
Journal of Nonlinear Modeling and Analysis http://jnma.ca; http://jnma.ijournal.cn

Volume 3, Number 2, June 2021, 301–319 DOI:10.12150/jnma.2021.301

Modeling the Transmission of West Nile Virus
with Wolbachia in a Heterogeneous Environment∗

Mengli Liu1, Min Zhu1,† and Xiaofei Song1

Abstract Wolbachia are maternally transmitted endosymbiotic bacteria. To
investigate the effect of Wolbachia on the spreading and vanishing of West Nile
virus, we construct a reaction-diffusion model associated with the Wolbachia
parameter in a heterogeneous environment, which has nonlinear infectious dis-
ease parameters. Based on the spectral radius of next infection operator and
the related eigenvalue problem, we present a corresponding explicit expression
describing the basic reproduction number. Furthermore, utilizing this number,
we not only give out the stability of disease-free equilibrium, but also analyze
the uniqueness and globally asymptotic behavior of endemic equilibrium. Our
theoretical results and numerical simulations indicate that only if Wolbachia
reach a certain magnitude in mosquitoes, it can be effective in the control of
West Nile virus.
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1. Introduction and Model formulation

With the development of economy, the excessive exploitation and unreasonable use
of the nature resources aggravate the environmental problems, and the habitats of
animals are suffering more and more destruction [32]. Some viruses, which originally
transmitted only from animal to animal, are now found to be showing signs of
human-to-animal or human-to-human transmission. In this paper, we will focus on
West Nile virus(WNv) whose transmission process accords with the aforementioned
animal-to-human mechanism.

The WNv, a member of the Flavivirus, usually transmitted between birds and
mosquitoes [17]. A wide range of vertebrate including mankind are likely to be
accidental hosts of this virus [2]. When birds are bitten by an infected mosquito,
the birds’ titers in the body continue to rise for three to five days [9], and then the
bird transmit the virus to the mosquitoes that bite them [26]. Although mosquitoes
may avoid the disadvantageous effects of WNv, birds (especially corvids) have high
mortality risk caused by this virus. In 1937, WNv was isolated and identified in
the blood of an Ugandan woman [4] for the first time. To begin with, the virus
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was prevalent throughout Israel, France, South Africa, Algeria, Romania, Czech
republic, Congo, Russia, etc. Subsequently, in August 1999, it broke out in North
America and spread rapidly across much of the country [2, 4, 8, 16]. Except for
causing onset and death of large numbers of birds and other wildlife, WNv has also
influenced some human [3]. In 2011, WNv was isolated from mosquito samples in
Xinjiang Uygur Autonomous Region of China [12]. A large number of serological
studies have proved that there once existed diseases caused by WNv infection in
this area. WNv has constantly threatened public health constantly, and impeded
the development of economy seriously around the world over the last few decades.
Therefore, it is of great practical significance to study the transmission mechanism
of this virus and take effective measures to control it.

The mathematical model plays a crucial role in terms of preventing and control-
ling diseases, which can not only help us understand the transmission mechanism of
infectious diseases, but also have an impact on predicting, estimating and guiding
its development tendency. In order to control and eliminate WNv, we need to pay
close attention to how it sustains between organisms and how to keep the morbidity
and mortality within certain levels. Faced with these problems, Wonham et al. [31]
developed an SIR model of WNv cross-infection involving mosquitoes and birds,
as well as provided a simple way to determine the control levels of mosquitoes. In
literature [9], the authors incorporated the factor of vertical transmission to a WNv
model, and found that if the vertical propagation coefficient was high enough, the
endemic proportion of infected birds would rise. In [24], researchers were more inter-
ested in identifying predictors of WNv incidence in mosquitoes based on a Bayesian
space-time model. According to a single-season model to WNv, authors proved that
the strategies to decrease mosquitoes and personal protection may prevent WNv ef-
fectively in [6]. Besides, Lin and Zhu et al. [13, 20] established a reaction-diffusion
system with free boundary to explore the transmission mechanism of time and
space based on a WNv model between mosquitoes and birds. To study the trans-
mission rates and traveling waves of WNv, Lewis et al. [16,17] initiated a survey of
spatial-temporal transmission of disease and considered the spatially-independent
and spatially-dependent WNv models with the following forms respectively,

 dIb
dt = αbβb

Nb−Ib
Nb

Im − γbIb,
dIm
dt = αmβb

Am−Im
Nb

Ib − dmIm,
(1.1)

and 
∂Ib
∂t = d1∆Ib + αbβb

Nb−Ib
Nb

Im − γbIb, t ∈ (0,+∞), x ∈ Ω,

∂Im
∂t = d2∆Im + αmβb

Am−Im
Nb

Ib − dmIm, t ∈ (0,+∞), x ∈ Ω,

Ib(0, x) = Ib,0(x), Im(0, x) = Im,0(x), x ∈ Ω.

(1.2)

The parameters and variables mentioned above are defined in Table 1.
Meanwhile, Lewis et al. exhibited the corresponding basic reproduction number

to problem (1.1) as follows:

R0 =

√
Am
Nb
αmαbβ2

b

dmγb
. (1.3)
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Table 1. Parameters and variables in models (1.1) and (1.2)

Parameters

or Variables
Definition Value Reference

Im numbers of infected mosquitoes – –

Ib population of infected birds – –

d1 diffusion coefficient of birds – –

d2 diffusion coefficient for mosquitoes – –

Nb total population of birds – –

Am total numbers for adult mosquitoes Am/Nb=20 [16]

dm mortality for adult mosquitoes 0.029 [16]

βb mosquitoes biting on birds 0.3 [16]

γb recovery rate of birds which infected WNv 0.01 [16]

αm WNv spreading rate per bite to vector(mosquito) 0.16 [31]

αb WNv spreading rate per bite to host(bird) 0.88 [31]

As we know, mathematically, most of WNv models are spatially-independent
[1,5,31], in which the recovery and contact rates are usually constants. Considering
the space diffusion and spatial heterogeneity [13, 16–18] have gradually become
important factors affecting the persistence and spread of infectious diseases, in [25],
Allen et al. not only introduced spatial diffusion into the classical SIS model, but
also adopted the spatially-dependent recovery rate and contact transmission rate
so as to explore the influence of random diffusion and environmental difference on
infectious diseases.

