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Turing and Hopf Bifurcation in a Diffusive
Tumor-immune Model∗
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Abstract In order to understand the effect of the diffusion reaction on the in-
teraction between tumor cells and immune cells, we establish a tumor-immune
reaction diffusion model with homogeneous Neumann boundary conditions.
Firstly, we investigate the existence condition and the stability condition of
the coexistence equilibrium solution. Secondly, we obtain the sufficient and
necessary conditions for the occurrence of Turing bifurcation and Hopf bifurca-
tion. Thirdly, we perform some numerical simulations to illustrate the complex
spatiotemporal patterns near the bifurcation curves. Finally, we explain spa-
tiotemporal patterns in the diffusion action of tumor cells and immune cells.

Keywords Tumor-immune model, Diffusion, Hopf bifurcation, Turing bifur-
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1. Introduction

The immune system of a body can monitor the development of tumor cells, and
kill them by immune mechanisms [1]. However, immune responses frequently fail
to prevent the growth of tumor cells. The reason is that tumor cells can escape
the immune attack of the body in many ways, including low immunogenicity of
tumor cells, down-regulation of MHC class I molecules, and the lack co-stimulatory
molecules. Recently, a growing body of evidence supports the conclusion that a
combination of immunotherapy with conventional chemotherapy and radiotherapy
may improve the outcome for treating tumors. Therefore, researchers have been
shifting their focus from the method of cancer treatment to the research of tumor
immunotherapy mechanisms, which arouse great interest among medical scientists,
biomathematicians and statisticians in [7–10,12–15].

In 1973, Steinman discovered that dendritic cells (DC) are the most powerful
antigen-presenting cells. Immature dendritic cells have strong migration ability,
which can directly ingest antigens through phagocytosis and endocytosis. Mature
dendritic cells present antigens to T cells, and improve the activation of B cells. In
2012, Paluka and Banchereau [12] studied the cancer immunotherapy via dendritic
cell. In 2015, Nagata and Furuta et al. constructed a mathematical model repre-
senting dynamical behaviors of T cell tumor response under the support of dendritic
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cells in [9]. They obtained that mutual dependence of dendritic cells and T cells in
activation and tumor elimination leads to bistability between tumor immune escape
and control states (immunosuppressive states). In 2016, Nakada and Nagata et al.
constructed and analyzed a new mathematical model describing tumor killing by
T cell response under the support of dendritic cells in [10]. In their models, there
exist a handling time representing a waiting time required for T cells to be activated
during antigen presentation as follows:

dCH(t)
dt = r

(
1− CH(t)

K

)
CH(t)− cCH(t)NT (t)

dNT (t)
dt = b̃NDC(t)

hDC+NDC(t)NT (t)− δTNT (t)

dNDC(t)
dt = aNT (t)CH(t)− δDCNDC(t)

(1.1)

where CH ,NDC and NT denote the densities of tumor, dendritic cells, and activated
T cells respectively. r denotes replication rate, and K denotes carrying capacity.
c denotes proportionality constant of tumor elimination by activated T cells. b̃
represents the T cell conversion rate under the action of dendritic cells and T cells,
and a denotes the activation rate of dendritic cell by the mass action of activated
T cells and tumors. δDC and δT denote in-activation rates of dendritic and T
cells respectively. hDC denotes the waiting time of T cell activation upon antigen
presentation.

To investigate the mathematical property of (1.1) in more details, Nakada et al.
applied the quasi-steady state approximation to system (1.1) by assuming that δDC
is sufficiently large in [10], by substituting NDC (t) = aNT (t)CH(t)

δDC
into system (1.1),

and by denoting h = hDCδDC

a , δ = δT , and obtained a reduced system as follows
dCH(t)

dt = r
(

1− CH(t)
K

)
CH(t)− cCH(t)NT (t)

dNT (t)
dt = b̃CH(t)NT

2(t)
h+CH(t)NT (t) − δNT (t)

(1.2)

In fact, some tumor cells will enter the circulating blood and invade other tissues
or organs (such as chronic and acute myelogenous Leukemia [6, 20]), which arouse
our interest in studying the dynamics of diffusion reaction on the interaction be-
tween tumor cells (myelogenous cells) and immune cells. In [6, 20], we know that
Chronic Myelogenous Leukemia (CML) is a cancer that results in the overproduc-
tion of immature white blood cells. The main characteristic of Chronic Myelogenous
Leukemia is that immature leukocytes uncontrollably proliferate in the bone mar-
row, and inhibit normal hematopoiesis of the bone marrow. Then, large numbers
of immature leukocytes are in the circulating blood through the blood vessels, and
spread throughout various tissues (and organs). Therefore, in this paper, we intro-
duce the diffusion term into model (1.2) to describe the spread behaviors of tumor
cells (myelogenous cells) and immune cells in the circulating blood. Furthermore,
we study the dynamics of the diffusive tumor-immune model.

