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Abstract In this paper, we generate an extended result by Bor and Seyhan
concerning absolute Riesz summability factors. Further, we develop some well-
known results from our main result.
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1. Introduction

Let
∑
an be an infinite series, {sn}=

n∑
k=0

ak be the sequence of its partial sums and

nth mean of the sequence {sn} is given by un, s.t.,

un =

∞∑
k=0

unksk. (1.1)

(1.2)

Definition 1: An infinite series
∑
an is absolute summable, if

lim
n→∞

un = s

and
∞∑
n=1

|un − un−1|<∞, (1.3)

Definition 2: Let {pn} be a sequence with p0 > 0 and pn > 0 for n > 0

Pn =

n∑
v=0

pv →∞. (1.4)
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For α > −1, 0 < β 6 1, α+ β > 0, define:

∈α+β0 = 1, ∈α+βn =
(α+ β + 1)(α+ β + 2)....(α+ β + n)

n!
, (n = 1, 2, 3, ...) (1.5)

pα,βn =

n∑
v=0

∈α+β−1n−v pv, (1.6)

Pα,βn =

n∑
v=0

pα,βn →∞, n→∞ (1.7)

and

Pα,β−n = pα, β−n = 0, n > 1.

Then, the sequence-to-sequence transformation tn defines the (N, pα,βn ) mean of
series

∑
an and is given by:

tn =
1

Pα,βn

n∑
k=0

pα,βk sk, P
α,β
n 6= 0, n ∈ N (1.8)

and limn→∞ tn = s, and the series is called (N, pα,βn ), formed by sequence of coeffi-
cients {pα,βn }.
Further, if sequences {tn} is of bounded variation with index k > 1 i.e.

∞∑
n=1

(
Pα,βn

pα,βn

)k−1
|∆tn−1|k <∞, (1.9)

then the series
∑
an is said to be absolutely (R, pα,βn )k summable with index k or

|N, pα,βn |k summable to s.
Definition 3: The series is said to be |N, pα,βn ; δ|k summable, if

∞∑
n=1

(
Pα,βn

pα,βn

)δk+k−1
|∆tn−1|k <∞, (1.10)

with k > 1, δ > 0 and

∆tn = − pα,βn

Pα,βn Pα,βn−1

n∑
v=1

Pα,βv−1av, n > 1. (1.11)

Bor [1–3] generalised the result associated with Riesz summability factors. Bor
and Özarslan [4,5] established theorems using |N, pn; δ| summability factors. Özarslan
[11, 12] used the definition of almost increasing sequence for absolute summability.
Mishra et. al. [9,10] gave useful result on approximation. Also, Mishra et. al. [7,8]
provided new results related to matrix summability and improper integrals. In [13],
Sonker and Munjal established new theorem on absolute summability for Trian-
gle matrices. Yildiz [14, 15] determined theorems on generalized absolute matrix
summability factors.
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2. Known result

By using |N, pαn; δ|k summability, Bor and Seyan [6] proved the following theorem.

Theorem 2.1. [6] Let pn be a sequence of +ve numbers s.t.:

Pn = O(npn) as n→∞. (2.1)

By using |N, pαn; δ|k summability, Bor and Seyan [6] proved the following theorem.
Let (Xn) be an almost increasing sequence and assuming (ξn) and (λn) are s.t.:

|∆λn| 6 ξn, (2.2)

ξn → 0 as n→∞, (2.3)
∞∑
n=1

n|∆ξn|Xn 6∞, (2.4)

|λn|Xn = O(1) as n→∞, (2.5)

∞∑
n=v+1

(
Pn
pn

)δk−1
1

Pn−1
= O

((
Pv
pv

)δk
1

Pv

)
, (2.6)

m∑
n=1

(
Pn
pn

)δk−1
|tn|k = O(Xn) as m→∞. (2.7)

Then,
∑
anλn is |N, pn; δ|k summable where, k > 1 and 0 6 δ 6 1

k .

3. Main result

A sequence is of bounded variation i.e. (λn) ∈ BV , if :

∞∑
n=1

|∆λn| = |λn − λn−1| <∞.

