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Abstract Stabilization of switched systems fully composed of unstable modes
is of theoretical and practical significance. In this paper, we obtain some
sufficient algebraic conditions for stabilizing switched linear systems with all
unstable subsystems based on the theory of spherical covering and crystal point
groups. Under the proposed algebraic conditions switching laws are easy to be
designed to stabilize the switched systems. Some simple examples are provided
to illustrate our results.
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1. Introduction

A lot of natural and artificial processes encompass several modes of operation with
a different dynamical behavior in each mode. To deal with such processes, theory
of hybrid dynamical systems has been developed in recent years. A typical class of
hybrid systems are the so-called switched systems. A switched system is composed
of a family of subsystems and rules that regulate the switching among them. Sta-
bility issue for switched systems is of great significance, which has been extensively
studied [2, 4, 11–13, 15, 16, 29]. One of the early results of hybrid system stability
for linear switched systems was developed by Peleties [15]. In [17], necessary and
sufficient conditions are proposed for a given set of controllers to quadratically sta-
bilize a plant and for robust stabilizability with a quadratic storage function. Also,
the stability condition can be expressed from LyapunovMetzler inequalities [7]. For
more details about switching in system and control, see [10,18,20].

Stabilization of switched systems fully consisting of unstable modes is one of
the most challenging problems in the field of switched systems [5, 25, 27]. Multiple
Lyapunov or Lyapunov-likes functions [11, 12] may be concatenated together to
produce a nontraditional Lyapunov function and stabilize unstable switched system.
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Decarlo et al. [5] proposed conditions for the existence of switched controllers
in stabilizing unstable switched systems by means of Lyapunov-like functions. The
corresponding Lyapunov-like function values at every switching time form a mono-
tonically decreasing sequence. For a switched system with all unstable subsystems,
how to design appropriate switching laws to stabilize the switched system is of great
interest. Except with multiple Lyapunov functions (MLF) theory, the switching sig-
nal can be designed to stabilize the unstable system with mode-dependent average
dwell time (MDADT) property [30].

However, for a system, its corresponding Lyapunov function may be hard to con-
struct even though it does exist. Therefore, studying simple sufficient conditions
to ensure that a switched system with all unstable modes is stabilizable is of very
importance. Motivated by [1, 10], we investigate a new easy-to-use sufficient con-
dition for stabilization of n-dimensional switched systems with all unstable modes
and obtain some novel results in two-dimensional and three-dimensional switched
systems by virtue of the theory of spherical covering and crystal point groups [3,6].

This paper is organized as follows: In Section 2, we set forth a sufficient condition
for stabilizing switched linear systems with all unstable subsystems. Section 3
presents a sufficient condition for stabilization of two-dimensional switched systems
with all unstable modes. Two examples are provided to illustrate the ideas in this
section. Section 4 presents some results about stabilization of three-dimensional
switched systems with three, four and five unstable modes.

2. A new sufficient condition for stabilization

Before starting our discussions, we give some notations. Let Mn×n denote the set
of all n×n real matrices and Mu

n×n denote the matrices in Mn×n with at least one
of its eigenvalues having positive real parts. We denote the inner product of two
vectors by 〈·, ·〉, the transpose of A by AT and the Euclidean norm on Rn by | · |.
Denote the unit circle in R2 by S1 and the unit sphere in R3 by S2.

In this paper, we focus on the following linear switched system

ẋ = Aσ(x)x (2.1)

where x ∈ Rn and σ(x) : Rn → M = {1, 2, . . . ,m} denotes a switching function
where m is the number of modes and Ai ∈ Mu

n×n, i ∈ M. For system (2.1) with
state-dependent switching, the state space Rn is partitioned into a finite number of
operating regions by means of a family of switching surface.

Based on Lyapunov stability theory [17, 26], we have the definition of stabiliz-
ability as follows.

