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1. Introduction

H. Robbins and S. Monro studied the stochastic approximation of one-dimensional
system in [24]. However, there are a large number of 2D stochastic systems in
stochastic fluid mechanics [2], especially in the diffusion of random electronic gas in
magnetic region [29], random information flow [18,28] and other engineering fields.
Recently, scholars have shown interest in the method of stochastic approximation,
a lot of work has been done [3, 7, 8, 14, 30] and they are of great significance. The
stochastic approximation method can be used to solve some random or random
problems as well as some deterministic mathematical problems [16,23,31].

To a less extent, we investigate methods like stochastic average gradient [25],
which performs well on objectives that are strongly-convex, and stochastic variance
reduced gradient [11]. Fort et al. [6] establish results on the geometric ergodicity
of hybrid samplers and in particular for the random-scan Gibbs sampler. Zhao
and Wang [32], Jansen et al. [10] and Kriegesmann [13] estimate the statistical mo-
ments of the compliance by Monte Carlo approximations. Sparse polynomial chaos
expansions [1,4,5,9] can be used to reduce the computational cost, but the compu-
tational cost associated with this approach becomes prohibitive for a large number
of problems with uncertain inputs. [21, 22, 26, 27] use the stochastic approximation
algorithm of Polyak-Ruppert averaging to favor the performance of stochastic ap-
proximation. Convergence results for mini-batch EM and SAEM algorithms appear
recently in [17,19] and [12] respectively.

Moreover, the standard method for stochastic root-finding problems is stochastic
approximation [15, 20, 24]. In these 2D stochastic systems, take α as a constant,
consider a region D on the plane R2, and find the equation satisfied by the unknown
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measurable regression function M(x) with error:

M(x) = α. (1.1)

The null point x = θ of the above equation is an ubiquitous and important problem
in system identification, adaptive control, pattern recognition, adaptive filtering and
neural network and other fields.

Generally, M(x) represents a mathematical expected value at time x of a certain
experiment, which is an unknown function. However, for any x, the value of M(x)
is measurable, and assume that M(x) is a monotone function of x in an unknown
experiment. To obtain the null point x = θ of (1.1), we need to design an algorithm
to determine a series of values {xmn}m,n≥0 in the region D of the plane R2, which
are

x00, x01, , x02 . . . . . . ,

x10, x11, x12 . . . . . . ,

x20, x21, x22 . . . . . . ,

. . . . . . . . . . . . . . . . . . ,

these values satisfy in a probabilistic way, lim
m→∞
n→∞

xmn = θ.

As mentioned above, for any xmn, M(xmn) can be measured, so it can provide
information for the next measured value. Notice that there are two coordinate
positions for the next measured value related to xmn, (m+ 1, n) and (m,n+ 1), so
there are two points,

xm+1,n, xm,n+1. (1.2)

However, for the next measured value, considering the convenience of researching
problem, we usually regard xmn as the value to be measured in the next step.
Therefore, there are two values related to xmn directly, which are

xm−1,n, xm,n−1. (1.3)

Define D =

(m,n)/
m ≥ 0

n ≥ 0

, then D ⊂ R2. Besides, for any (m,n) ∈ D, con-

sidering a mathematical sequence {xmn}m,n≥0, and the boundary values xm0, x0n
are known. Therefore, M(xm0) and M(x0n) are determined. Thus, for any value
xmn in D, the points directly connected with xmn have two coordinate positions,
(m− 1, n) and (m,n− 1).
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Therefore, the value M(xmn) at the point xmn is determined by the measured
values M(xm−1,n) and M(xm,n−1), which are related to points xm−1,n and xm,n−1
directly. As can be seen, this approach is similar to the one-dimensional measuring
form, because in the one-dimensional random approximation, the measurements of
M(xn) and M(xn+1) from point xn to point xn+1 are as follows.