Theorem 3.1. Let (Xn), (ξn) and (λn) be as defined in theorem 2.1 and verify
2.2-2.5. If the following conditions also satisfy:

∞∑
n=v+1

1

Pα,βn−1

(
Pα,βn

pα,βn

)δk−1
= O

{
1

Pα,βv

(
Pα,βv

pα,βv

)δk}
, (3.1)

m∑
n=1

(
Pα,βn

pα,βn

)δk−1
|tn|k = O(Xm), (3.2)

m∑
n=1

|λn|
n

= O(1) (3.3)

and
m∑
n=1

1

n

(
Pα,βn

pα,βn

)δk
|tn|k = O(Xm) as m→∞. (3.4)

then,
∑
anλn is |N, pα,βn ; δ|k summable where k > 1 and 0 6 δ 6 1

k .
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Proof. Let Yn denote the (N, pα,βn ) mean of
∑
anλn. We have:

Yn =
1

Pα,βn

n∑
v=0

pα,βv

v∑
i=0

aiλi. (3.5)

For n > 1,

∆Yn = Yn − Yn−1 =
pα,βn

Pα,βn Pα,βn−1

n∑
v=1

Pα,βv−1avλv =
pα,βn

Pα,βn Pα,βn−1

n∑
v=1

Pv−1λv
v

vav.

∆Yn = n+1

nPα,βn
pα,βn tnλn

− pα,βn
Pα,βn Pα,βn−1

n−1∑
v=1

pα,βv tvλv
v+1
v

+
pα,βn

Pα,βn Pα,βn−1

n−1∑
v=1

Pα,βv tv∆λv
v+1
v

+
pα,βn

Pα,βn Pα,βn−1

n−1∑
v=1

Pα,βv tvλv+1
1
v

= Y1 + Y2 + Y3 + Y4. (3.6)

To prove the Theorem 3.1, it is enough to prove

∞∑
n=1

(
Pα,βn

pα,βn

)δk+k−1
|∆Yn|k <∞. (3.7)

Using Minkowski’s inequality,

|Y1 + Y2 + Y3 + Y4|k 6 4k(|Y1|k + |Y2|k + |Y3|k + |Y4|k).

Then, equation 3.7 reduces to:

∞∑
n=1

(
Pα,βn

pα,βn

)δk+k−1
|Yr|k <∞ for r = 1, 2, 3, 4. (3.8)

Now, the L. H. S. of equation 3.8 is given as:
m∑
n=1

(
Pα,βn

pα,βn

)δk+k−1
|Y1|k =

m∑
n=1

(
Pα,βn

pα,βn

)δk+k−1 ∣∣∣ n+1

nPα,βn
pα,βn tnλn

∣∣∣k
=

m∑
n=1

(
Pα,βn

pα,βn

)δk−1
|tn|k|λn|

= O(1)|λm|
m∑
n=1

(
Pα,βn

pα,βn

)δk−1
|tn|k

+O(1)
m−1∑
n=1

∆|λn|
n∑
v=1

(
Pα,βv

pα,βv

)δk−1
|tv|k

= O(1)|λm|Xm +O(1)
m−1∑
n=1
|∆λn|Xn

= O(1) as m→∞, (3.9)

m+1∑
n=2

(
Pα,βn

pα,βn

)δk+k−1
|Y2|k = O(1)

m+1∑
n=2

1

Pα,βn−1

(
Pα,βn

pα,βn

)δk−1
×
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×
n−1∑
v=1

pα,βv |tv|k|λv|
(

1

Pα,βn−1

n−1∑
v=1

pα,βv

)k−1
= O(1)

m∑
v=1

pα,βv |tv|k|λv|×

×
m+1∑
n=v+1

1

Pα,βn−1

(
Pα,βn

pα,βn

)δk−1
= O(1)

m∑
v=1

pα,βv |tv|k|λv| 1

Pα,βv

(
Pα,βv

pα,βv

)δk
= O(1)|λm|

m∑
n=1

(
Pα,βn

pα,βn

)δk−1
|tn|k

+O(1)
m−1∑
n=1

∆|λn|
n∑
v=1

(
Pα,βv

pα,βv

)δk−1
|tv|k

= O(1)|λm|Xm +O(1)
m−1∑
n=1
|∆λn|Xn

= O(1) as m→∞, (3.10)

m+1∑
n=2

(
Pα,βn

pα,βn

)δk+k−1
|Y3|k = O(1)

m+1∑
n=2

1

Pα,βn−1

(
Pα,βn

pα,βn

)δk−1
×

×
n−1∑
v=1

Pα,βv |tv|kξv
(

1

Pα,βn−1

n−1∑
v=1

Pα,βv ξv

)k−1
= O(1)