This paper is organized as follows: In Section 2, we present the existence condi-
tion and the stable condition of the coexistence equilibrium solution. In addition,
we obtain sufficient and necessary conditions for the occurrence of Turing bifurca-
tion and Hopf bifurcation. In Section 3, numerical simulations are illustrated to
support analyses results and show complex spatiotemporal patterns near the bifur-
cation curves based on the bifurcation diagram of two parameters for the diffusive
tumor-immune model. Finally, discussions and conclusions are shown in Section 4.
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2. Stability and bifurcation

In this section, based on [3, 6, 11, 23], considering the spread characteristic of tu-
mor cells (myelogenous cells) in the circulating blood through the blood vessels, we
introduce the diffusion action into model (1.2), and obtain the following reaction-
diffusion system describing tumor cells and immune cells under homogeneous Neu-
mann boundary conditions.

∂u(x,t)
∂t = d1∆u(x, t) + ru(x, t)

(
1− u(x,t)

K

)
− cu(x, t)v(x, t) x ∈ Ω, t > 0

∂v(x,t)
∂t = d2∆v(x, t) + b̃u(x,t)v2(x,t)

h+u(x,t)v(x,t) − δv(x, t) x ∈ Ω, t > 0

∂u(x,t)
∂ν = 0,∂v(x,t)

∂ν = 0 x ∈ ∂Ω, t > 0

u(x, 0) = u0(x) ≥ 0,v(x, 0) = v0(x) ≥ 0 x ∈ Ω̄,

(2.1)
where u(x, t) = CH(x, t)/C0

H and v(x, t) = NT (t)/N0
T (C0

H = N0
T = 106 as the

order-of-magnitude concentration scale for tumor cells and T cells) stand for the
scaled number of tumor cells (myelogenous cells) and T cells at location x ∈ Ω
and time t ≥ 0 respectively. Since we consider the interaction between tumor cells
(myelogenous cells) and immune cells (T cells) in the one-dimensional blood vessel,
we assume that the space variable is a one-dimensional space Ω = (0, lπ) (l is a
positive integer), where ν is the outward unit normal vector of the boundary ∂Ω.
The zero-flux boundary condition means that there are no tumor cells (myelogenous
cells) or immune cells (T cells) crossing the blood vessel tissue boundary, which has
been applied in many diffusion-type modelings of tumors [3,11,23]. d1 denotes the
diffusion coefficient of tumor cells (myelogenous cells), which is a positive constant.
d2 denotes the diffusion coefficient of immune cells (T cells), and ρ is the diffusion
ratio of tumor cells (myelogenous cells) and immune cells (T cells), i.e. (d2 = ρd1),
u0(x) and v0(x) denote initial functions, which are nonnegative and continuous. r is
the replication rate of tumor cells, c is the tumor killing rate by T cells, K represents
the maximum capacity of tumor cells, b̃ represents the tumor cell (myelogenous cell)
conversion rate under the action of T cells and h represents the waiting time of T
cell activation upon antigen presentation. δ is the in-activation rate of T cells.

For the sake of convenience, by applying the following scalings: ch
r → c, b̃δ →

b, vh → v, rt→ t, d1r → d1,
d2
r → d2, system (2.1) is simplified as follows:

∂u(x,t)
∂t = d1∆u(x, t) + u(x, t)

(
1− u(x,t)

K

)
− cu(x, t)v(x, t) x ∈ (0, lπ), t > 0

∂v(x,t)
∂t = d2∆v(x, t) + δv(x, t)

(
bu(x,t)v(x,t)

1+u(x,t)v(x,t) − 1
)

x ∈ (0, lπ), t > 0

ux(0, t) = ux(lπ, t) = vx(0, t) = vx(lπ, t) = 0, t > 0

u(x, 0) = u0(x) ≥ 0,v(x, 0) = v0(x) ≥ 0 x ∈ [0, lπ].

(2.2)
Obviously, both E0 = (0, 0) and EK = (K, 0) are always constant equilibrium
solutions of system (2.2). Referring to the stability result of equilibrium solutions
in [10], we know that the equilibrium solution EK is stable. If there exists a positive
constant equilibrium solution (u∗, v∗) of (2.2), then u∗ and v∗ satisfy the following
algebraic equations:

u∗2 −Ku∗ +
cK

b− 1
= 0, v∗ =

K − u∗

Kc
(2.3)
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Since b̃ > δ in system (2.1), b > 1 in system (2.2). By combining algebraic equa-
tion (2.3), we obtain the existence condition of the positive constant equilibriums
of system (2.2).

Lemma 2.1. The existence of positive constant steady states of system (2.2)
is as follows:

i) If c < K(b−1)
4 , then system (2.2) has two positive constant steady states E∗± =

(u∗±, v
∗
±), where

u∗± =
K ±

√
K2 − 4Kc

b−1

2
, v∗± =

K − u∗±
Kc

. (2.4)

ii) If c = K(b−1)
4 , then system (2.2) has a unique positive constant steady state

E∗ = (u∗, v∗), where u∗ = k
2 , v∗ = K−u∗

Kc .