Definition 2.1. The origin of a switched system (2.1) is said to be switching sta-
bilizable if there exists a switching law σ : Rn 7−→ {1, 2, . . . ,m} under which the
origin is asymptotically stable.

According to the results in [17], we have the following definition.

Definition 2.2. The collection of real symmetric matrices Z1,Z2, . . . ,Zk is said to
be complete if for any x0 ∈ Rn there exists i ∈ {1, 2, . . . , k} such that xT0 Zix0 ≤ 0.
Furthermore, the collection Z1,Z2, . . . ,Zk is said to be strictly complete if for any
x0 ∈ Rn/{0} there exists i ∈ {1, 2, . . . , k} such that xT0 Zix0 < 0.
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Then, we have

Proposition 2.1. The origin of system (2.1) is stabilizable if there exists a real
symmetric matrix P such that the set of matrices

Zi = AT
i P + PAi, i ∈M

is strictly complete.

For the proof of this proposition and more references, the reader can see [17].
It is evident to notice that system (2.1) can not be stable under arbitrary switch-

ing (Readers can see [10, 28] etc. for the stability under arbitrary switching.), but
may be stable under constraint switching signals. According to Proposition 2.1, if
there exists a common matrix P such that {AT

i P + PAi, i ∈M} is complete, the
system is stabilizable. Let ΩsP(Ai) = {x ∈ Rn | xT (AT

i P + PAi)x < 0}, i ∈ M.
Then, according to Proposition 2.1, we have

Proposition 2.2. The origin of system (2.1) is stabilizable, if
⋃m
i=1 ΩsP(Ai) = Rn.

Note that if all eigenvalues of Ai + AT
i , i ∈ M are nonnegative, then there

cannot exist a real symmetric matrix that satisfies Proposition 2.1. If Ai+AT
i ,Ai ∈

Mu
n×n, i ∈M has at least one negative eigenvalue and {Ai+AT

i , i ∈M} is strictly
complete, the system is stabilizable and the switching law is easy to be designed. It
is strongly practical. Hence, in this paper, we focus on the case of Ai + AT

i ,Ai ∈
Mu

n×n, i ∈M having at least one negative eigenvalue, find new sufficient conditions
for stabilizing switched system and obtain some new results that would not exist in
other cases. Since Ai+AT

i , i ∈M has at least one negative eigenvalue, there exists
x ∈ Rn such that xT (Ai + AT

i )x < 0. Let Ωs(Ai) = {x ∈ Rn | xT (Ai + AT
i )x <

0}, i ∈ M which can be called the stable cone of the subsystem ẋ = Aix. Since
the Euclidean norm of the solution is decreasing in this subsystem [8], then the
following theorem is obvious from Proposition 2.2.

Proposition 2.3. The origin of system (2.1) is stabilizable, if
⋃m
i=1 Ωs(Ai) = Rn.

We remark that if
⋃m
i=1 Ωs(Ai) = Rn with no sliding motions (If there exists

sliding-like motions, then take the direction of the vector fields along the switching
surfaces into consideration [21]). Then,

Ωs(A1),Ωs(Ai)−
i−1⋃
j=1

Ωs(Aj), i 6= 1, i ∈M

can be regarded as the operating region of system (2.1). In each of these regions,
a subsystem is given. Whenever the system trajectory hits a switching surface, a
switching event can occur and a new subsystem is active. Considering the quadratic
Lyapunov function V (x) = xTx, x ∈ Rn might be conservative, but it has strong
practicality and the switching laws are easy to be designed.

Let C(Ai) denote the intersection of Ωs(Ai) and the unit sphere in Rn. Then,
from Proposition 2.3, we have the following corollary.

Corollary 2.1. If the union of C(Ai), i ∈ M covers the unit sphere, then the
origin of system (2.1) is stabilizable.