m∑
v=1

Pα,βv ξv|tv|k×

×
m+1∑
n=v+1

1

Pα,βn−1

(
Pα,βn

pα,βn

)δk−1
= O(1)

m∑
v=1

Pα,βv |tv|kξv 1

Pα,βv

(
Pα,βv

pα,βv

)δk
= mξm

m∑
v=1

1
v

(
Pα,βv

pα,βv

)δk
|tv|k

+O(1)
m−1∑
v=1

∆(vξv)
v∑
i=1

1
i

(
Pα,βi

pα,βi

)δk
|ti|k

= O(1)mξmXm +O(1)
m−1∑
v=1
|∆(vξv)|Xv

= O(1)mξmXm +O(1)
m−1∑
v=1
|∆ξv|Xv

+O(1)
m−1∑
v=1

ξv+1Xv+1

= O(1) as m→∞, (3.11)

m∑
n=1

(
Pα,βn

pα,βn

)δk+k−1
|Y4|k = O(1)

m+1∑
n=2

1

Pα,βn−1

(
Pα,βn

pα,βn

)δk−1
×

×
n−1∑
v=1

Pα,βv
|λv+1|
v |tv|k

(
1

Pα,βn−1

n−1∑
v=1

Pα,βv
|λv+1|
v

)k−1
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= O(1)
m∑
v=1

Pα,βv
|λv+1|
v |tv|k×

×
m+1∑
n=v+1

1

Pα,βn−1

(
Pα,βn

pα,βn

)δk−1
= O(1)

m∑
v=1

Pα,βv
|λv+1|
v |tv|k 1

Pα,βv
×

×
(
Pα,βv

pα,βv

)δk
= O(1)

m∑
v=1
|λv+1| 1v

(
Pα,βv

pα,βv

)δk
|tv|k

= O(1)|λm+1|
m∑
v=1

1
v

(
Pα,βv

pα,βv

)δk
|tv|k

+O(1)
m−1∑
v=1

∆|λv+1|×

×
v∑
i=1

1
i

(
Pα,βi

pα,βi

)δk
|ti|k

= O(1)|λm+1|Xm +O(1)
m−1∑
v=1

∆|λv+1|Xv

= O(1) as m→∞. (3.12)

Collecting 3.5-3.12, we have

∞∑
n=1

(
Pα,βn

pα,βn

)δk+k−1
|Tn,r|k <∞ for r = 1, 2, 3, 4. (3.13)

Hence, the theorem is proved.

Corollary 3.1. Let (Xn), (ξn) and (λn) are s.t. conditions 2.2-2.5 of theorem 2.1,
condition 3.3 of theorem 3.1,

∞∑
n=v+1

pαn
Pαn P

α
n−1

= O

(
1

Pαv

)
, (3.14)

m∑
n=1

pαn
Pαn
|tn|k = O(Xm) as m→∞ (3.15)

and
m∑
n=1

1

n
|tn|k = O(Xm) as m→∞ (3.16)

holds. Then,
∑
anλn is |N, pαn|k summable for k > 1.

Proof: By using β = 1 and δ = 0 in main theorem, we will get 3.14, 3.15 and
3.16. The proof is same as the main theorem 3.1, but here we used equations 3.14,
3.15 and 3.16 instead of equations 3.1, 3.2 and 3.3.
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Corollary 3.2. Let (Xn), (ξn) and (λn) are s.t. conditions 2.2-2.5 of theorem
2.1, condition 3.3 of theorem 3.1 and 3.14 - 3.16 holds. Then,

∑
anλn is |N, pαn|

summable.
Proof: By using β = 1, k = 1 and δ = 0 in main theorem and equations 3.14 -

3.16, we get this result.

4. Conclusion

The negligible set of conditions has been obtained for the infinite series in this paper.
By the examination, we may infer that our hypothesis is a summed up variant which
can be diminished for a few notable summabilities as appeared in corollaries.
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[4] H. Bor and H. S. Özarslan, On absolute Riesz summability factors, Journal of
Mathematical Analysis and Applications , 2000, 246(2), 657–663.
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[11] H. S. Özarslan, A note on |N, pn; δ|k summability factors, Indian Journal Pure
Applied Mathematics, 2002, 33(3), 361–366.
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