For the sake of convenience, we list the basic results of the stability for system
(2.2) with d1 = 0 and d2 = 0. Throughout this paper, let

δ0 =
bu∗−

K(b− 1)
, (2.5)

and we assume

(H0) : c >
(b− 1)(u∗−)2

K
, (H1) : c <

(b− 1)(u∗−)2

K
.

Lemma 2.2. Assume that c < K (b− 1)/4, δ0 is defined by (2.5).

i) If c <
(b−1)(u∗

+)2

K , then the positive constant steady state E∗+ is unstable for
system (2.2) with d1 = 0 and d2 = 0;

ii) If δ < δ0 and condition (H0) holds, then the positive constant steady state E∗−
is locally asymptotically stable for system (2.2) with d1 = 0 and d2 = 0;

iii) If δ < δ0 and condition (H1) holds, then the positive constant steady state E∗−
is a saddle point for system (2.2) with d1 = 0 and d2 = 0;

iv) If δ > δ0 and condition (H0) holds, then the positive constant steady state E∗−
is unstable for system (2.2) with d1 = 0 and d2 = 0.

Next, we study effects of the diffusion factor on the positive constant steady state
E∗− of system (2.2) based on the bifurcation analyses such as Turing bifurcations
and Hopf bifurcations.

Linearizing system (2.2) at E∗−, we have
∂u(x,t)
∂t = d1∆u− u∗

−
K

(
u− u∗−

)
− cu∗−

(
v − v∗−

)
∂v(x,t)
∂t = d2∆v + δ

b(u∗
−)2

(
u− u∗−

)
+ δ

(
1− 1

b

) (
v − v∗−

)
.

(2.6)

Then, system (2.6) can be written as an abstract differential equation in the phase
space X of the formut

vt

 = L

u

v

 ∆
= D

uxx

vxx

+ J

u

v

 (2.7)
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where

X
∆
=

{
(u, v) ∈ H2 (0, lπ)×H2 (0, lπ) |∂u

∂x
|x=0,lπ =

∂v

∂x
|x=0,lπ = 0

}
.

H2(0, lπ) denotes the standard Sobolev space, and

D =

d1

0

0

d2

 , J =

 −u∗
−

K

δ
b(u∗

−)2

−cu∗−
δ
(
1− 1

b

)
 .

Thus, the characteristic equations of system (2.7) are

Fk (λ) = λ2 + Tk (d1, d2)λ+Dk (d1, d2) = 0, (2.8)

where

Tk (d1, d2) =
u∗−
K
− δ

(
1− 1

b

)
+ (d1 + d2)

k2

l2
, (2.9)

Dk (d1, d2) = d1d2
k4

l4
+

(
d2u
∗
−

K
− δd1

(
1− 1

b

))
k2

l2
+

δc

bu∗−
− δ
(

1− 1

b

)
u∗−
K

(2.10)

with k = 0, 1, 2, · · · .
Based on the research methods in [2, 4, 5, 16–19, 22], we discuss the existence

conditions of Turing bifurcation and Hopf bifurcation points under the condition
c < K (b− 1)/4. According to paper [5], we know that all the eigenvalues of (2.8)
with k = 0 have negative real parts. In the remaining parts, k-mode Turing (Hopf)
bifurcation is referred to as the corresponding k-th characteristic equation having
a zero root (a pair of purely imaginary roots). Moreover, since the transversality
conditions hold, Turing bifurcation and Hopf bifurcation occur respectively [5]. If
k is a positive integer, then k-mode Hopf bifurcation is also called wave bifurcation
[17,19].

2.1. Turing bifurcation and Turing instability

Theorem 2.1. Assume that
(b−1)(u∗

−)
2

K < c < K (b− 1)/4. Let

δk (d1) =
bu∗−(d1d2

k4

l4 + d2
k2

l2
u∗
−
K )

(b− 1)
(
d1

k2

l2 +
u∗
−
K

)
u∗− − c

. (2.11)

If d1 > d2 and δ <
bu∗

−
K(b−1) hold, then system (2.2) undergoes Turing bifurcation at

δ = δk (d1), when there exists a positive integer k satisfying d1 >
Kc−(b−1)(u∗

−)2

K(b−1) k2

l2
u∗
−

.