However, in the real society, the spread of WNv is not merely related to space,
but also directly affected by the density of mosquito population. In order to prevent
and control mosquito-borne diseases for the past few years, in biology, scientists have
tried to use Wolbachia to alter the reproductive mechanism of mosquitoes. Studies
find that Wolbachia are a group of intracellular bacteria that infect the reproductive
tissues of mosquitoes, alter reproduction in their mosquito hosts in various ways
[30] and to some extent affect the lifespan of mosquitoes [23]. Considering the
utility of Wolbachia on disease transmission [14, 33, 36], we will use the parameter
p to represent the effect of Wolbachia on the disease and adopt the death rate
of adult mosquitoes involving p. Meanwhile, it is worth observing that the death
rate of infected birds is influenced by Wolbachia and the number of infected birds
simultaneously. Take the above two factors into consideration, we use µb(x, p, Ib)
to represent the mortality of infected birds in WNv model. What’s more, some
researches show that the flight distance of mosquito is much less then birds’, which
means that the diffusion coefficients d2 � d1 in model (1.2) [29]. Based on the fact,
we can suppose that d2 = 0. Combining these factors with models (1.1) and (1.2),
we establish the following WNv model

∂Ib
∂t − d1∆Ib=αb(x)βb(x)Nb−IbNb

Im − γb(x)Ib − µb(x, p, Ib)Ib, x∈Ω, t>0,

∂Im
∂t =αm(x)βb(x)Am−ImNb

Ib − dm(p)Im, x∈Ω, t>0,

Ib(x, t) = Im(x, t) = 0, x∈∂Ω, t>0,

0 ≤ Ib(x, 0) = Ib,0(x) ≤ Nb, 0 ≤ Im(x, 0) = Im,0(x) ≤ Am, x∈Ω,

(1.4)
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where γb(x), αb(x), αm(x) and βb(x) for x ∈ Ω are sufficiently smooth and positive.
Besides, µb(x, p, Ib) is a sufficiently smooth non-negative function, which increases
with respect to Ib and decreases with respect to p, while dm(p) increases with
respect to p. The initial functions Ib,0(x), Im,0(x) ∈ C2(Ω) are both nontrivial. At
the same time, the boundary condition Ib(x, t) = Im(x, t) = 0 means that there is
no infection on the boundary ∂Ω.

In this paper, we are devoted to exploring how the parameter p caused by the
Wolbachia affect the dynamic of transmission on model (1.4). The framework of
this paper is arranged as follows: To begin with, in Section 2, the basic reproduc-
tion number to model (1.4) is presented and the corresponding analytical findings
are discussed. What’s more, in Section 3, we are concerned with the stability of
equilibria. At last, in Section 4, in order to understand the conclusion of this paper
more clearly, we will show some numerical simulations, and then end up giving some
epidemiological explanations.

2. The basic reproduction number

In general, the basic reproduction number is a threshold parameter, and is often
defined as the average number of secondary infections that one infected person would
produce in the entire duration of the infectious period [10]. For ordinary differential
epidemic models, this number is usually obtained by the next generation matrix
method [11,25,34]. However, in reaction-diffusion equation models, we can use the
spectral radius of the next infection operators to express this number. Meanwhile,
Allen et al. [25] applied the variational method to solve most scalar eigenvalue
problems.

It is obvious that model (1.4) has a disease-free equilibrium (Ib, Im) = (0, 0).
Linearizing model (1.4) at this equilibrium, we obtain the following system

∂Ib
∂t = d1∆Ib + αb(x)βb(x)Im − γb(x)Ib − µb(x, p, 0)Ib, x ∈ Ω, t > 0,

∂Im
∂t = αm(x)βb(x)AmNb Ib − dm(p)Im, x ∈ Ω, t > 0,

Ib(x, t) = Im(x, t) = 0, x ∈ ∂Ω, t > 0,

0 ≤ Ib(x, 0) = Ib,0(x) ≤ Nb, 0 ≤ Im(x, 0) = Im,0(x) ≤ Am, x ∈ Ω.

(2.1)

Evidently, the first two equations in the above problem can be rewritten as ∂ω
∂t = d∆ω + u(x)ω − v(x)ω, x ∈ Ω, t > 0,

ω = 0, x ∈ ∂Ω, t > 0,

in which

ω =

 Ib

Im

 , u(x) =

 0 αb(x)βb(x)

αm(x)βb(x)AmNb 0

 ,

d =

d1 0

0 0

 , v(x) =

γb(x) + µb(x, p, 0) 0

0 dm(p)

 . (2.2)
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Based on the analysis of infectious disease model in [34], the self-evolution of indi-
viduals in the infection compartment is determined by system ∂ω

∂t = d∆ω − v(x)ω, x ∈ Ω, t > 0,

ω = 0, x ∈ ∂Ω, t > 0.

Let W be a solution semigroup formed by the operator d∆ − v(x) on an ordered
Banach space X1 which is defined as C(Ω,R2) and associated with X+

1 := C(Ω,R2
+).

At the same time, L can be defined

L(φ)(x) :=

∫ ∞
0

u(x)[W (t)φ](x)dt.

Consequently, L can map φ(the initial distribution function of infected individual),
in an infectious period, into the distribution functions which have infectious indi-
vidual, as well as L is a continuous and positive operator. According to the method
of next infection operator stated in [34], one defines

Rp0 := r(L)

as the basic reproduction number to problem (1.4), which is precisely the spectral
radius of the operator L. In addition, for the sake of later research, we show some
properties of Rp0.

Lemma 2.1. The following statements are true.

(i) Rp0 = 1
µ0

, where µ0 is the unique principal eigenvalue of the following elliptic
eigenvalue problem

−d1∆φ = µαb(x)βb(x)ψ − γb(x)φ− µb(x, p, 0)φ, x ∈ Ω,

0 = µαm(x)βb(x)AmNb φ− dm(p)ψ, x ∈ Ω,

φ(x) = ψ(x) = 0, x ∈ ∂Ω.