There is only one point n directly associated with the point n + 1, so 2D is a
natural extension of 1−D. To determine the root x = θ of (1.1), we usually select
the sequence values,

x00, x01, x02 . . . x0r

x10, x11, x12 . . . x1r

x20, x21, x22 . . . x2r

. . . . . . . . . . . . . . . . . .

xs0, xs1, xs2 . . . xsr


, (1.4)

and a series of new observations on D can be obtained continuously,

{ xmn }m>s,n>r. (1.5)

From these new values, these function values in (1.4) can be determined, which are

M(x00) M(x01) · · · M(x0r)

M(x10) M(x11) · · · M(x1r)

· · · · · · · · · · · ·

M(xs0) M(xs1) · · · M(xsr)


, (1.6)

and the derivatives of these functions in (1.6),

{M ′(xij)}s,ri,j=0,0. (1.7)

Without considering arbitrary initial values {xij}s,ri,j=0,0, for the special function

M(x) and the value α, satisfy
lim
i→∞
j→∞

xij = θ, (1.8)

this method is valid, and convergence rate of (1.8) can be obtained by practical
application and specific calculation about {xij}s,ri,j=0,0.

For the above problem, we consider the following random method. The character
of the function M(x) is an unknown experiment. Suppose each value x corresponds
to a random variable Y = Y (x), and the distribution function is Pr [Y (x) ≤ y] =
H (y|x), which enable

M(x) =

∞∫
−∞

ydH (y|x) (1.9)
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to be the expected value of the random variable Y for which {xij}s,ri,j=0 is given. For

the experimenters, and the exact properties of H (y|x) and M(x) are unknown, but
there is a unique solution θ of M(x) = α. By obtaining the continuous observational
data at the point {xij}s,ri,j=0, and utilizing some explicit experimental methods, the

value of θ can be estimated. For any initial value {xij}s,ri,j=0, the probability method

is used, if (1.8) holds, for the given H (y|x) and the value α, we usually refer it to
the approximation process of random field. Next, we will give a detailed method
to estimate the value of θ under the premise of some constraints on the properties
of H (y|x). These constraints are strict and cannot be weakened arbitrarily, but
they generally meet the actual needs. Here, the method is not required for ob-
taining optimal properties, but the results given at least point out that stochastic
approximation is useful and worthy for further study.

2. Convergence theorem

For each xm−1,n and xm,n−1, M(xm−1,n), M(xm,n−1) and M(xm−1,n + ωxm,n−1)
can be measured, where ω is a regulatory parameter. In this way, they can provide
information for determining the next xmn. Considering the values ofM(x) measured
at different times, set the expectation of measured error at any time be zero, and it
depends on the value of x. If ymn represents the measurement at the point (m,n),
then the actual values of M(xm−1,n), M(xm,n−1) and M(xm−1,n + ωxm,n−1) are
obtained, they can be expressed as:

ymn = M(xm−1, n) + r0M(xm,n−1) + r1εmn, (2.1)

where r0 and r are the regulation parameters.
Since the measured value of position (m,n) in D is

xmn − c0(xm−1,n + ωxm,n−1) = amn(α− ymn), (2.2)

where amn is called the gain coefficient. It is noted that the directly connected
points associated with ymn are ym−1,n and ym,n−1, so ymn can be replaced by
ym−1,n + ωym,n−1. Thus, from (2.2), we have

xmn = c0(xm−1,n + ωxm,n−1) + amn[α− c1(ym−1,n + ωym,n−1)]. (2.3)

For any x, suppose H (y|x) is a distribution function related to y, and there is
a positive constant C satisfy

Pr ( | Y (x) | ≤ C ) =

C∫
−C

dH(y|x) = 1. (2.4)

Particularly, the expected values defined by (1.9) exist for any x. Suppose that
there is a finite α and θ,

M(x) ≤ α,when x < θ, M(x) ≥ α,when x > θ, (2.5)

and importantly, whether there is M(θ) = α.
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Let { amn } be a positive constant sequence of two indexes, and satisfy

0 <

∞∑
m=1

∞∑
n=1

a2mn = A <∞. (2.6)

For any (m,n) ∈ D, take xm0 and x0n as arbitrary constants, and define a double
index { xmn }. For the convenience of solving this problem, take c0 = c1 = 1

2 and
ω = 1 in (2.3), then

xmn −
1

2
(xm−1,n + xm,n−1) = amn

[
α− 1

2
(ym−1,n + ym,n−1)

]
, (2.7)

ymn is a random field, and satisfy

Pr [ymn ≤ y|xmn] = H(y|xmn). (2.8)