It is straightforward to show that Ωs(Ai) = {rx | x ∈ C(Ai), r ∈ R}. Therefore,
this corollary is proved according to Proposition 2.3.
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From Corollary 2.1, we notice that the stabilization problem of system (2.1)
can be sometimes transformed into the covering problem of the unit sphere of Rn,
which can be further illustrated in the next section. In the rest of this paper,
we investigate a particular class of switched linear systems composed of unstable
subsystems with all eigenvalues having positive real parts and study the sufficient
conditions of stabilization.

3. Two-dimensional switched systems

Consider a family of switched systems in R2

ẋ = Aσ(x)x (3.1)

where σ(x) : R2 →M denotes the switching function and Ai ∈Mu
2×2, i ∈ M with

all eigenvalues of Ai having positive real parts and Ai + AT
i having one negative

eigenvalue. Let vi1,v
i
2 be the unit eigenvectors corresponding to the eigenvalues

λi1, λ
i
2 of Ai + AT

i where λi1 > −λi2 > 0. Let Ti = (vi1 vi2). It follows from the
orthogonality [9] of Ti that

Ωs(Ai) ={Tiy | yTTT
i (Ai + AT

i )Tiy < 0,y ∈ Rn}
={Tiy | λi1y2

1 + λi2y
2
2 < 0,y ∈ R2}.

(3.2)

In view of (3.2), we set

wi
1 =

1√
λi1 − λi2

Ti

(√−λi2√
λi1

)
, wi

2 =
1√

λi1 − λi2
Ti

(−√−λi2√
λi1

)
.

Then, we have the following theorem about the stabilizability of planar switched
systems.

Theorem 3.1. Suppose that m is the number of the modes of system (3.1). The o-
rigin of system (3.1) is stabilizable providing that one of the following two conditions
is satisfied.

i) 〈wi+1
1 −wi1,wi+1

1 −wi2〉 < 0 or 〈wi+1
1 +wi1,w

i+1
1 +wi2〉 < 0 for i = 1, 2, . . . ,m−1

and either 〈wm2 −w1
1,w

m
2 −w1

2〉 < 0 or 〈wm2 + w1
1,w

m
2 + w1

2〉 < 0 holds;

ii) 〈wi+1
2 −wi1,wi+1

2 −wi2〉 < 0 or 〈wi+1
2 +wi1,w

i+1
2 +wi2〉 < 0 for i = 1, 2, . . . ,m−1

and either 〈wm1 −w1
1,w

m
1 −w1

2〉 < 0 or 〈wm1 + w1
1,w

m
1 + w1

2〉 < 0 holds.

Since if 〈wi+1
1 − wi

1,w
i+1
1 − wi

2〉 < 0 or 〈wi+1
1 + wi

1,w
i+1
1 + wi

2〉 < 0, then
wi+1

1 ∈ C(Ai) = Ωs(Ai) ∩ S1, the proof is trivial and will be omitted.
We remark that if any arrangement of Ai, i ∈ M satisfies the conditions of

Theorem 3.1, then the origin of system (3.1) is stabilizable. Also, according to
the process of the proof of Theorem 3.1, we notice that if system (3.1) satisfies
that Ai ∈ Mu

2×2, i ∈ M and there exists a real symmetric matrix P such that

two eigenvalues of AT
i P + PAi are different signs and its sum is positive for every

i ∈ M, we can obtain a similar result where wi
j , j = 1, 2 related to the eigenvalues

and eigenvectors of AT
i P + PAi need to be redefined.

Based on Theorem 3.1, we have the following corollary.
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Corollary 3.1. If
⋃m
i=1 Ωs(Ai) = R2, then m ≥ 3.

Proof. Due to λi1 > −λi2 > 0, the angle of C(Ai) is less than π/2. Therefore, any
C(Ai) ∪C(Aj), i, j ∈M can not cover S1 which implies that at least three modes
are needed.

Next, let us consider three examples.

Example 3.1. Consider A =
(

0 −1
2 3

)
. It is clear to see that the angle of C(A) is

arctan(1/3), as shown in Figure 1.