Proof . Using the same methods of papers [17, 19], from (2.10), we obtain that

if
(b−1)(u∗

−)
2

K < c and δ <
u∗
−

K(b−1) , then T0(0, 0) > 0 in (2.9) and D0 (0, 0) > 0 in

(2.10). That is to say, all the roots of (2.8) for k = 0 have strictly negative real
parts. Thus, the constant steady state E∗− of system (2.2) with d1 = 0 and d2 = 0 is
sable. By computing, we know that if d1 > d2, then Dk (d1, d2) = 0 at δ = δk (d1),

where k is a positive integer satisfying d1 >
Kc−(b−1)(u∗

−)2

K(b−1) k2

l2
u∗
−

as Kc > (b − 1)
(
u∗−
)2

.
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That is to say, the characteristic equation (2.8) has a zero root λ = 0. Taking the
derivative of both sides of equation (2.8) with respect to λ, if δk(d1) < δ0, then we
have

dFk (λ)

dλ
| δ=δk(d1)
λ=0

= Tk (d1, d2) |δ=δk(d1) > 0.

It implies that λ = 0 is a single root of equation (2.8). Furthermore, if d1 >
Kc−(b−1)(u∗

−)2

K(b−1) k2

l2
u∗
−

and δk(d1) < δ0, then we obtain

d (λ (δ))

dδ
| δ=δk(d1)
λ=0

=

(
1− 1

b

) (
d1

k2

l2 +
u∗
−
K

)
− c

bu∗
−

Tk (d1, d2) |δ=δk(d1)
> 0

where Tk (d1, d2) is defined by (2.9), the transversality condition holds. Thus, sys-
tem (2.2) satisfies the following conditions of occurring Turing bifurcation:

Im (λk) = 0,Re (λk) = 0, at k 6= 0,

where k is a positive integer. Thus, system (2.2) undergoes turing bifurcation at
δ = δk (d1) ( defined by (2.11)), which is denoted as the turing bifurcation curve
L1. This completes the proof.

In order to determine the value k for the k-model Turing bifurcation, we use
the methods in [5] to determine the feasible region on the plane of diffusion ratio ρ
(ρ = d2/d1) and diffusion coefficient d1 of tumor cells, on which a Turing bifurcation
curve may exist. For the sake of investigation, we choose l = 1 in Ω = (0, lπ), and
denote d1, d2, Tk(d1, d2) and Dk(d1, d2) as d, ρd, Td(k, ρ) and Dd(k, ρ) respectively.
Thus, (2.8), (2.9) and (2.10) become

Fk (λ) = λ2 + Td (k, ρ)λ+Dd (k, ρ) = 0 (2.12)

Td (k, ρ) = A−D + d (1 + ρ) k2 (2.13)

Dd (k, ρ) = ρd2k4 + k2d (ρA−D) +BC −AD (2.14)

where A = u∗−/K, B = δ
b(u∗−)2 , C = cu∗−, D = δ(1− 1

b ),k = 0, 1, 2, · · · .

Lemma 2.3. For model (2.2), the Turing bifurcation point (ρ, d) always exists, and
(ρ, d) ∈ {(ρ, d) ∈ R+

2 , d > 0, 0 < ρ < ρB(d)} .= U , where

ρB (d) =

ρ1, 0 < d ≤ d̃

ρ2 (d) , d ≥ d̃
(2.15)

where d̃ = D − AD2

(
√
BC−

√
BC−AD)

2 , ρ1 =

(√
BC−
√
BC−AD)

)2

A2 and ρ2 (d) = D
A+d .

Proof . For k ∈ R+ , Dd(k, ρ) attains its minimum when k2
min = D−ρA

2ρd . It can

then be verified that mink∈R+ Dd (k, ρ) = (BC −AD)− (ρA−D)2

4ρ > 0 if and only if

ρ > ρ1. From (H0), we have Td(k, ρ) > 0 for any k ∈ R+. Therefore, λ = 0 cannot
be a root of (2.12) for any k ∈ R+ whenever ρ > ρ1. In addition, if ρ < ρ2(d), then
k2
min = D−ρA

2ρd > 1
2 . Consequently, there exists apair (ρ, d) for some k ∈ R+, such

that ρ < ρ1 and ρ < ρ2(d) and that λ = 0 is a root of (2.12). Since ρ2(d) is strictly
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decreasing with respect to d, there exists d = d0 = A2D
(
√
BC−

√
BC−AD)2

−A such that

ρ1 = ρ2 (d0), ρ1 < ρ2 (d) for d ∈ (0, d0) and ρ2 (d) < ρ1 for d ∈ (d0,∞). From the
above discussion, we conclude that the Turing bifurcation point (ρ, d) ∈ U . This
completes the proof.

If the characteristic equation (2.12) has a zero characteristic root for k ∈ N,
then there exists a positive integer k 6= 0 such that Dd (k, ρ) = 0. Thus, the value
of ρ can be calculated from equation (2.14), denoted by ρ∗(d, k)

ρ∗ (d, k) = D
dk2 − Z1

dk2(dk2 +A)
(2.16)

for d > d̃k = BC−AD
Dk2 where Z1 = BC−AD

D . Obviously, Dd (k, ρ) = 0, whenever
ρ = ρ∗(d, k). Using a geometric argument and the results of [5], we obtain the
following properties for ρ∗(d, k).