(2.3)

In other wards, Rp0 meets with
−d1∆φ = 1

Rp0
αb(x)βb(x)ψ − γb(x)φ− µb(x, p, 0)φ, x ∈ Ω,

0 = 1
Rp0
αm(x)βb(x)AmNb φ− dm(p)ψ, x ∈ Ω,

φ(x) = ψ(x) = 0, x ∈ ∂Ω,

(2.4)

in which (φ(x), ψ(x)) is the eigenfunction-pair and satisfies φ(x) > 0,ψ(x) > 0
in Ω.

(ii) 1−Rp0 has the same sign as λ1, which accords with the eigenvalue problem
−d1∆φ = αb(x)βb(x)ψ − γb(x)φ− µb(x, p, 0)φ+ λ1φ, x ∈ Ω,

0 = αm(x)βb(x)AmNb φ− dm(p)ψ + λ1ψ, x ∈ Ω,

φ(x) = ψ(x) = 0, x ∈ ∂Ω,

(2.5)

and λ1 is the corresponding principal eigenvalue.
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(iii) The basic reproduction number Rp0 of problem (1.4) is expressed by

(Rp0)2 = sup
φ∈H1

0 (Ω),φ 6=0

∫
Ω

αb(x)αm(x)β2
b (x)Am

dm(p)Nb
φ2dx∫

Ω

(d1|∇φ|2 + γb(x)φ2 + µb(x, p, 0)φ2)dx
. (2.6)

(iv) Assume that αb(x) = αb, βb(x) = βb, γb(x) = γb, αm(x) = αm, dm(p) =
dm, µb(x, p, Ib) = µb are all positive constants, we can define Rp0 = R∗0 and

R∗0 =

√√√√ αbαmβ2
bAm

dmNb

d1λ∗ + γb + µb
, (2.7)

here, (λ∗, ψ∗) is the principal eigen-pair of eigenvalue problems−∆ψ = λψ(x ∈
Ω) with null-boundary condition.

Proof. We will give proofs of the above four lemmas in turn.

(i) Considering the following eigenvalue problem
d1∆φ+ µαb(x)βb(x)ψ − γb(x)φ− µb(x, p, 0)φ = λφ, x ∈ Ω,

µαm(x)βb(x)AmNb φ− dm(p)ψ = λψ, x ∈ Ω,

φ(x) = ψ(x) = 0, x ∈ ∂Ω.

(2.8)

In order to clarify the existence of the principal eigenvalue λ = λ(µ) for any
given µ > 0, we define the linear operator as follows,

Lλφ =d1∆φ− (γb(x)+µb(x, p, 0))φ

+
µαb(x)βb(x) · µαm(x)βb(x)AmNb

(λ+ dm(p))
φ, ∀λ > −dm(p).

Since αm(x), αb(x), βb(x) are all positive for x ∈ Ω, we set

K := µ2Am
Nb

min
x∈Ω

(αb(x)βb(x)αm(x)βb(x)),

and let λ∗0 be the principle eigenvalue of the following elliptic eigenvalue prob-
lem d1∆φ− (γb(x) + µb(x, p, 0))φ = λφ, x ∈ Ω,

φ(x) = 0, x ∈ ∂Ω,

with positive eigenfunction φ1(x). Set

λ0 :=
λ∗0 − dm(p) +

√
(λ∗0 + dm(p))2 + 4K

2
,

we have λ0 > −dm(p) due to K > 0. It then follows that

Lλ0
φ1(x) ≥ d1∆φ1(x)− (γb(x) + µb(x, p, 0))φ1(x) +

K

(λ0 + dm(p))
φ1(x)
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= (λ∗0 +
K

λ0 + dm(p)
)φ1(x)

= λ0φ1(x), ∀x ∈ Ω.

Combining Theorem 11.3.2 and Remark 11.3.1 in [34], problem (i) has an
eigenvalue with geometric multiplicity one and a nonnegative eigenfunction.
According to (2.8) and its associated parabolic system, we see that this eigen-
function is positive. Therefore, µ0 is the unique solution of λ(µ) = 0. Using
the same idea of Theorem 11.3.4 in [34], we obtain Rp0 = 1

µ0
.

(ii) Based on the statement (i), we can clearly see that the principal eigenvalue
λ1 exists when µ = 1 in (2.8). Therefore, we omit the rest proof of (ii) here
because it is a straightforward consequence of Theorem 11.3.3 in [34].

(iii) In what follows, we give the proof of assertion (iii). From the second equation
of (2.4), one gets

ψ =
1

Rp0

αm(x)βb(x)

Nb

Am
dm(p)

φ, x ∈ Ω.

Putting ψ into first equation in (2.4) leads to

−d1∆φ =
1

(Rp0)2
αb(x)βb(x)

αm(x)βb(x)

Nb

Am
dm(p)

φ−γb(x)φ−µb(x, p, 0)φ, x ∈ Ω.

We multiply φ simultaneously in above equation and then integrate on Ω,
which can result in∫

Ω

−d1φ∆φdx =
1

(Rp0)2

∫
Ω

αb(x)βb(x)
αm(x)βb(x)

Nb

Am
dm(p)

φ2dx

−
∫

Ω

γb(x)φ2dx−
∫

Ω

µb(x, p, 0)φ2dx.

Combining the null-boundary conditions, we acquire the explicit expression
(2.6) of Rp0 according to the variational method [7].

(iv) We are in a position to prove (iv). Setting

C∗ =

αbαmβ
2
bAm

dmNb

d1λ∗ + γb + µb
,

we can yield that (φ∗, ψ∗) is one positive solution of system (2.4) associated
with R∗0 =

√
C∗ through a simple calculation, where

(φ∗, ψ∗) = (C∗ψ∗, ψ∗) =

(√
αbdm

αm
Am
Nb

(d1λ∗ + γb + µb)
ψ∗, ψ∗

)
.

Owing to the uniqueness of the principal eigen-pair, we naturally have the
expression equation (2.7).