W1

W2-1.0 -0.5

-1.0

-0.5

0.5

1.0

Figure 1. The intersection of the shadow region and the unit sphere refers to the points of C(A) for

A =
(0 −1

2 3

)
.

Example 3.2. Consider a two-dimensional switched linear system with three modes

ẋ = Aσ(x)x,x ∈ R2 (3.3)

where σ(x) ∈ {1, 2, 3} and

A1 =

 − 1
8

3
2

− 3
2 + 3

√
3

4
5
8

 ,A2 =

 − 3
8 1

−1− 5
√

3
4

7
8

 ,A3 =

 2 3

−3 − 3
2

 .
A simple computation gives that

w1
1 =(

−3
√

2 +
√

3

6
,

3 +
√

6

6
),

w1
2 =(−3

√
2 +
√

3

6
,
−3 +

√
6

6
),

w2
1 =(−3

√
5 +
√

10

10
,
−
√

15 +
√

30

10
),

w2
2 =(

−3
√

5 +
√

10

10
,−
√

15 +
√

30

10
),

w3
1 =(

√
21

7
,

√
28

7
),w3

2 = (−
√

21

7
,

√
28

7
).
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It is easy to check that 〈w2
1−w1

1,w
2
1−w1

2〉 < 0, 〈w3
1 + w2

1,w
3
1 + w2

2〉 < 0, 〈w3
2−

w1
1,w

3
2−w1

2〉 < 0. Thus, from Theorem 3.1 the origin of system (3.3) is stabilizable.
Specifically, we can suppose that

σ(x) =


1, x ∈ Ωs(A1)

2, x ∈ Ωs(A2)− Ωs(A1)

3, x ∈ Ωs(A3)− Ωs(A2)− Ωs(A1)

. (3.4)

Under this switching law, the origin is stable. Let r(t) =

√
x1(t)

2
+ x2(t)

2
be the

Euclidean norm of x(t) = (x1(t), x2(t)). For t0 = 0,x0 = (1, 1), the trajectory and
the norm of x(t) are given in Figure 2 and Figure 3.

w
1

1

w
2

1

w
2

2

-0.2 0.2 0.4 0.6 0.8 1.0

-0.5

0.5

1.0

Figure 2. The trajectory of the solution of system (3.3) with the initial value x(0) = (1, 1). We inte-

grated system (3.3) from t = 0 to t = 10. For switching function σ(x) given by (3.4), k1w
1
1, k2w

1
2, k3w

2
2

forms a family of switching surface where k1, k2, k3 ∈ R .

2 4 6 8 10
t

0.2

0.4

0.6

0.8

1.0

1.2

1.4

r(t)

Figure 3. The Euclidean norm r(t) of the solution of system (3.3) with the initial value x(0) = (1, 1).
We integrated system (3.3) from t = 0 to t = 10.
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Example 3.3. Consider a two-dimensional switched linear system with four modes

ẋ = Bσ(x)x, x ∈ R2, (3.5)

where σ(x) ∈ {1, 2, 3, 4} and

B1 =

 3/4 5

−3/2 3/4

 ,B2 =

−2 4

−4 5

 ,
B3 =

 3 1

−13 3

 ,B4 =

25/2 8

−8 −4

 .
It is not difficult to check that B1,B2,B3,B4 satisfies the conditions of Theorem

3.1. Therefore, the origin of system (3.5) is stabilizable. Without loss of generality,
we suppose that

σ(x) =


1, x ∈ Ωs(A1)

2, x ∈ Ωs(A2)− Ωs(A1)

3, x ∈ Ωs(A3)− Ωs(A2)− Ωs(A1)

4, x ∈ Ωs(A4)− Ωs(A3)− Ωs(A2)− Ωs(A1)

. (3.6)

For switching function σ(x) given by (3.6), k1w
1
1, k2w

1
2, k3w

2
2, k4w

3
2 forms a family

of switching surface, where k1, k2, k3, k4 ∈ R and

w1
1 =(

−
√

70 + 2
√

7

14
,

√
70 + 2

√
7

14
),

w1
2 =(

−
√

70− 2
√

7

14
,

√
70− 2

√
7

14
),

w2
2 =(−

√
35/7,−

√
14/7), w3

2 = (−1/2,
√

3/2).