Lemma 2.4. Suppose that c < K (b− 1)/4 holds. If A−D > 0 and BC−AD > 0
hold, we have the following properties for ρ∗(d, k).

i) For any fixed k ∈ N, ρ = ρ∗(d, k) reaches its maximum ρ1 =

(√
BC−
√
BC−AD)

)2

A2

at d = dM (k)
.
=

(
Z1+
√
Z2

1+Z1A
)

k2 > d̃k, and ρ∗(d, k) is monotonically decreas-

ing (increasing) with respect to d, for d > dM (k)(d̃k < d < dM (k)) .

ii) For any k ∈ N, the equation

ρ∗(d, k) = ρ∗(d, k + 1), d > 0

has a unique positive root dk,k+1 ∈ (dM (k + 1), dM (k)) for d, which is given
by

dk,k+1 =
Z1

2

 1

k2
+

1

(k + 1)
2 +

√√√√( 1

k2
+

1

(k + 1)
2

)2

+
4A

Z1k2(k + 1)
2

 .
(2.17)

Moreover,

ρ∗(d, k) > ρ∗(d, k + 1) > ρ∗(d, k + 2) > · · · for d > dk,k+1. (2.18)

iii) Let

ρ∗ (d) = ρ∗ (d, k) for d ∈ [dk,k+1, dk−1,k), k ∈ N, (2.19)

where d0,1
.
= ∞. Then ρ∗(d) ≤ ρB(d) for 0 < d < ∞, ρ∗(d) = ρB(d) if and

only if d = dM (k), k ∈ N.

Lemma 2.5. Assume that
(b−1)(u∗

−)
2

K < c < K (b− 1)/4 holds. If A − D > and
BC −AD > 0 hold, then we have

i) If d ∈ [dkT ,kT+1
, dkT−1,kT ) for some positive integer kT ∈ N and ρ = ρ∗(d),

then 0 is a simple root of (2.12) with k = kT , and all the other roots of
(2.12) have strictly negative real parts. Furthermore, let λ = λ(ρ, kT ) be
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the root of (2.12) when k = kT such that λ(ρ, kT )|ρ=ρ∗(d) = 0, where ρ ∈
(ρ∗(d)− ε, ρ∗(d) + ε) for a sufficiently small ε. Then,

dλ(kT , ρ)

dρ
|ρ=ρ∗(d)
λ=0

< 0. (2.20)

ii) If d = dkT ,kT+1
and ρ = ρ∗(dk,k+1), then 0 is a simple root of (2.12) for both

k and k + 1, k ∈ N.

Proof . (i) Recall that Dd(ρ, k) = 0, if and only if ρ = ρ∗(d) for kT ∈ N.
Then, for any k ∈ N, λ = 0 is always a root of (2.12) with such values of k
when ρ = ρ∗(k, d). By the definition of ρ∗(d) and ρ∗(k, d), we know that for
d ∈ [dkT ,kT+1

, dkT−1,kT ) for some kT and ρ = ρ∗(d), then λ = 0 is a root of the
characteristic equation (2.12) with k = kT . Furthermore, λ = 0 is simple, since

dFkT (λ, ρ)

dλ
|ρ=ρ∗(d)
λ=0

= Td(kT , ρ∗(d)) > 0,

where Td(k, ρ) is defined by (2.13). Differentiating (2.12) with respect to ρ gives

dFkT (λ, ρ)

dρ
|ρ=ρ∗(d)
λ=0

= Td(kT , ρ∗(d))
dλ(ρ, kT )

dρ
|ρ=ρ∗(d) + d2k4

T +
dk2
Tu
∗
−

K
= 0. (2.21)

Thus, from (2.21), we have

dλ(kT , ρ)

dρ
|ρ=ρ∗(d)
λ=0

= −
d2k4

T +
dk2Tu

∗
−

K

Td(kT , ρ∗(d))
< 0,

where Td(k, ρ) is defined by (2.13). This proves the first statement.
(ii) By a similar argument as above, one can show the second assertion. This

completes the proof.

Theorem 2.2. Assume that
(b−1)(u∗

−)
2

K < c < K (b− 1)/4 holds. Then, we have

i) The condition for the occurrence of Turing instability at the positive steady
state E∗−

(
u∗−, v

∗
−
)

of system (2.2) is 0 < ρ < ρ∗(d1), d1 > 0 ;

ii) When ρ = ρ∗(d1) holds for d ∈ [dkT ,kT+1
, dkT−1,kT ), system (2.2) will undergo

Turing bifurcation whose wave number is kT ,
where ρ = d2/d1 and ρ∗(·) is as defined in formula (2.19)

2.2. Hopf bifurcation and periodic solutions

Theorem 2.3. Assume that
(b−1)(u∗

−)
2

K < c < K (b− 1)/4. Let

δ∗ =
bu∗− + bK k2

l2 (d1 + d2)

