

Res tiitw$KS$statistic),
pv = c(Res w$KS$p.value, Res sw$KS$p.value, Res cw$KS$p.value, Res tw$KS$p.value,

Res tiitw$KS$p.value),
AIC = c(Res w$AIC, Res sw$AIC, Res cw$AIC, Res tw$AIC, Res tiitw$AIC),
CAIC = c(Res w$CAIC, Res sw$CAIC, Res cw$CAIC, Res tw$CAIC, Res tiitw$CAIC),
BIC = c(Res w$BIC, Res sw$BIC, Res cw$BIC, Res tw$BIC, Res tiitw$BIC),
HQIC = c(Res w$HQIC, Res sw$HQIC, Res cw$HQIC, Res tw$HQIC, Res tiitw$HQIC))

df

# Graphics: pdf and cdf

par(mfrow=c(2,1))
par(bg=”gray99”)
hist(g p, prob=T, ylim =c(0,0.08), col=”gray88”, xlab = ”x”,

ylab = ”pdf”, main = ””);box();grid()
curve(pdf w(Res w$mle,x), add = T, col=2, lwd=2)
curve(pdf sw(Res sw$mle,x) ,add = T, col=3, lwd=2, lty=2)
curve(pdf cw(Res cw$mle,x), add = T, col=1 ,lwd=2 ,lty=3)
curve(pdf tw(Res tw$mle,x), add = T, col=4, lwd=2, lty=4)
curve(pdf tiitw(Res tiitw$mle,x), add = T, col=6, lwd=2, lty=5)

legend(”topright”, c(expression(”W”), expression(”SW”), expression(”CW”), expression(”TW”),
expression(”TIITW”)), lwd=c(2,2,2,2,2), lty=c(1,2,3,4,5), col=c(2,3,1,4,6), cex=1, bty = ”o”,
bg = ”azure2”)

plot(ecdf(g p),xlab = ”x”,ylab = ”cdf”,main = ””,do.points=F,verticals=T,lwd=2)
box();grid()
curve(cdf w(Res w$mle,x),add = T, col=2,lwd=2)
curve(cdf sw(Res sw$mle,x), add = T, col=3, lwd=2, lty=2)
curve(cdf cw(Res cw$mle,x), add = T, col=1, lwd=2, lty=3)
curve(cdf tw(Res tw$mle,x), add = T, col=4, lwd=2, lty=4)
curve(cdf tiitw(Res tiitw$mle,x), add = T, col=6, lwd=2, lty=5)

legend(”topleft”, c(expression(”W”) ,expression(”SW”), expression(”CW”), expression(”TW”),
expression(”TIITW”)), lwd=c(2,2,2,2,2), lty=c(1,2,3,4,5), col=c(2,3,1,4,6), cex=1, bty = ”o”,
bg = ”azure2”)

# For the results of the other data sets, it is enough to copy-paste the data in the vector g p.
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