It is easy to obtain that any solution of system (3.5) shall asymptotically ap-
proach the origin under this switching function. For t0 = 0,x0 = (−1, 1), the
trajectory of the solution x(t) is shown in Figure 4.

From Example 3.2 and Example 3.3, we remark that the switching law σ(x) is
not unique to stabilize the corresponding switched system if the state space can be
covered by some stable cones.

The results in two-dimensional switched systems give rise to some new questions,
and under what conditions a three-dimensional switched system with all unstable
modes is stabilizable? In the next section, we give some discussions.

4. Three-dimensional switched systems

It is very hard to research the covering problem of stable cones of switched systems.
Inspired by some results in [6, 19], we consider some special cases and try to get
some new results. Now, we focus on a family of switched systems in R3

ẋ = Aσ(x)x (4.1)
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Figure 4. The trajectory of the solution of system (3.5) with the initial value x(0) = (−1, 1). We
integrated system (3.5) from t = 0 to t = 10.

where σ(x) : R3 → M denotes the switching function and Ai ∈ Mu
3×3, i ∈ M

with all eigenvalues of Ai having positive real parts and Ai + AT
i having at least

one negative eigenvalue and at most two negative eigenvalues. In this paper, we
consider the case of one negative eigenvalue. Hence, let us set that vi1,v

i
2,v

i
3 are

the unit eigenvectors corresponding to the eigenvalues λi1, λ
i
2, λ

i
3 of Ai + AT

i where
λi1, λ

i
2 > 0 and λi1 + λi2 > −λi3 > 0. Let Ti = (vi1 vi2 vi3), then similar to (3.2), we

have
Ωs(Ai) = {Tiy | λi1y2

1 + λi2y
2
2 + λi3y

2
3 < 0,y ∈ R3} (4.2)

and

C(Ai) = Ωs(Ai) ∩ S2 = {Tiy | λi1y2
1 + λi2y

2
2 + λi3y

2
3 < 0, y2

1 + y2
2 + y2

3 = 1}. (4.3)

For simplicity of presentation, let ai = −λi1/λi3, bi = −λi2/λi3. From λi1, λ
i
2 > 0 and

λi1 + λi2 > −λi3 > 0, we obtain ai, bi > 0 and ai + bi > 1. It follows that

C(Ai) = {Tiy | aiy2
1 + biy

2
2 < y2

3 , y
2
1 + y2

2 + y2
3 = 1,y ∈ R3}.

Related to the area of C(Ai), we have the following lemma.

Lemma 4.1. Suppose that a, b > 0 and a+ b ≥ 1. Then, the area of R = {y ∈ R3 |
ay2

1 + by2
2 ≤ y2

3 , y
2
1 + y2

2 + y2
3 = 1} reaches maximal value if a+ b = 1 for any given

a or b. Moreover, the area of R achieves the minimum if a = 1/2 for a+ b = 1.

Proof. Based on the theory of surface integral, we obtain the area of R as follows:∫∫
R
ds = 4π − 2

∫ 2π

0

√
a cos2 θ + b sin2 θ

1 + a cos2 θ + b sin2 θ
dθ. (4.4)

For simplicity of presentation, we denote (4.4) by the function g(a, b). Consider the
partial derivative of g(a, b) with respect to a and b as follows:

∂

∂a
g(a, b) =

∫ 2π

0

− cos2 θ√
a cos2 θ + b sin2 θ(1 + a cos2 θ + b sin2 θ)3/2

dθ,
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∂

∂b
g(a, b) =

∫ 2π

0

− sin2 θ√
a cos2 θ + b sin2 θ(1 + a cos2 θ + b sin2 θ)3/2

dθ.