Remark 2.1. Under the hypothesis in Lemma 2.1(iv), the basic reproduction num-
ber defined as R∗0 in (2.7), is strictly less than R0 which is corresponding one to the
ordinary differential equation (1.1) and given by (1.3).
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Remark 2.2. Rp0(dm(p1)) ≥ Rp0(dm(p2)) provided that p1 ≤ p2 when other param-
eters are fixed.

Remark 2.3. Rp0(µb(x, p1, Ib)) ≤ Rp0(µb(x, p2, Ib)) provided that p1 ≤ p2 encoun-
tered if other parameters are fixed.

3. The stability of the model

We aim at analyzing the equilibrium stability of problem (1.4), and begin this
section with the following definition and lemma in view of [27].

Definition 3.1. (Upper-lower solutions) Assume (Ĩb, Ĩm)(x, t) and (Îb, Îm)(x, t) are
two pairs of nonnegative functions in C1,2(Ω × [0,+∞)) ∩ C(Ω × [0,+∞)) with
(Ĩb, Ĩm) ≥ (Îb, Îm) in Ω× [0,+∞). If

∂Ĩb
∂t −d1∆Ĩb ≥ αb(x)βb(x)Nb−ĨbNb

Ĩm−γb(x)Ĩb − µb(x, p, Ĩb)Ĩb, x∈Ω, t>0,

∂Ĩm
∂t ≥ αm(x)βb(x)Am−ĨmNb

Ĩb − dm(p)Ĩm, x∈Ω, t>0,

∂Îb
∂t −d1∆Îb ≤ αb(x)βb(x)Nb−ÎbNb

Îm−γb(x)Îb − µb(x, p, Îb)Îb, x∈Ω, t>0,

∂Îm
∂t ≤ αm(x)βb(x)Am−ÎmNb

Îb − dm(p)Îm, x∈Ω, t>0,

(Îb, Îm)(x, t) ≤ (0, 0) ≤ (Ĩb, Ĩm)(x, t), x∈∂Ω, t>0,

(0, 0) ≤ (Îb,0, Îm,0) ≤ (Ĩb,0, Ĩm,0) ≤ (Nb, Am), x∈Ω,

(3.1)

holds, then (Ĩb, Ĩm)(x, t) and (Îb, Îm)(x, t) are the ordered upper-lower solutions of
(1.4).

Lemma 3.1. (Comparison principle) If (3.1) holds, any solution (Ib(x, t), Im(x, t))
to problem (1.4) has the following inequality relationship

(Îb(x, t), Îm(x, t)) ≤ (Ib(x, t), Im(x, t)) ≤ (Ĩb(x, t), Ĩm(x, t)), x ∈ Ω, t ≥ 0.

3.1. Stability analysis of endemic equilibrium

The upper-lower solution will be used to determine the behavior of endemic equi-
librium (I∗b , I

∗
m) to system (1.4) under the hypothesis Rp0 > 1 in this subsection.

First of all, we exhibit the steady state of system (1.4) as follows:
−d1∆Ib = αb(x)βb(x)Nb−IbNb

Im − γb(x)Ib − µb(x, p, Ib)Ib, x ∈ Ω,

0 = αm(x)βb(x)Am−ImNb
Ib − dm(p)Im, x ∈ Ω,

Ib(x) = Im(x) = 0, x ∈ ∂Ω.

(3.2)

In Definition 3.1 and Lemma 3.1, if time t is not taken into account, we can give a
similar upper-lower definition and a corresponding comparison principle for elliptic
problem (3.2), whose details we omit here. Besides, we give out a denotation for
the discussion in the sequel

〈(m1, n1), (m2, n2)〉

= {(m,n) : m1 ≤ m(x, t) ≤ m2, n1 ≤ n(x, t) ≤ n2, (x, t) ∈ Ω× [0,+∞)}.
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Theorem 3.2. When Rp0 > 1, the endemic equilibrium (I∗b (x), I∗m(x)) is unique
and globally asymptotically stable to problem (1.4).

Proof. In order to prove the existence of solutions of problem (3.2), we first
set

(Îb(x), Îm(x)) = (δφ(x), δψ(x)),

where δ is positive, sufficiently small and is determined by subsequent calculations,
φ(x) and ψ(x) are the corresponding eigenfunction pairs of system (2.5). Recalling
that µb(x, p, Ib) increases with respect to Ib and combining Lemma 2.1(ii), one
directly calculates

−d1∆Îb − αb(x)βb(x)Nb−ÎbNb
Îm + γb(x)Îb + µb(x, p, Îb)Îb

= δ[−d1∆φ− αb(x)βb(x)(1− δφ
Nb

)ψ + γb(x)φ+ µb(x, p, δφ)φ]

= δ[λ1φ+ µb(x, p, δφ)φ− µb(x, p, 0)φ+ αb(x)βb(x)
Nb

δφψ],

:= δφA(δ),

(3.3)

and

−αm(x)βb(x)Am−ÎmNb
Îb + dm(p)Îm

= δ[−αm(x)βb(x)Am−δψNb
φ+ dm(p)ψ]

= δψ[λ1 + αm(x)βb(x)
Nb

δφ].

(3.4)

From the continuity of µb(x, p, Ib) with respect to Ib, it follows that limδ→0+ A(δ) =
0. Thus, both (3.3) and (3.4) are negative for sufficiently small δ owing to λ1 < 0.
Therefore, the pair (Îb, Îm) = (δφ(x), δψ(x)) is the lower solution to problem (3.2).
On the other hand, it is easy to verify that the pair (Ĩb, Ĩm) = (Nb, Am) is the upper
solution of (3.2).