(b− 1)K
. (2.22)

Then, we have the following results:

i) If δ = δ0 holds, then system (2.2) undergoes 0-mode Hopf bifurcation;
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ii) If (
u∗
−
K + d1

k2

l2 )(b − 1)(u∗− − 1) < c < (
u∗
−
K + d1

k2

l2 )(b − 1)u∗−, k ∈ (k1, k2) or

c > (
u∗
−
K + d1

k2

l2 )(b − 1)u∗− holds, then the characteristic equation (2.8) has
a pair of simple pure imaginary roots at δ = δ∗. Additionally, system (2.2)
undergoes Hopf bifurcation (k 6= 0), and has a periodic solution, where

k1,2 = l

√
− (b− 1) 2d1(u∗−)2 +Kc(d1 + d2) +

√
Θ

2(b− 1)K(u∗−)d2
1

, (2.23)

where
Θ =

(
(b− 1) 2d1(u∗−)2 −Kc(d1 + d2)

)2−4 (b− 1) (u∗−)2d2
1

(
(b− 1) (u∗−)2 − cK

)
.

Proof . Using the same methods of paper [2, 4, 17], we obtain that

i) The conditions for 0-mode Hopf bifurcation to occur are as follows:

Im (λk) 6= 0,Re (λk) = 0, at k = 0.

If k = 0, then characteristic equation (2.8) becomes

F0 = λ2 +

(
u∗−
K
− δ

(
1− 1

b

))
λ+

δc

bu∗−
− δ

(
1− 1

b

)
u∗−
K

= 0. (2.24)

Clearly, if
(b−1)(u∗

−)
2

K < c and δ =
bu∗

−
K(b−1) , that is δ = δ0, then characteristic

equation (2.8) has a pair of simple pure imaginary roots λ = ±iω0, where

ω0 =

√
δ0c
bu∗

−
− δ0

(
1− 1

b

) u∗
−
K . Furthermore,

dRe (λ (δ))

dδ
| δ=δ0
λ=iω0

=
(1− 1/b)

2
> 0

the transversality condition holds. Thus, system (2.2) undergoes 0-mode Hopf
bifurcation at δ = δ0, denoted as the 0-mode Hopf bifurcation curve L2.

ii) When k 6= 0, we suppose that characteristic equation (2.8) has a pair of
pure imaginary root, let λk = iωk. Substituting λk = iωk into characteristic
equation (2.8) and separating the real and imaginary parts, we have

u∗
−
K + (d1 + d2)k

2

l2 − δ
(
1− 1

b

)
= 0

d1d2
k4

l4 +
(
d2

u∗
−
K − δ

(
1− 1

b

)
d1

)
k2

l2 + cδ
bu∗

−
− δ

(
1− 1

b

) ru∗
−
K = ω2

k.
(2.25)

From the first equation of (2.25), we have

δ =
bu∗− + bK k2

l2 (d1 + d2)

(b− 1)K
. (2.26)

That is, δ = δ∗. From the second equation of (2.25), we know that, if ω2
k > 0,

then

Dk(d1, d2) = d1d2
k4

l4
+
k2

l2

(
d2u
∗
−

K
− d1δ

(
1− 1

b

))
+
δc

bu∗−
−δ
(

1− 1

b

)
u∗−
K

> 0.

(2.27)
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Note that, by solving inequality (2.27), there are two possible cases for ω2
k > 0.

Case (I): if c < (
u∗
−
K + d1

k2

l2 )(b− 1)u∗−, then from (2.27), we have

δ <
bu∗−(d1

k4

l4 + k2

l2
u∗
−
K )d2

(b− 1)(d1
k2

l2 +
u∗
−
K )u∗− − c

.
= δ̃. (2.28)

By combining (2.26) and (2.28) yields δ∗ < δ̃, i.e.

bu∗− + bK k2

l2 (d1 + d2)

(b− 1)K
<

bu∗−(d1
k4

l4 + k2

l2
u∗
−
K )d2

(b− 1)(d1
k2

l2 +
u∗
−
K )(u∗−)− c

. (2.29)

In order to find a positive integer k satisfying inequality (2.29), let ϕ(k2) be
the following quadratic equation of k2:

ϕ
(
k2
)

=
(
(b− 1)Kd2

1u
∗
−
)(k2

l2

)2

+
(
(b− 1) 2d1(u∗−)2 −Kc(d1 + d2)

) k2

l2

+

(
(b− 1) (u∗−)3

K
− u∗−c

)
.

(2.30)

By computing, we obtain the two solutions k1, k2 of ϕ
(
k2
)

= 0 is defined by

(2.23). By combining (2.26),(2.28) and (2.30), if (
u∗
−
K +d1

k2

l2 )(b−1)(u∗−−1) <

c < (
u∗
−
K +d1

k2

l2 )(b−1)u∗−, then d2 > 0 and there exists a k ∈ (k1, k2) satisfying
ϕ
(
k2
)
< 0. That is, inequality (2.29) holds.