Let s and t be integer variables greater than or equal to zero, and regard m and
n as integer parameters temporarily. Besides, make s ≤ m and t ≤ n, take µ as a
real parameter, then make the following transformation,

bst = µ(t−n) { 1
8E
[
1
2x

2
st + 2xm−1,nxm,n−1+

(
1
2

)−(t−n)
x2m,n−1

+
(
1
2

)−(s−m)
x2m−1,n

](m+n)−(s+t)
− 1

2 [θE (xm−1,n + xm,n−1)]
(m+n)−(s+t)

+ 1
2

(
Eθ2

)(m+n)−(s+t)
+ ω

(
δ
2r

)(m+n)−(s+t)
E(xmn − θ) 2

}
,

(2.9)
where ω, r, δ are the real parameters, and from (2.9), when s = m − 1, t = n, we
have

bm−1,n = 1
8E(xm−1,n + xm,n−1)

2 − 1
2θE (xm−1,n + xm,n−1)

+ 1
2 (Eθ)

2
+ ωδ

2rE(xmn − θ)2.

Moreover, when s = m, t = n− 1, we have

bm,n−1 = 1
µ

{
1
8E(xm−1,n + xm,n−1)

2 − 1
2θE (xm−1,n + xm,n−1)

+ 1
2 (Eθ)

2
+ ωδ

2rE(xmn − θ)2
}
.

Therefore,

bm−1,n + µbm,n−1 = E

[
(xm−1,n + xm−1,n)

2
− θ

]2
+
ωδ

r
E(xmn − θ)2. (2.10)

In the meantime, we can get

bm−1,n = µbm,n−1. (2.11)

Similarly, when s = m, t = n, we have

bmn = ω E(xmn − θ)2. (2.12)

From (2.12), for (m,n) ∈ N2
0 , take arbitrary initial values xm0, x0n, we will find

the condition enable
lim

m, n→∞
bmn = 0. (2.13)
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Obviously, (2.13) means that { xmn } converges to θ in a probabilistic way.

bm−1,n + µbm,n−1

= E
[

(xm−1,n+xm−1,n)
2 − θ

]2
+ ωδ

r E(xmn − θ)2

= E[xmn − θ + amn(y − α)]
2

+ ωδ
r E(xmn − θ)2

= E{
+∞∫
−∞

[(xmn − θ) + amn(y − α)]

2

dH(y/xmn)]}+ ωδ
r E(xmn − θ)2

= E[
+∞∫
−∞

(xmn − θ)2dH(y/xmn) +
+∞∫
−∞

a2mn(y − α)
2
dH(y/xmn)

+2amn
+∞∫
−∞

(xmn − θ)(y − α)dH(y/xmn)] + ωδ
r E(xmn − θ)2

= E(xmn − θ)2 + a2mnE[
+∞∫
−∞

(y − α)
2
dH(y/xmn)]

+2amnE(xmn − θ)[
+∞∫
−∞

ydH(y/xmn)−
+∞∫
−∞

αdH(y/xmn)] + ωδ
r E(xmn − θ)2

= E(xmn − θ)2 + a2mnE[
+∞∫
−∞

(y − α)
2
dH(y/xmn)] + 2amnE(xmn − θ)[M(x)− α]

+ωδ
r E(xmn − θ)2

= ( 1
ω + δ

r )bmn + a2mnE[
+∞∫
−∞

(y − α)
2
dH(y/xmn)] + 2amnE(xmn − θ)[M(x)− α]

(2.14)
Make

dmn = E(xmn − θ)[M(x)− α], (2.15)

emn = E

 ∞∫
−∞

(y − α)
2
dH (y |xmn )

 , (2.16)

then from (2.14), we have

(bm−1,n + µbm,n−1)− (
1

ω
+
δ

r
) bmn = a2mnemn + 2amndmn. (2.17)

Note that from (2.5), we have

dmn ≥ 0, (2.18)

and from (2.4), we can get

0 ≤ emn ≤ [ c+ |α| ]2 <∞, (2.19)

combine (2.19) and (2.5), the series of positive terms
m∑
i=1

n∑
j=1

a2ijeij converge.