Subsequently, we select the Lipschitz constants K1 and K2 as follows:

K1 =
maxx∈Ω (αb(x)βb(x))Am

Nb
+ max

x∈Ω
(γb(x)) + max

x∈Ω
(µb(x, p,Nb)),

K2 = max
x∈Ω

(αm(x)βb(x)) + dm(p),

and conduct the following iteration process

−d1∆I
(k)

b +K1I
(k)

b = K1I
(k−1)

b + αb(x)βb(x)
Nb−I

(k−1)
b

Nb
I

(k−1)

m

− (γb(x) + µb(x, p, I
(k−1)

b ))I
(k−1)

b , x ∈ Ω,

K2I
(k)

m = K2I
(k−1)

m + αm(x)βb(x)
Am−I

(k−1)
m

Nb
I

(k−1)

b

− dm(p)I
(k−1)

m , x ∈ Ω,

−d1∆I
(k)
b +K1I

(k)
b = K1I

(k−1)
b + αb(x)βb(x)

Nb−I(k−1)
b

Nb
I(k−1)
m

− (γb(x) + µb(x, p, I
(k−1)
b ))I

(k−1)
b , x ∈ Ω,

K2I
(k)
m = K2I

(k−1)
m + αm(x)βb(x)

Am−I(k−1)
m

Nb
I

(k−1)
b

− dm(p)I(k−1)
m , x ∈ Ω,

I
(k)
b (x) = I(k)

m (x) = I
(k)

b (x) = I
(k)

m (x) = 0, x ∈ ∂Ω.

(3.5)
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which follows the initial values

(I
(0)

b , I
(0)

m ) = (Ĩb, Ĩm) = (Nb, Am), (I
(0)
b , I(0)

m ) = (Îb, Îm) = (δφ, δψ).

With the aid of comparison principal, we realize the iteration sequences (Ī
(k)
b , Ī

(k)
m )

and (I
(k)
b , I(k)

m ) are well-defined, as well as they admit the following relation

(I
(0)
b , I(0)

m ) ≤ (I
(1)
b , I(1)

m ) ≤ · · · ≤ (I
(k)
b , I(k)

m ) ≤ · · ·

≤ (Ī
(k)
b , Ī

(k)
m ) ≤ · · · ≤ (Ī

(1)
b , Ī

(1)
m ) ≤ (Ī

(0)
b , Ī

(0)
m ).

According to elliptic estimation and Sobolev embedding theorem, we are thus lead

to the result that the sequences (Ī
(k)
b , Ī

(k)
m ), (I

(k)
b , I(k)

m )∈C2(Ω). Hence, the limits

lim
k→∞

I
(k)

b = Ib, lim
k→∞

I
(k)

m = Im, lim
k→∞

I
(k)
b = Ib, lim

k→∞
I(k)
m = Im

exist and satisfy

−d1∆Īb = αb(x)βb(x)Nb−ĪbNb
Īm − γb(x)Īb − µb(x, p, Īb)Īb, x ∈ Ω,

0 = αm(x)βb(x)Am−ĪmNb
Īb − dm(p)Īm, x ∈ Ω,

−d1∆Ib = αb(x)βb(x)
Nb−Ib
Nb

Im − γb(x)Ib − µb(x, p, Ib)Ib, x ∈ Ω,

0 = αm(x)βb(x)
Am−Im
Nb

Ib − dm(p)Im, x ∈ Ω,

Ib(x) = Im(x) = Ib(x) = Im(x), x ∈ ∂Ω.

(3.6)

Therefore, from what have discussed above, it is easy to see that both (Ib, Im) and
(Ib, Im) are true solutions of (3.2). Due to Theorem 2.2 in [27], we call (Ib, Im)
and (Ib, Im) are the minimum and maximum solutions in set 〈(Îb, Îm), (Ĩb, Ĩm)〉,
respectively. Meanwhile, for any solution (Ib(x), Im(x)) to problem (3.2), one has

Ib ≤ Ib ≤ Ib, Im ≤ Im ≤ Im uniformly for x ∈ Ω.

Next, we can demonstrate that (Ib(x), Im(x)) ≡ (Ib(x), Im(x)) := (I∗b (x), I∗m(x))
for (3.2), in other words, the solution to problem (3.2) is unique. Actually, one can
get the following equality by the second equation of problem (3.2)

Im =
αm(x)βb(x)AmNb

αm(x)βb(x)
Nb

Ib + dm(p)
Ib,

and insert it to the first equation which results in

−d1∆Ib =

[
αb(x)βb(x)

Nb − Ib
Nb

αm(x)βb(x)AmNb
αm(x)βb(x)

Nb
Ib + dm(p)

−γb(x)−µb(x, p, Ib)

]
Ib

:= g(Ib)Ib. (3.7)

We find that g(Ib) decreases with respect to Ib. Therefore, the equation (3.7) admits
a solution denoted by I∗b and this solution is positive and unique, which means the
endemic equilibrium (I∗b (x), I∗m(x)) is unique.
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Afterwards, analogous to (3.3) and (3.4), one can demonstrate that (Ĩb(x, t),
Ĩm(x, t)) = (Nb, Am) and (Îb(x, t), Îm(x, t)) = (δφ, δψ) are also the upper and
lower solutions to parabolic system (1.4). Combining Lemma 3.1, when Rp0 > 1,
(I∗b (x), I∗m(x)) is unique and globally asymptotically stable, which completes the
proof. �

Recall model (1.2) associated with d2 6= 0, its steady state system is as follows
0 = d1∆Ib + αbβb

Nb−Ib
Nb

Im − γbIb, x ∈ Ω,

0 = d2∆Im + αmβb
Am−Im
Nb

Ib − dmIm, x ∈ Ω,

Im(0, x) = Im,0(x), Ib(0, x) = Ib,0(x), x ∈ Ω.

(3.8)

With the same routine as the first half part of proof to Theorem 3.2, or the method
of Theorem 3.4 in [36], one can also obtain the maximum solution and minimum
solution of problem (3.8), denoted by (ib(x), im(x)) and (ib(x), im(x)), respectively.
By means of upper-lower solution method and its corresponding eigenvalue problem
of (3.8), whose eigen-pair is still denoted by (δφ, δψ), we possess the following
stability.