Cases (II): If c > (
u∗
−
K + d1

k2

l2 )(b− 1)u∗−, then inequality (2.29) holds for every
positive integer k.
Under the conditions of Case (I) and Case (II), if δ = δ∗, then characteristic
equation (2.8) has a pair of pure imaginary root λ = ±iωk, where ωk =√
Dk(d1, d2)|δ=δ∗ , Dk(d1, d2) is defined by (2.10). Furthermore,

dRe (λ (δ))

dδ
| δ=δ∗
λ=iωk

=
b− 1

2b
> 0,

then the transversality condition holds. Therefore, whenever (
u∗
−
K + d1

k2

l2 )(b−
1)(u∗−−1) < c < (

u∗
−
K +d1

k2

l2 )(b−1)u∗−, k ∈ (k1, k2) or c > (
u∗
−
K +d1

k2

l2 )(b−1)u∗−,
system (2.2) undergoes Hopf bifurcation (k 6= 0), and has a periodic solution
at δ = δ∗ ( see (2.22)) denoted as curve L3.

3. Simulations and discussion

In this section, based on our results of linear stability analysis and bifurcation
analysis in Section 2 and Section 3, we perform some numerical simulations concern-
ing system (2.2) to show the influence of the diffusion factor and the in-activation
rate of T cells on the stability and spatiotemporal patterns of system (2.2) with
some fixed parameters.

We choose
K = 20, c = 16, b = 5 (3.1)
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for system (2.2). Then, we obtain the following constant equilibrium solutions

E0 = (0, 0), EK = (20, 0), E∗− = (5.5278, 0.04522), E∗+ = (14.4721, 0.01727).

By computing, we obtain that δ0 = 0.3454915. From Lemma 2.2 and Theorem 2.3,
if we choose (d1, d2) = (0, 0) and δ = 0.2(< δ0) of system (2.2) with the condition
(3.1), then there exists a stable steady state solution for system (2.2) without the
diffusive influence (see Figure 1). If we choose (d1, d2) = (0, 0) and δ = 0.3455
of system (2.2) with the condition (3.1), then there exists a homogeneous periodic
solution for system (2.2) without the diffusive influence (see Figure 2).

(a) tumor cell (b) T cell

Figure 1. The stable steady state (E∗
−) of (2.2) as t→∞ for δ = 0.2 and (d1, d2) = (0, 0).

(a) tumor cell (b) T cell

Figure 2. A homogeneous periodic solution of (2.2) for δ = 0.3455 and (d1, d2) = (0, 0)

In order to show the effects of diffusion factors on tumor-immune system (2.2)
in Theorem 2.1 and Theorem 2.3, we choose parameter condition (3.1) and d2 =
0.012675 to determine the bifurcation curves L1 − L3 as follows:
Turing bifurcation curve L1 : δ = δk (d1) = 0.3503d1+0.096819

22.11d1−9.886 , d1 > 0.4471359, kl = 1;
Hopf bifurcation line L2 : δ = δ0 = 0.3454915, (d1, d2) = (0, 0), k = 0;
Hopf bifurcation line L3 : δ = δ∗ = 0.36133 + 1.25d1, k

l = 1.
Then, the d1 − δ plane is divided into seven regions I-VII (see Figure 1) by the
bifurcation curves L1 − L3.
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Figure 3. Bifurcation diagram d1 − δ for system (2.2)

From Figure 3, the Turing bifurcation curve and the Hopf bifurcation lines (k ≥
0) intersect at codimension-2 bifurcation points. The bifurcation curves separate
the parametric space into several distinct domains. Domain I is a pure Turing
instability region. In domain II, located below all three bifurcation lines, the steady
state E∗− is the stable solution of system (2.2). Domain III is the region of Hopf
instability, and domain IV is the region of periodic solution. Domain V is located
above all the bifurcation curves, in which the steady state EK is the stable solution
of system (2.2). Domains VI and VII are the regions of inhomogeneous periodic
solutions induced by Turing and Hopf bifurcations.
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Figure 4. The Graph of Re(λ(k)) with respect to k/l with fixed d2 = 0.012675

According to Figure 3, we choose the parameter condition (3.1), d2 = 0.012675, 0.056,
and several groups of perturbation parameter values-(d1, δ) = (0.75, 0.2), (0.75, 0.3455),
(0.4473, 0.3455), (0.4827, 0.3466), (0.02, 0.38633) to show the value of Re(λ(k)) (see
Figure 2), which reveals the value of k/l when Turing instability occurs.