From (2.11) and (2.17),

2µbm,n−1 − (
1

ω
+
δ

r
)bmn = a2mnemn + 2amndmn. (2.20)
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Therefore,

m∑
i=1

n∑
j=1

(
1

ω
+
δ

r
)bij−

m∑
i=1

n∑
j=1

2µbi,j−1 = −
m∑
i=1

n∑
j=1

a2ijeij − 2

m∑
i=1

n∑
j=1

a2ijdij . (2.21)

After proper decomposition and simplification,

m∑
i=1

n−1∑
j=1

( 1
ω + δ

r )bij +
m∑
i=1

( 1
ω + δ

r )bin−
m∑
i=1

n−1∑
j=1

2µbi,j −
m∑
i=1

2µbi0

= −
m∑
i=1

n∑
j=1

a2ijeij − 2
m∑
i=1

n∑
j=1

a2ijdij ,

m∑
i=1

n−1∑
j=1

[( 1
ω + δ

r )− 2µ]bij +
m∑
i=1

( 1
ω + δ

r )bin +
m∑
i=1

n∑
j=1

a2ijeij

+2
m∑
i=1

n∑
j=1

a2ijdij =
m∑
i=1

2µbi0.

(2.22)

Make ( 1
ω + δ

r ) > 2µ > 0 and ω > 0, then bij ≥ 0, considering
m∑
i=1

n∑
j=1

a2ijeij is

convergent and positive, bio = ω E(xi0 − θ)2 is positive constant, we can get

m∑
i=1

n∑
j=1

a2ijdij <

m∑
i=1

µbi0 <∞.

Therefore, the series of positive terms
m∑
i=1

n∑
j=1

a2ijdij converge.

From (2.22),

m∑
i=1

n−1∑
j=1

[( 1
ω + δ

r )− 2µ]bij +
m−1∑
i=1

( 1
ω + δ

r )bin + ( 1
ω + δ

r )bmn

+
m∑
i=1

n∑
j=1

a2ijeij + 2
m∑
i=1

n∑
j=1

a2ijdij =
m∑
i=1

2µbi0.

Then,

(
1

ω
+
δ

r
)bmn <

m∑
i=1

2µbi0.

Therefore,

0 ≤ lim
m,n→∞

(
1

ω
+
δ

r
)bmn ≤

∞∑
i=1

2µbi0 = b (2.23)

exists. Moreover, b ≥ 0.
Now, let’s prove b→ 0.
Suppose there is a non-zero constant sequence { kmn } that satisfy

dmn ≥ kmnbmn,
m∑
i=1

n∑
j=1

amnkmn =∞. (2.24)

Using the first part of (2.24) and the convergence of (2.21), we get

∞∑
i=1

∞∑
j=1

amnkmnbmn <∞. (2.25)
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From (2.25) and the second part of (2.24), for ∀ε > 0, there is an infinite number
of mn that satisfy bmn < ε. Therefore, lim

m,n→∞
bmn = b = 0.

Thus, the following lemma is obtained.

Lemma 2.1. If there is a non-zero constant sequence { kmn } that satisfies (2.24),
then b = 0.

Make

Amn =

∣∣∣∣∣ m∑i=1

Cn−1
m+n−(i+1)

2m+n−(i+1)+1xi0 +
n∑
j=1

Cm−1
m+n−(1+j)

2m+n−(1+j)+1x0j − θ

∣∣∣∣∣
+(

m∑
i=1

n∑
j=1

Cm−i
m+n−(i+j)

2m+n−(i+j) aij)(|α|+ C),

(2.26)

from xmn − 1
2 (xm−1,n + xm,n−1) = amn

[
α− 1

2 (ym−1,n + ym,n−1)
]
, we can get

|xmn − θ|

≤
∣∣ 1
2 (xm−1,n + xm,n−1)− θ

∣∣+ amn(|α|+ C)

≤
∣∣ 1
4xm−2,n + 2

4xm−1,n−1 + 1
4xm,n−2 − θ

∣∣+ (amn + 1
2am−1,n + 1

2am,n−1)(|α|+ C)

≤
∣∣ 1
8xm−3,n + 3

8xm−2,n−1 + 3
8xm−1,n−2 + 1

8xm,n−3 − θ
∣∣

+[amn + ( 1
2am−1,n + 1

2am,n−1) + ( 1
4am−2,n + 2

4am−1,n−1 + 1
4am,n−2)](|α|+ C)

≤ · · · · · · .