Thus, we obtain that for any a > 0, g(a, b) decreases monotonically with respect
to b when b ≥ 1− a. Similarly, for any b > 0, g(a, b) decreases monotonically with
respect to a when a ≥ 1− b.

If a+ b = 1, then we have

∂

∂a
g(a, 1− a) =

∫ 2π

0

− 4 cos(θ)√
1 + (2a− 1) cos(θ)(3 + (2a− 1) cos(θ))3/2

dθ.

Since
∂

∂a
g(a, 1− a)|a= 1

2
= 0,

∂2

∂a2
g(a, 1− a)|a= 1

2
> 0,

we obtain that a = 1/2 is a minimum point of g(a, 1− a). Therefore, we complete
the proof of this lemma.

Let pi = Ti(0, 0, 1)T ,−pi = Ti(0, 0,−1)T denote the centres of C(Ai). Taking
account of Lemma 4.1, we have the following proposition.

Proposition 4.1. Suppose the number of modes of system (4.1) is three and a1 =
a2 = a3 = ā > 0, b1 = b2 = b3 = b̄ > 0. Then, the area of uncovered surface of
the sphere S2− (C(A1)∪C(A2)∪C(A3)) approaches zero as ā+ b̄ approaches one
from right provided that {±pi, i = 1, 2, 3} are distributed with octahedron symmetry
group Oh (see [3]) where ±pi are the centres of C(Ai).

Proof. Since {±pi, i = 1, 2, 3} are distributed with octahedron Oh, without loss
of generality, we consider the case p1 = (0, 0, 1)T ,p2 = (0, 1, 0)T ,p3 = (1, 0, 0)T

which gives that

C(A1) ={y ∈ R3 | āy2
1 + b̄y2

2 < y2
3 , y

2
1 + y2

2 + y2
3 = 1},

C(A2) ={y ∈ R3 | āy2
1 + b̄y2

3 < y2
2 , y

2
1 + y2

2 + y2
3 = 1},

C(A3) ={y ∈ R3 | āy2
3 + b̄y2

2 < y2
1 , y

2
1 + y2

2 + y2
3 = 1}.

According to Lemma 4.1, the area of C(Ai), i = 1, 2, 3 decreases as ā+ b̄ increases
for ā+ b̄ > 1. Therefore, we shall consider the limiting case ā+ b̄ = 1.

For ā+ b̄ = 1, the points in S2 − (C(A1) ∪C(A2) ∪C(A3)) satisfy that
y2

1 + y2
2 + y2

3 = 1,

āy2
1 + (1− ā)y2

2 ≥ y2
3 ,

āy2
1 + (1− ā)y2

3 ≥ y2
2 ,

āy2
3 + (1− ā)y2

2 ≥ y2
1 .

(4.5)

Some calculation leads to the solutions of (4.5) as follows:

{(y1, y2, y3) | y2
1 = y2

2 = y2
3 =

1

3
}.

Therefore, the proof of Proposition 4.1 is completed.
We remark that Oh in Proposition 4.1 refers to regular octahedral crystal group,

which is the centres of spherical caps compose the vertices of a regular octahedron.
As the consequence of the above proposition, we obtain the following corollary:
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Corollary 4.1. If
⋃m
i=1 Ωs(Ai) = R3, then m ≥ 4.

Now, let us review the following definition.

Definition 4.1. Let C(p, r),p ∈ S2 denote the spherical cap with the centre p of
angular radius r composed of the points whose geodesic distance from p is less than
r, as shown in Figure 5.