Remark 3.1. For model (1.2), if the initial value (Ib(0, x), Im(0, x)) = (Ib,0(x),
Im,0(x)) meets with the condition that (δφ, δψ) ≤ (Ib,0(x), Im,0(x)) ≤ (Nb, Am),
where δ is small enough, then the set 〈(ib(x), im(x)), (ib(x), im(x))〉 is the attractive
domain to problem (1.2). That is to say, any solution (ib(x, t), im(x, t)) of problem
(1.2) satisfies (ib, im) ≤ (ib, im) ≤ (ib, im) and

ib(x) ≤ lim inf
t→∞

ib(x, t) ≤ lim sup
t→∞

ib(x, t) ≤ ib(x) uniformly for x ∈ Ω,

im(x) ≤ lim inf
t→∞

im(x, t) ≤ lim sup
t→∞

im(x, t) ≤ im(x) uniformly for x ∈ Ω.
(3.9)

Remark 3.2. If ib = ib or im = im, then we have (ib, im) = (ib, im) := (i∗b , i
∗
m),

that is, (ib, im) is unique for problem (3.8) and is globally asymptotically stable for
system (1.2).

3.2. Stability analysis of disease-free equilibrium

The stability of disease-free equilibrium (0, 0) will be studied in this subsection for
system (1.4). First, we give out the following theorem.

Theorem 3.3. If Rp0 < 1, for problem (1.4), the disease-free equilibrium (0, 0) is
locally stable. while if Rp0 > 1, the equilibrium (0, 0) is unstable.

Proof. Let (Ib, Im) = (e−µtη1(x), e−µtη2(x)) be a solution of problem (2.1) which
obtained by linearizing at the point (0, 0). Inserting it into (2.1), one gets the
following linear eigenvalue problem

−d1∆η1 = αb(x)βb(x)η2 − γb(x)η1 + µb(x, p, 0)η1 + µη1, x ∈ Ω,

0 = αm(x)βb(x)AmNb η1 − dm(p)η2 + µη2, x ∈ Ω,

η1(x) = η2(x) = 0, x ∈ ∂Ω.

(3.10)
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We feel like proving that if Rp0 < 1, then the disease-free equilibrium (0, 0) is locally
stable, that is to say, for any solution (µ; η1(x), η2(x)) to problem (3.10)(in which at
least one of η∗1(x) and η∗2(x) is not zero identically in Ω), Re(µ) > 0 always holds.
Next, our remainder proof is by contraction.

Assume that (µ∗; η∗1(x), η∗2(x)) is a solution of problem (3.10) associated with
η∗1(x) ≥ 0, η∗2(x) ≥ 0 for x ∈ Ω, and at least one of η∗1(x) and η∗2(x) is not equal
to zero, in addition Re(µ∗) ≤ 0. In fact, η∗1(x) 6≡ 0 in any subinterval within
Ω. Because if η∗1(x) ≡ 0, inserting it to the first equation of (3.10) will lead to
η∗2(x) ≡ 0, which contradicts the hypothesis. Therefore, we obtain η∗1(x) 6≡ 0
in an arbitrary subinterval within Ω. Combining strong maximum principle, one
can get η∗1(x) > 0(x ∈ Ω). Using the similar manner as above, we also have
η∗2(x) > 0(x ∈ Ω).

Obviously, (λ1;φ, ψ) in Lemma 2.1(ii) precisely meets with the problem (3.10)
and the above requirements. Following from uniqueness, we have λ1 = µ∗ and
Re(λ1) = Re(µ∗) ≤ 0, so Rp0 ≥ 1 according to Lemma 2.1(ii), which is contradict
to the premise. Consequently, we could find that Re(µ) > 0 is true and (0, 0) is
locally stable if Rp0 < 1.

On the other hand, for any solution to problem (3.10), if Rp0 > 1, we have
(µ; η1(x), η2(x)) = (λ1;φ, ψ) with λ1 < 0 in view of Lemma 2.1(ii), which means
Re(λ1) < 0. Thus, the disease-free equilibrium to system (1.4) is unstable.

After analyzing the local stability of the disease-free equilibrium point mentioned
above, we also have its global property under the circumstance of Rp0 < 1.

Theorem 3.4. Suppose Rp0 < 1, for system (1.4), the disease-free equilibrium (0, 0)
is attractive and 〈(0, 0), (Mφ,Mψ)〉 is the attraction domain, in which

M = min(
Nb

maxx∈Ω φ(x)
,

Am
maxx∈Ω ψ(x)

),

as well as (φ, ψ) is the eigenfunction pair of (2.4). If the initial function pair satisfies

Ib(x, 0) ≤Mφ, Im(x, 0) ≤Mψ for x ∈ Ω,

then any solution of system (1.4) meets with

lim
t→∞

Im(x, t) = 0, lim
t→∞

Ib(x, t) = 0 uniformly for x ∈ Ω. (3.11)

Proof. Assume Rp0 < 1, it follows that λ1 > 0. Combine Lemma 2.1(iv) and set

(Ib, Im) = (Me−
λ1
2 tφ,Me−

λ1
2 tψ), then calculate

∂Ib
∂t − d1∆Īb − αb(x)βb(x)Īm + γb(x)Īb + µb(x, p, Īb)Īb

= Me−
λ1
2 t[−λ1

2 φ− d1∆φ− αb(x)βb(x)ψ + γb(x)φ+ µb(x, p,Me−
λ1
2 tφ)φ]

= Me−
λ1
2 t[λ1

2 φ+ µb(x, p,Me−
λ1
2 tφ)φ− µb(x, p, 0)φ]

≥ 1
2Mλ1e

−λ1
2 tφ ≥ 0,

and

Im
∂t − αm(x)βb(x)AmNb Īb + dm(p)Īm

= Me−
λ1
2 t[−λ1

2 ψ − αm(x)βb(x)AmNb φ+ dm(p)ψ]

= 1
2Mλ1e

−λ1
2 tψ ≥ 0.
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In view of M = min( Nb
maxx∈Ω φ(x) ,

Am
maxx∈Ω ψ(x) ), we can get the initial condition sat-

isfies (Ib, Im) = (Mφ,Mψ) ≤ (Nb, Am). Therefore, the (Īb, Īm)(x, t) is the upper
solution for system (1.4) based on Definition 3.1. Combined comparison principle,
for any (x, t) ∈ Ω × [0,+∞), one obtains (Ib(x, t), Im(x, t)) ≤ (Īb(x, t), Īm(x, t)).
Hence, we conclude that the set 〈(0, 0), (Mφ,Mψ)〉 is the attraction domain of
problem (1.4) associated with the condition Ib(x, 0) ≤Mφ, Im(x, 0) ≤Mψ.