Suppose a point (a, b) on the coordinate axis, where a and b are integers greater

than zero, then we can get the coefficient before xab is
Cm−a

m+n−(a+b)

2m+n−(a+b) . At any point

(1, j) on i = 1, the coordinate is
Cm−1

m+n−(1+j)

2m+n−(1+j) , and x1j − 1
2 (x0,j + x1,j−1) =

a1j
[
α− 1

2 (y0,j + y1,j−1)
]
. Therefore, the coefficient at the boundary point x0j is

1/2 of x1j . That is, the coefficient of x0j is
Cm−1

m+n−(1+j)

2m+n−(1+j)+1 . Similarly, the coefficient of

xi0 is
Cn−1

m+n−(i+1)

2m+n−(i+1)+1 . Furthermore, the coefficient of aij is consistent with xij , which

is
Cm−i

m+n−(i+j)

2m+n−(i+j) .
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After determining the coefficients, we can get

|xmn − θ|

≤
∣∣ 1
2 (xm−1,n + xm,n−1)− θ

∣∣+ amn(|α|+ C)

≤
∣∣ 1
4xm−2,n + 2

4xm−1,n−1 + 1
4xm,n−2 − θ

∣∣+ (amn + 1
2am−1,n + 1

2am,n−1)(|α|+ C)

≤
∣∣ 1
8xm−3,n + 3

8xm−2,n−1 + 3
8xm−1,n−2 + 1

8xm,n−3 − θ
∣∣

+[amn + ( 1
2am−1,n + 1

2am,n−1) + ( 1
4am−2,n + 2

4am−1,n−1 + 1
4am,n−2)](|α|+ C)

≤ · · · · · ·

≤

∣∣∣∣∣ m∑i=1

Cn−1
m+n−(i+1)

2m+n−(i+1)+1xi0 +
n∑
j=1

Cm−1
m+n−(1+j)

2m+n−(1+j)+1x0j − θ

∣∣∣∣∣+ (
m∑
i=1

n∑
j=1

Cm−i
m+n−(i+j)

2m+n−(i+j) aij)(|α|+ C).

Then, from (2.1), (2.4) and (2.24), we obtain

Pr(| xmn − θ | ≤ Amn) = 1. (2.27)

For 0 < | xmn − θ | ≤ Amn, make

k̄mn = inf

(
M(xmn)− α′

xmn − θ

)
. (2.28)

Then, from (2.2), k̄mn ≥ 0.
Pmn(x) represents the probability distribution of xmn, so we gain

dmn =
∫

| xmn−θ | ≤ Amn

(xmn − θ ) (M(xmn)− α) dPmn(x)

≥
∫

| xmn−θ | ≤ Amn

kmn |xmn − θ | 2d pmn(x)

= k̄mn bmn.

(2.29)

Thus, the sequence defined by (2.28) satisfies the first part of (2.24) in order to
satisfy the second part of (2.24), set

k̄mn ≥
k

Amn
. (2.30)

For sufficiently large m,n and a constant K > 0, and

∞∑
m=2

∞∑
n=2

amn
m−1∑
i=1

n−1∑
j=1

aij

=∞, (2.31)

from (2.31),
∞∑
m=2

∞∑
n=2

amn =∞. (2.32)

Therefore, for sufficiently large m,n,

2 (C + | α |)

 m−1∑
i=1

n−1∑
j=1

aij

 ≥ Amn, (2.33)
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and from (2.30), it means

amnk̄mn ≥ amn
K

Amn
≥ amn K

2(C + |α|)

(
m−1∑
i=1

n−1∑
j=1

aij

) . (2.34)

From (2.30), (2.31) and the second part of (2.34), we have proved it.

Lemma 2.2. If (2.30) and (2.31) hold, then b = 0.

In the assumptions of (2.2) and (2.31), if amn = 1
mn is taken, and due to

∞∑
m=1

∞∑
n=1

a2mn =
∑∑

1
mn2 =

( ∞∑
m=1

1
m2

) ( ∞∑
n=1

1
n2

)
=
(
π2

6

)2
= π4

36 , then

∞∑
m=2

∞∑
n=2

amn
m−1∑
i=1

n−1∑
j=1

aij

=

∞∑
m=2

∞∑
n=2

(
1

mn
m−1∑
i=1

n−1∑
j=1

1
ij

) =∞.