Figure 5. A spherical cap with the centre p of angular radius r

It is known that spherical cap refers to the intersection of the circular cone and
the unit sphere. Owing to the max-min theorem, it is obvious to see that for any
C(Ai), i ∈ M, there exist two spherical caps C(pi, ri) and C(−pi, ri) such that
C(pi, ri) ∪ C(−pi, ri) ⊂ C(Ai). Thus, we have the following proposition.

Proposition 4.2. If the union of spherical caps C(pi, ri)∪C(−pi, ri), i ∈M covers
the unit sphere, the origin of system (4.1) is stabilizable.

According to Corollary 2.1, it is evident to see that the proposition holds.
To find the conditions easy to verify, we consider the simplest case. Hence,

we shall ask how to arrange n equal spherical caps on the surface of a sphere
so that the area covered by the circles will be as large as possible. The packing
and covering problems related to the above question have a vast literature which
is studied by Fejes Tóth, L. [23, 24], Fejes Tóth, G. [22] and Moser & Pach [14].
Contact polyhedra [6] is one of research tools. An arrangement of n equal spherical
caps on sphere corresponds to a polyhedra whose vertices are the centres of these
spherical caps and whose edges are composed of the lines between the centres of two
overlapping spherical caps. Symmetry groups and edge counts of the polyhedra are
associated with the arrangements of n equal spherical caps. For the convenience of
readers, we summarize the results of n = 8, 12 in [6] in the following lemma.

Lemma 4.2. Suppose n equal spherical caps of angular radius r can cover the
surface of the unit sphere. Then, we have

i) for n = 8, r reaches minimum 0.840193, if the contact polyhedra satisfies sym-
metry group D2d;

ii) for n = 12, r reaches minimum 0.652359, if the contact polyhedra satisfies
symmetry group icosahedron Ih.

The proof of this lemma is omitted. The more detailed results can be seen
in [6, 23] and more discussions about point group can be seen in [3]. We remark
that for n = 8, the trigonal dodecahedron satisfying symmetry group D2d as shown
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in Figure 6 is the best arrangement of the spherical caps such that the greatest
distance between a point of the spherical surface and the nearest of the centres of
these eight spherical caps. Similarly, for n = 12, the regular icosahedron as shown
in Figure 7 is the best arrangement of the spherical caps.

Figure 6. Symmetry D2d of the contact polyhedra formed by the centres of 8 spherical caps

Figure 7. Symmetry Ih of the contact polyhedra formed by the centres of 12 spherical caps

Since each subsystem corresponds to two maximum spherical caps, combined
with the above discussions we conclude the following propositions:

Proposition 4.3. Suppose switched system (4.1) has four subsystems. If for each
C(Ai), i = 1, 2, 3, 4, there exists two spherical caps C(pi, ri) and C(−pi, ri) included
in C(Ai) such that ri ≥ 0.841 and {±pi, i = 1, 2, 3, 4} are distributed with point
group symmetry D2d. Then, the origin of this system is stabilizable.

Proposition 4.4. Suppose switched system (4.1) has six subsystems. Then, if for
each C(Ai), i = 1, 2, 3, 4, 5, 6 there exists two spherical caps C(pi, ri) and C(−pi, ri)
included in C(Ai) such that ri ≥ 0.653 and {±pi, i = 1, 2, 3, 4, 5, 6} are distributed
with point group symmetry Ih, the origin of this system is stabilizable.

Proposition 4.3 and Proposition 4.4 follows immediately from Lemma 4.2. Since
for 10 spherical caps the contact polyhedra of the best arrangement is not symmetric
about the center of the sphere, we can not obtain sufficient conditions of stabilization
from the minimum covering configuration. Hence, we have the following specific
result:

Proposition 4.5. Suppose switched system (4.1) has five subsystems. If for each
C(Ai), i = 1, 2, 3, 4, 5, there exists two spherical caps C(pi, ri) and C(−pi, ri) in-
cluding in C(Ai) such that ri ≥ 0.825 and {±pi, i = 1, 2, 3, 4, 5} satisfy that one is
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situated at the north pole, another one at the south pole and the remaining centres
equidistant along the equator after an orthogonal transformation. Then, the origin
of this system is stabilizable.