Apparently, limt→∞ Īb = 0 and limt→∞ Īm = 0 uniformly for x ∈ Ω, so (3.11)
also holds.

Theorem 3.5. Let E = {(Ib, Im) ∈ R2
+, Ib(x, t) ≤ Nb, Im(x, t) ≤ Am, (x, t) ∈

Ω× [0,+∞)}, if the following inequality is true√√√√√ Am
Nb

max
x∈Ω

(αb(x)βb(x)) ·max
x∈Ω

(αm(x)βb(x))

dm(p) ·min
x∈Ω

(γb(x) + µb(x, p, 0))
< 1, (3.12)

then for model (1.4), the disease-free equilibrium (0, 0) is globally asymptotically
stable on the invariant set E.

Proof. First, inequality (3.12) indicates that there exists some ε0 > 0 satisfy

max
x∈Ω

αb(x)βb(x) max
x∈Ω

αm(x)βb(x)
Am
Nb

<(1−ε0)
2 min
x∈Ω

(γb(x)+µb(x, p, 0))dm(p). (3.13)

Next, we define the following Lyapunov function in which θ > 0 is to be determined
later

V (t) =
1

2

∫
Ω

I2
b dx+

θ

2

∫
Ω

I2
mdx.

Noticing that the null boundary Dirichlet condition in system (1.4), one has

dV (t)
dt =

∫
Ω

Ib ·
∂Ib
∂t

dx+ θ

∫
Ω

Im ·
∂Im
∂t

dx

=

∫
Ω

Ib(d1∆Ib + αb(x)βb(x)
Nb − Ib
Nb

Im − γb(x)Ib − µb(x, p, Ib)Ib)dx

+θ

∫
Ω

Im(αm(x)βb(x)
Am − Im

Nb
Ib − dm(p)Im)dx

= −d1

∫
Ω

|∇Ib|2dx+

∫
Ω

αb(x)βb(x)IbImdx−
∫

Ω

αb(x)βb(x)
I2
b Im
Nb

dx

−
∫

Ω

γb(x)I2
b dx−

∫
Ω

µb(x, p, Ib)I
2
b dx+ θ

∫
Ω

αm(x)βb(x)
Am
Nb

IbImdx

−θ
∫

Ω

αm(x)βb(x)
IbI

2
m

Nb
dx− θ

∫
Ω

dm(p)I2
mdx.

(3.14)

Actually, we can verify that the inequality (3.13) guarantee the following inequality
to hold∫

Ω

αb(x)βb(x)IbImdx+ θ

∫
Ω

αm(x)βb(x)
Am
Nb

IbImdx

≤ (1− ε0)

∫
Ω

(γb(x) + µb(x, p, 0))I2
b dx+ (1− ε0)θ

∫
Ω

dm(p)I2
mdx,

(3.15)
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associated with

θ =
M1 −M2

(max
x∈Ω

αm(x)βb(x)AmNb )2
,

where

M1 = 2(1− ε0)2 min
x∈Ω

(γb(x) + µb(x, p, 0)) min
x∈Ω

dm(p),

M2 = max
x∈Ω

αb(x)βb(x) max
x∈Ω

αm(x)βb(x)
Am
Nb

,

and (3.13) also make sure θ > 0. Therefore, according to (3.14) and (3.15), we get

dV (t)
dt ≤ −

∫
Ω

d1|∇Ib|2dx−
∫

Ω

αb(x)βb(x)
I2
b Im
Nb

dx− θ
∫

Ω

αm(x)βb(x)
IbI

2
m

Nb
dx

− ε0

∫
Ω

(γb(x) + µb(x, p, 0))I2
b dx− ε0θ

∫
Ω

dm(p)I2
mdx,

≤ −ε0

∫
Ω

(γb(x) + µb(x, p, 0))I2
b dx− ε0θ

∫
Ω

dm(p)I2
mdx < 0.

Theorem 4.2 in [19] expands the remaining proof, which we do not repeat here.
By using the Lyapunov function, we prove that when (3.12) holds, the disease-free
equilibrium (0, 0) of system (1.4) is globally asymptotically stable on set E.

Remark 3.3. Assume that αb(x) = αb, βb(x) = βb, γb(x) = γb, αm(x) = αm, dm(p)
= dm are all constants and µb(x, p, 0) = 0, then the condition (3.12) equals to
R0 < 1, in which R0 is the corresponding basic reproduction number to an ordinary
differential equation (1.2). Theorem 3.5 shows that when R0 < 1, the disease-free
equilibrium (0, 0) is globally asymptotically stable to system (1.4).

4. Numerical simulation and epidemiological anal-
ysis

In the last part of this paper, we are devote to illustrating some theoretical results
by virtue of some numerical simulations. Based on some values on Table 1, we
choose the interval and some parameters as follows:

Ω = (0, π), Am = 10, Nb = 0.5, d1 = 1,

αm(x) = 0.16 + 0.2 sinx, αb(x) = 0.88 + 0.5 sinx,

γb(x) = 0.01 + 0.005 cos 2x, βb(x) = 0.1 + 0.02 sin 3x,

dm(p) = 0.009 + 2
π arctan p,

µb(x, p, Ib) = 0.02 + 0.02 sin 3x+ 1
2ep + 0.01Ib.

Combining the initial conditions

Ib,0(x) = 0.06 + 0.04 sinx+ 0.06 sin(6x− π
2 ),

Im,0(x) = 0.6 + 0.3 sinx+ 0.6 sin(6x+ 3π
2 ),



The Transmission of West Nile Virus with Wolbachia 315

we could observe the asymptotic behaviors of the solution to system (1.4) through
changing Wolbachia parameter p.