More generally, for a sequence { amn }, if there are positive constants c
′

and c
′′

enabling
c
′

mn
≤ amn ≤

c
′′

mn
(2.35)

to satisfy (2.2) and (2.21), otherwise (2.35) is satisfied, then such a sequence
{ amn }∞m, n=1 is called a sequence of type 1

mn .

If a sequence { amn }∞m, n=1 is a sequence of type 1
mn , it is easy to obtain that

the function M(x) satisfies (2.2) and (2.30). For example, we suppose M(x) meets
the following condition of (2.2). That is, for δ > 0,

M(x) ≤ α− δ, when x < 0, M(x) ≥ α+ δ, when x > 0, (2.36)

then for 0 < | x− θ | ≤ Amn,

M(x)− α
x− θ

≥ δ

Amn
. (2.37)

Thus,

k̄mn ≥
δ

Amn
, (2.38)

and this is exactly the form when k = δ in (2.30). Therefore, by using Lemma 2.2,
we get the following theorem.

Theorem 2.1. If { amn } is a sequence of type 1
mn , (2.1) holds and M(x) satisfies

(2.26), then b = 0.

Here, we notice that if take m or n as constants, the results obtained are consis-
tent with those obtained by the 1−D stochastic approximation method. It is also
noted that if M(x) meets the following conditions

M(x) is an unsubtracted function,

M(θ) = α,

M ′(θ) > 0 .

 , (2.39)
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then we will prove that (2.30) also holds under the above conditions. In fact, from
(2.29),

M(x)− α = (x− θ) (M ′(θ) + ε(x− θ) ) , (2.40)

where ε(t) is a function satisfy

lim
t→0

ε(t) = 0. (2.41)

Therefore, there is a constant δ → 0, which enable

ε(t) ≥ −1

2
M ′(θ) (2.42)

for | t | ≤ δ. Therefore, for | x− θ | < δ,

M(x)− α
x− θ

≥ 1

2
M ′(θ) > 0, (2.43)

since M(x) is non-subtractive, for θ + δ ≤ θ ≤ Amn, we have

M(x)− α
x− θ

≥ M(θ + δ)− α
Amn

≥ δM ′(θ)

2Amn
. (2.44)

Moreover, for θ −Amn ≤ x ≤ θ − δ, we obtain

M (x)− α
x− θ

=
α−M (x)

θ − x
≥ α−M (θ − δ)

Amn
≥ δ M ′ (θ)

2Amn
. (2.45)

Thus, without loss of generality, suppose δ
Amn

≤ 1, for 0 < | x− θ | ≤ Amn, we
get

M (x)− α
x− θ

≥ δ M ′ (θ)

2Amn
. (2.46)

Therefore, when K = δ M ′(θ)
2 > 0, (2.30) holds. Hence, the following results are

received.

Theorem 2.2. If { amn } is a sequence of type 1
mn , (2.1) holds and M(x) satisfies

(2.39), then b = 0.

Here, we notice that if take m or n as constants, the results obtained are consis-
tent with those obtained by the 1−D stochastic approximation method. In addition,
weakening the condition (2.1) can not affect the correctness of Theorems 2.1 and
2.2, which is an important problem worth considering. The following condition is a
suitable weakening for (2.1). For all x, we have

|M (x) | ≤ C,
∞∫
−∞

(y −M (x))
2
dH (y |x ) ≤ σ2 <∞. (2.47)

We don’t know whether Theorems 2.1 and 2.2 still holds or not if we replace (2.1)
with (2.47). Similarly, the condition (2.39) in Theorem 2.2 can also be weakened.
That is,

M (x) < α, when x < θ

M (x) > α, when x > θ

 . (2.48)
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3. Estimation applied to information

Take F (x) as an unknown distribution function. Besides,

F (θ) = α, (0 < α < 1) , F ′ (θ) > 0, (3.1)

and let { zmn } be a double index sequence of function Pr (zmn ≤ x) = F (x) inde-
pendent of the distribution of each random variable x, and by using the sequence
{ zmn }, we estimate θ. However, in some practical applications (such as biology
and photosensitive information), it is not allowed to know the values of { zmn }.
For the value xmn of each pair m,n, we can freely replace it, given { ymn }, where

ymn =

1 : if zmn ≤ xmn, (”response”)

0 : otherwise , (”nonresponse”)
. (3.2)

How to select the value { xmn } and apply sequences { ymn } to estimate the
value of θ ? We will proceed as follows.