Figure 8. An arrangement of the centres of 10 spherical caps

We remark that the centres in Proposition 4.5 can be arranged as shown in
Figure 8. Based on the results of the covering problem, more sufficient conditions
for stabilization can be obtained, which is worth studying further.

Next, let us consider the following simple example.

Example 4.1. Consider a three-dimensional switched linear system with four modes

ẋ = Aσ(x)x, x ∈ R3, (4.6)

where σ(x) ∈ {1, 2, 3, 4} and

A1 =


0.425675 0.316797 0.433413

−0.316797 0.425675 0.454755

−0.433413 −0.454755 −0.574325

 ,

A2 =


−0.574325 0.94177 0.628207

−0.94177 0.425675 0.532595

−0.628207 −0.532595 0.425675

 ,

A3 =


0.175675 1.35493 0.202179

−0.488904 −0.324325 0.753435

−0.202179 −0.753435 0.425675

 ,

A4 =


0.175675 0.283498 0.580803

−1.14952 −0.324325 0.185781

−0.580803 −0.185781 0.425675

 .
Some simple calculations give

Ωs(A1) ={y ∈ R3 | y2
1 + y2

2 − 1.34921y2
3 < 0},



Stabilize an Unstable Switched Linear System 361

Ωs(A2) ={y ∈ R3 | −y2
1 + 0.741173y2

2 + 0.741173y2
3 < 0},

Ωs(A3) ={y ∈ R3 | y2
1 + 4.92971y1y2 − 1.84617y2

2 + 2.42309y2
3 < 0},

Ωs(A4) ={y ∈ R3 | y2
1 − 4.92971y1y2 − 1.84617y2

2 + 2.42309y2
3 < 0}.

Using the method in [6], we obtain that C(A1)∪C(A2)∪C(A3)∪C(A4) can cover
the unit sphere. Thus, if we assume that

σ(x) =


1, x ∈ Ωs(A1)

2, x ∈ Ωs(A2)− Ωs(A1)

3, x ∈ Ωs(A3)− Ωs(A2)− Ωs(A1)

4, x ∈ Ωs(A4)− Ωs(A3)− Ωs(A2)− Ωs(A1)

, (4.7)

then the origin of system (4.6) is stabilizable for switching function σ(x) given
by (4.7) according to Proposition 4.2. For t0 = 0,x0 = (1/

√
3, 1/
√

3, 1/
√

3), the
trajectory of the solution x(t) is shown in Figure 9 and the Euclidean norm of the
solution is shown in Figure 10.

Figure 9. The trajectory of the solution of system (4.6) with the initial value x(0) =

(1/
√

3, 1/
√

3, 1/
√

3). We integrated system (4.6) from t = 0 to t = 20. The different shadow regions
illustrate the intersection of Ωs(Ai) and the unit sphere, i = 1, 2, 3, 4.

5. Conclusions

In this paper, we have investigated some new sufficient conditions for stabilization
of n-dimensional switched systems with all unstable modes. Consequently, we get
a simple sufficient condition for stabilization of two-dimensional switched system-
s with all unstable modes. Moreover, we also obtain some interesting sufficient
conditions for stabilization of three-dimensional switched systems with all unstable
modes by means of the theory of spherical covering and crystal point groups. Some
examples are provided to illustrate our results. We hope that our results can pro-
vide a new thread of studying stabilization of switched systems with all unstable
modes.
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5 10 15 20
t

0.5

1.0

1.5

r(t)

Figure 10. The Euclidean norm of the solution of system (4.6) with the initial value x(0) =

(1/
√

3, 1/
√

3, 1/
√

3). We integrated system (4.6) from t = 0 to t = 20.
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