According to the seven regions in Figure 3 and Figure 4, we choose d2 =
0.012675, parameter condition (3.1) and four groups of perturbation parameter
values-(d1, δ) = (0.75, 0.2), (0.02, 0.38633), (0.4827, 0.3466), (0.4473, 0.3455) to show
the results of numerical simulations for system (2.2) as follows:
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(a) tumor cell (b) T cell

Figure 5. A spatially inhomogeneous steady state of (2.2), for (d1, δ) = (0.75, 0.2) ∈ I

(a) tumor cell (b) T cell

Figure 6. A homogeneous periodic solution of (2.2), for (d1, δ) = (0.02, 0.38633) ∈ IV

(a) tumor cell (b) T cell

Figure 7. A spatially inhomogeneous periodic solution of (2.2), for (d1, δ) = (0.4827, 0.3466) ∈ V I



490 J. Wang & S. Liu

(a) tumor cell (b) T cell

Figure 8. A spatially inhomogeneous periodic solution of (2.2), for (d1, δ) = (0.4473, 0.3455) ∈ V II

If we choose the parameter condition (3.1), and (d1, δ) ∈ I, then the steady
state E∗− becomes unstable, and there exists a spatially inhomogeneous steady state
(induced by Turing bifurcation, which breaks spatial symmetry of system (2.2)) (see
Figure 5). If we choose the parameter condition (3.1), and (d1, δ) ∈ II, satisfying
δ < δ0, then the steady state E∗− is stable (see Figure 1). If we choose the parameter
condition (3.1), and (d1, δ) ∈ III, then the steady state E∗− become unstable,
there exists a small amplitude homogeneous periodic solution (induced by Hopf
bifurcation, which breaks the temporal symmetry of system (2.2) (see Figure 2).
If we choose the parameter condition (3.1), and (d1, δ) ∈ IV , the steady state
E∗− become unstable, there exists a large amplitude homogeneous periodic solution
(induced by the inactive rate of T cells with the diffusion factors (see Figure 6). If
we choose the parameter condition (3.1), and (d1, δ) ∈ V I, then the steady state
E∗− is unstable, there exists a large amplitude inhomogeneous periodic solution
(induced by the diffusion coefficients and the large inactive rate δ) (see Figure 7). If
we choose the parameter condition (3.1), and (d1, δ) ∈ IIV , then the steady state
E∗− is unstable, there exists a small amplitude inhomogeneous periodic solution
(induced by the diffusion coefficients and the inactive rate δ) (see Figure 8).

By Lemmas 2.3 through 2.5 and Theorem 2.2, we choose the parameter condition
(3.1) and the different in-active rate δ of T-cell such as 0.2, 0.3455, 0.3466 and
0.38633 to show the value k of the first Turing bifurcation occurring in Figure 9.
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Figure 9. The first Turing bifurcation line ρ∗(d)
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In Figure 9, the d in ρ∗(d) of (2.19) is the d1 in system (2.2) and ρ = d2/d1.
Domain G0 is Turing instable region and domain G1 is the stable region for E∗− for
four different values of δ. Domain G2 is the instable region for E∗− for δ = 0.38633
and is the stable region for the other three different values of δ. Domain G3 is
the stable region for E∗− for δ = 0.2 and is the instable regions for δ = 0.3455,
δ = 0.3466 and δ = 0.38633.

According to Figure 9, if we choose parameter condition (3.1), and δ = 0.3455,
d1 = 0.75, d2 = 0.056 ( diffusion ratio ρ = 0.074667 ∈ G3 ) of system (2.2), then
the steady state E∗− becomes unstable, and there exists an inhomogeneous periodic
solution (induced by the small diffusion coefficient and the large in-active rate of
T cells) (see Figure 10), in which the small amplitude periodic solution undergoes
Turing bifurcation and forms spatially new irregular spatiotemporal patterns(see
[21]). The simulation results show that oscillatory Turing or finite wavelength Hopf
bifurcation breaks both spatial and temporal symmetry, generating patterns that
are oscillatory in space and time [19].

(a) tumor cell (b) T cell

Figure 10. A spatiotemporal solution of (2.2) for the case δ = 0.3455 and (d1, d2) = (0.75, 0.056)

4. Conclusion

In this paper, we have investigated the spatiotemporal dynamics of combination
immunotherapy systems consisting of activated T cells and tumor cells. Our analy-
ses indicate that system (2.2) exhibits complex spatiotemporal patterns via Turing
bifurcation and Hopf bifurcation. When parameters are chosen properly, system
(2.2) exhibits a spatially homogeneous periodic solution, a spatially inhomogeneous
steady state and transient spatially inhomogeneous periodic solutions, which are
induced by Hopf bifurcation and Turing bifurcation. In addition, theoretical anal-
ysis and numerical results show that the in-active rate of T cells and the diffusion
coefficients of T cells and tumor cells are important factors for controlling the spa-
tiotemporal states of T cells and tumor cells. The in-active rate of T cells affects
the periodic oscillation of tumor cell number, and the diffusion ratio between tumor
cells and T cells affects the space distribution of tumor cell number.
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