For all m,n ∈ N0, we choose the initial value xm0, x0n as the best guess of
estimating θ. Let { amn } be a constant sequence of type 1

mn , and take

x00 x01 x02 · · ·

x10 x11 x12 · · ·

· · · · · · · · · · · ·

 , (3.3)

and continue to iterate according to random field sequence

xmn −
1

2
(xm−1,n + xm,n−1) = amn

[
α− 1

2
(ym−1,n + ym,n−1)

]
. (3.4)

(2.1) holds because of

Pr [ymn = 1 |xmn ] = F (xmn)

Pr [ymn = 0 |xmn ] = 1− F (xmn)

 . (3.5)

Moreover,

M (x) = F (x) . (3.6)

Therefore, all of the assumptions of Theorem 2.1 and Theorem 2.2 are satisfied.
Thus,

lim
m,n→∞

xmn = θ. (3.7)

Therefore, { xmn } is a suitable estimate for θ. Efficiency of { xmn } depends on
the selection of initial values xm0, x0n and sequences { amn } for all m,n ∈ N0. As
the best property of F (x), for any given F (x), there are undoubtedly more efficient
estimates for θ of type { xmn } defined by (3.4), but { xmn } has the essential
advantage of free distribution.

In the application, it is convenient to obtain some observation data sets, which
are produced before the generation of the next position in one position, while the
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m× n observation data set is

ymr−r+1, ns+s+1, ymr−r+2, ns−s+1 · · ·

ymr−r+1, ns−s+2 ymr−r+2, ns−s+2 · · ·

· · · · · · · · ·

ymr−r+1, ns ymr−r+2, ns · · ·

ymr, ns−s+1

ymr, ns−s+2

· · ·

ymr, ns


. (3.8)

Apply the mark of (3.2) and set the value of (3.8) as ȳmn, and then from

xmn −
1

2
(xm−1,n + xm,n−1) = amn

[
α− 1

2
(ȳm−1,n + ȳm,n−1)

]
, (3.9)

we obtain M (x) = F (x), (3.7) still holds.

4. A more general regression problem

An obvious problem is that it is a special case of a more general regression problem
in Section 3. In fact, applying the notation from Section 1, consider a random
variable Y . For an observed value of x, its joint conditional distribution function is
H (y |x ), and the function M(x) is a regression function Y of x.

According to the hypothesis of regression analysis, M(x) is an unknown param-
eter form. That is,

M (x) = β00 + (β10 + β01)x+ β11x
2, (4.1)

and the observed data corresponding to the observed value

x00 x01 x02 · · · x0n
x10 x11 x12 · · · x1n
· · · · · · · · · · · · · · ·

xm0 xm1 xm2 · · · xmn


(4.2)

is

y00 y01 · · · y0n

y10 y11 · · · y1n

· · · · · · · · · · · ·

ym0 ym1 · · · ymn.


.

When dealing with βij of one or two parameters, the least square method is
used. For example, to obtain the estimation of βij , which can be expressed by the
least square method as

m∑
i=1

n∑
j=1

(yij − [β00 + (β10 + β01)x+ β11 (1 + β)xij ] ) 2,
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given that M(x) is a linear function of x, to estimate the parameter βij (i, j ≥ 0, 1)
of M(x), we try to estimate the value of θ to enable M (θ) = α, where α is given,
there are no assumptions about the form of M(x). If we only assume that H (y |x )
satisfies the hypothesis of Theorem 2.2, then the sequence { (1 + β)xmn } to esti-
mate values of θ defined by (2.3) will be at least compatible. This indicates that
the free distribution sequence values defined by (2.3) and generated by observations
are worth studying from the actual situation of the observed regression problem.
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