Example 4.1. Set p = 0.02, it is easy to calculate from (2.6)

(Rp0)2 := sup
φ∈H1

0 (Ω),φ6=0

∫
Ω

αb(x)αm(x)β2
b (x)Am

dm(p)Nb
φ2dx∫

Ω
(d1|∇φ|2+γb(x)φ2+µb(x,p,0)φ2)dx

.

≥
∫ π
0

(0.88+0.5)×(0.16+0.2)×(0.1−0.02)2×10

(0.009+ 2
π
×arctan 0.02)×0.5

sin2 xdx∫ π
0

1×cos2 xdx+
∫ π
0

(0.01−0.005) sin2 xdx+
∫ π
0

(0.02−0.02+ 1
2e0.02 +0.01×0) sin2 xdx

≈ 2.926
1.495 > 1.

(a) (b)

Figure 1. For p = 0.02, graphs (a) and (b) illustrate that the solution (Ib, Im) of problem (1.4) goes
to a positive equilibrium, which means the WNv is spreading for a smaller p.

From Theorem 3.2, we know if Rp0 > 1, the endemic equilibrium (I∗b (x), I∗m(x))
of system (3.2) is unique and globally asymptotically stable. Following with Figure
1, one can observe that the solution (Ib(x, t), Im(x, t)) of problem (1.4) stabilizes
to an endemic equilibrium. That is to say, the WNv will spread if not enough
Wolbachia are implanted.

Example 4.2. Set p = 0.25 and compare with Example 4.1, the parameter p
becomes larger. In this way, we can calculate from (2.6),

(Rp0)2 := sup
φ∈H1

0 (Ω),φ 6=0

∫
Ω

αb(x)αm(x)β2
b (x)Am

dm(p)Nb
φ2dx∫

Ω
(d1|∇φ|2+γb(x)φ2+µb(x,p,0)φ2)dx

≤
∫ π
0

(0.88+0.5)×(0.16+0.2)×(0.1−0.02)2×10

(0.009+ 2
π
×arctan 0.25)×0.5

sin2 xdx∫ π
0

(0.01−0.005) sin2 xdx+
∫ π
0

(0.02−0.02+ 1
2e0.25 +0.01×0) sin2 xdx

≈ 0.386
0.394 < 1.
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(a) (b)

Figure 2. For p = 0.25, the two graphs illustrate that the solution (Ib, Im) of problem (1.4) tends to
(0, 0) as time goes on, that is, the WNv will be vanish for a bigger p.

It follows from Theorem 3.4 that the disease free equilibrium (0, 0) of problem
(3.2) is locally stable. Figure 2 shows that the densities of infectious mosquitoes
Im(x, t) and infectious birds Ib(x, t) tend to zeros as time goes by, which embod-
ies the theoretical finding of Theorem 3.5 and reveals that the WNv will vanish
eventually.

As a mosquito-borne disease, WNv not only causes the death of birds, but also
influences the physical and mental health of human beings to some extent. Since
there is no effective therapeutic drugs for WNv, and the main treatment is to
intervene some related symptoms caused by WNv directly, it is crucial important
to reduce contact transmission of infected mosquitoes through utilizing scientific
methods. It has been scientifically proven that implanting Wolbachia can destroy
the reproductive mechanisms of mosquitoes [22], so it may be effective to some
extent to use this method to further reduce the transmission risk of mosquito-borne
infectious diseases. In this paper, based on models (1.1) and (1.2) proposed by
Lewis, we introduce the parameter p to represent the effect of Wolbachia on WNv.
Subsequently, the impact of spatial heterogeneity and Wolbachia on the transmission
of WNv was also studied with the help of the reaction-diffusion model (1.4).

In this paper, we have investigated the asymptotic behavior of the equilibrium by
the basic reproduction number Rp0. In comparison with R0, which is the threshold of
ordinary differential model (1.1), Rp0 provided by (2.6) not only reflects the difference
of spatial environment, but also is affected by the parameter p, which matches the
characteristics that Rp0 is influenced by many factors simultaneously in the real
environment.

Centering on the explicit expression (2.6) of Rp0 and the monotonicity of dm(p),
µb(x, p, 0) with respect to p (dm(p) increases with respect to p, and µb(x, p, 0) de-
creases with respect to p), we can clearly see that two cases need to be considered
if we want to guarantee Rp0 < 1. On the one hand, p becomes smaller such that
dm(p) is smaller and µb(x, p, 0) is larger. Meanwhile, from a numerical point of
view on (2.6), µb(x, p, 0) has a slightly more influence than dm(p) on Rp0. However,
p has an impact on µb(x, p, 0) indirectly and the fact that implanting fewer Wol-
bachia results in a lower mortality rate among adult mosquitoes will not achieve
the expectation effect to control WNv, which means this kind of operator is unrea-
sonable. On the other hand, when p becomes larger such that dm(p) is larger and
µb(x, p, 0) is smaller, in the meantime, dm(p) has a slightly more numerical effect
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than µb(x, p, 0) on Rp0, which signifies that the mortality rate of adult mosquitoes
is higher, the disease induced death rate of birds is lower and Rp0 < 1. It will be in
line with our expectations. Therefore, implanting more Wolbachia would play an
active role on the control of WNv. However, in reality, we ought to not only con-
sider the economic cost, but also protect the ecological balance. Hence, if p is too
large, that is, too much Wolbachia is implanted, the economic cost will be too high
and the ecological balance may be damaged. Above all, we deeply understand that
Wolbachia is a double-edged sword for WNv, and its implantation needs to reach
a certain value. However, it cannot be increased indefinitely. Only by keeping the
Wolbachia within a certain range can we control WNv and maintain the ecological
balance to the full extent. As we know, WNv spreads between mosquitoes and host
animals (especially birds), and then does a great harm to mankind. Some scientific
researches suggest that Rabies [21], Ebola [15], SARS [28] and even 2019-nCoV [35]
which was breaking out by the time we finished the paper are also transmitted from
some hosts to human beings. The results of this paper also provide further insight
into the transmission mechanism of infection to mankind through some hosts, and
give out some reference value for the prevention and control of infectious diseases.
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